Journal of American Science

Websites: http://www.jofamericanscience.org http://www.sciencepub.net

Emails: editor@sciencepub.net sciencepub@gmail.com

An analytical study of the possibility of increasing rice production in Egypt

Dr. Shahira Mohamed Reda Ibrahim¹, Dr. Rania Mohamed Nageib², Dr. Maii Foad Elghaweet², Dr. Mohamed Ali Abdo Hussein³

¹Senior Researcher, Department of Agricultural Policy Research and Project Evaluation, Agricultural Economics Research Institute, Agricultural Research Center, Egypt.

²Researcher, Department of Development and Rural Society Research, Agricultural Economics Research Institute, Agricultural Research Center, Egypt.

³Senior Researcher, Department of Regional Studies Research, Agricultural Economics Research Institute,

Agricultural Research Center, Egypt.

Email: Shahira_mrd14@yahoo.com

Abstract: The research aims to increase the local production of rice crop because it is considered one of the main cereal crops and the important strategy in Egypt, and the method of two-way analysis of variance and the Harry Eyre model - Edward Shaw were used, and linear programming was used using WinQSB program. The research found that there are significant differences of statistical significance for the impact of cultivated rice species on fed productivity, and using the Harry- Eyre and Edwar coefficients, after replacing high-productivity species with low-productivity species, increasing the productivity per fedden to about 3.990 tons / fedden and increasing the transfer coefficients in the supply function of the species Giza 179, Sakha 104, Sakha 101, Giza 177, Giza 178, Super 300, Sakha 108, Sakha 102, Sakha 103 with a transfer coefficient of about 0.4%, 2.9%, 5.6%, 3.5%, 6.3%, 0.21%, 0.7%, 0.4% and 0.07% each respectively, for the same cultivated areas. It led to an increase in production achieved from about 4.829 million tons to about 4.950 million tons, an increase of about 120.3 thousand tons, equivalent to about 2.5% of actual production. From the results of the linear programming of most of the net return, it was found that the most best net return amounted to about 5.1 billion pounds, an increase of about 1.3 billion pounds over the current net return, and the most best production.

[Shahira Mohamed. Reda Ibrahim, Rania Mohamed Nageib, Maii Foad Elghaweet, Mohamed Ali Abdo Hussein. An analytical study of the possibility of increasing rice production in Egypt. *J Am Sci* 2023;19(5):85-101]. ISSN 1545-1003 (print); ISSN 2375-7264 (online). http://www.jofamericanscience.org_09. doi:10.7537/marsjas190523.09.

Key Words: linear programming, Harry- Eyre and Edwar coefficient ,production, rice.

Introduction:

The rice crop is one of the main cereal crops and important strategy in Egypt, and comes after the wheat crop in second place in terms of its nutritional importance because it contains many salts, minerals and nutritional vitamins, and its secondary product enters the concentrated feed industry for animal production, in addition to that it still achieves a surplus directed to export after meeting the requirements of the local market ⁽⁶⁾. In recent years, the rice crop has taken a general decreasing trend, as it is considered one of the crops that consume the most irrigation water, as it needs about 9.6 billion m3⁽²⁾, and because of the state's keenness to rationalize irrigation water after the Renaissance Dam crisis, the target area for it in the crop composition has been determined by about 724 thousand fedden only (11), whose production is sufficient for local consumption and export requirements⁽⁸⁾.

In light of the limited land and water resources available to Egypt, and with the increase in investments necessary for the reclamation of new lands, the importance of using varietal technology to increase rice production through the development of new improved species has emerged, leading to higher self-sufficiency of this crop⁽⁷⁾.

Problem:

Despite the importance of the rice crop as the main food of the Egyptian people, the state has adopted a policy of determining the area planted with rice due to its large water needs, which resulted in a decrease in the amount of production and exports of rice crop as well as export revenues, and this policy also affected the percentage of self-sufficiency from it. It was necessary for the state to pay attention to varietal technology and develop exceptional methods and solutions to address the shortage of cultivated area of rice due to water scarcity, and its desire to save hard currency, by choosing the highest productive species and expanding their cultivation in place of other less productive species to increase the productivity of the ground unit and the unit of water used. And Thanks to the research conducted in this field by the Ministry of Agriculture and the specialized research institutes of the Agricultural Research Center, many species with high productivity, resistance to diseases and shortlived have been developed, and the question posed by the research paper is whether the development of new species of rice and the application of the varietal composition of the rice crop for each governorate achieve maximum production and optimal use of resources.

Objective:

The main objective of the research is to increase the local production of rice crop. This is done by achieving the following sub-objectives:

- 1- Studying the development of the most important productive and economic variables of the rice crop during the period (2010-2020).
- 2- Measuring the impact of species technology on the productivity the fedden of rice crop.
- 3- Measuring the impact of the cultivation of modern species on the transmission of rice crop supply function.
- 4- Access to the class map of the rice crop, which achieves the maximum possible production under the available resources.

Method and Data Sources:

The research relied on the method of descriptive and quantitative analysis to study the evolution of rice variables through the use of some statistical and mathematical methods such as averages and percentages, and the method of regression analysis to estimate the general time trend, and the method of analysis of variance in two directions to clarify the differences in productivity between species and governorates, and in the case of the significance of the calculated value - F, the averages are compared using the LSD test to determine which of these species causes morality, and the Harry Eyre - Edward Shaw model was used to estimate the coefficients of The transfer of the supply function for different species of rice crops, linear programming was used to determine the most appropriate distribution of rice species and also used the WinQSB programme.

As for the data sources, the research was based on many available sources, including agricultural statistics bulletins, and food security bulletins issued by the Economic Affairs Sector at the Ministry of Agriculture and Land Reclamation, in addition to the data available in previous studies related to the subject.

Results and Discussion

First: The development of the most important productive variables of the rice crop in Egypt: The evolution of the area of the rice crop:

It is clear from the data of Table (1) in the appendix that the area of the rice crop in Egypt during the period (2010-2020) ranged between 858.7 thousand feddens in 2018 as a minimum, after the decision of the Minister of Water Resources to reduce the areas of the rice crop in order to reduce water consumption ⁽¹¹⁾ and about 1472.1 thousand feddens in 2012 as a maximum, and by estimating the equation of the general time trend of the area of the rice crop during the study period, it was found that the statistical significance was not proven at different significance levels, and this means that it is characterized by the relative stability around the annual average for the period indicated.

Evolution of rice crop productivity:

It is clear from the data of Table (1) in the appendix that the average productivity of rice crop in Egypt amounted to about 3.886 tons / fedden during the study period and ranged between 3.635 tons / fedden in 2018 as a minimum and about 4.028 tons / fedden in 2014 as a maximum, and by estimating the equation of the general time trend of rice crop productivity during the study period, it was found that the linear functions the best mathematical function suitable for the data, as the results indicated that the productivity of the rice crop increased at a significant annual rate. Statistically estimated at about 0.037 tons / fedden per year, representing about 0.95% of the annual average productivity of the rice crop, which is about 3.886 tons / fedden, and the significance of the model as a whole. was proven and the results showed that about 72% of the changes in the productivity of the rice crop during the study period are due to time factor.

The development of rice production:

It is clear from the data of Table (1) in the appendix that the average production of rice crop in Egypt amounted to about 4955.6 thousand tons during the study period and ranged between 3121.9 thousand tons as a minimum in 2018, and about 5896.6 thousand tons in 2012 as a maximum, and by estimating the equation of the general time trend for rice production, it was found that statistical significance was not proven at different significance levels, and this means that it is characterized by relative stability around the annual average for the period referred to.

The evolution of the farm price of rice crop:

It is clear from the data of Table (1) in the appendix that the average farm price of rice crop was about 2611.7 pounds / fedden during the period (2010-2020) and ranged between 1837 pounds / fedden in 2010 as a minimum and about 2565 pounds / fedden in 2020 as

a maximum, and by estimating the equation of the general time trend of the farm price of the rice crop during the study period, the results showed that the exponential function is the best mathematical function suitable for the data, and it was found that the agricultural price of the rice crop increases at a rate of About 7.5% per year, and the significance of the model as a whole was proven and the results indicated that about 83% of the changes in the farm price of rice crop are due to time factor.

Statement		Function	General trend equation	T _{testb1}	R ²	F	Rate of change(%)
Productivity	Ton/fed	Linear	$\widehat{Y}\iota = 4.111 + 0.037Xi$	4.81	0.72	23.13	0.95
Farm price	EGP/Fed	Exponential	$ln\widehat{Y}\iota = 1603.2 + 0.075Xi$	6.65	0.83	44.25	7.5
Total Revenue	EGP/Fed	Exponential	$ln\widehat{Y}\iota = 6841.6 + 0.065Xi$	6.75	0.84	45.57	6.5
Total costs	EGP/Fed	Exponential	$ln\widehat{Y}i = 3714.53 + 0.089Xi$	7.52	0.86	56.58	8.9

Table (1): General Time Trend of the Most Important F	Rice Crop Productivity Variables (2010-2020)
---	--

where : $\hat{Y}_i = \ln \hat{Y}_i$ = estimated value of the study variables, X_i = time variable , where i =1,2.....19.

Source: Calculated and collected from data of the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Bulletin of Agricultural Statistics, during the period (2010-2020).

The evolution of the total revenue of the rice crop:

It is clear from the data of Table (1) in the appendix that the average total revenue of the rice crop amounted to about 10355.5 pounds / fedden during the study period and ranged between 7503 pounds / fedden in 2010 as a minimum and about 13682 pounds / fedden in 2020 as a maximum, and by estimating the equation of the general time trend The total revenue of the rice crop during the study period showed that the exponential function is the best mathematical function suitable for the data, and it was found that the total revenue of the rice crop increases at a rate of About 6.5% per year, and the significance of the model as a whole was proven and the results indicated that about 84% of the changes in the total revenue of the rice crop are due to the time factor.

The evolution of the total costs of the rice crop:

It is clear from the data of Table (1) in the appendix that the average total costs of the rice crop amounted to about 6639.4 pounds / fedden during the study period and ranged between 4073 pounds / fedden in 2010 as a minimum and about 10475 pounds / fedden in 2018 as a maximum, and by estimating the equation of the general time trend of the total costs of the rice crop during the study period, the results showed that the exponential function is the best mathematical function suitable for the data, and it was found that the total costs of the rice crop increase at a rate of About 8.9% per annum. The results indicated that about 86% of the changes in the total costs of rice crop are due to the time factor.

Evolution of net return:

It is clear from the data of Table (1) in the appendix that the average net yield of the rice crop amounted to about 3478.5 pounds / fedden during the study period and ranged between 2391 pounds / fedden in 2016 as a minimum and about 5221 pounds / fedden in 2017 as a maximum, and by estimating the equation of the general time trend of the net yield of the rice crop during the study period, the results showed that the statistical significance was not proven at different significance levels, and this means that it is characterized by relative stability around the annual average for the period referred to.

Second: Geographical Distribution of Rice Crop in Egypt:

Table (2) shows the geographical distribution of rice crop during the period (2016-2020) and shows the following:

- The governorates of Lower Egypt are considered one of the most cultivated governorates for the rice crop, with an average area of about 1196 thousand feddens, which represents about 95.5% of the total area of rice in Egypt, which is estimated at about 1202 thousand feddens, and the average productivity of an fedden is about 3.755 tons / fedden and an average production of about 4504.8 thousand tons during the mentioned period. Rice production was concentrated in five governorates: (Dakahlia, Sharqia, Kafr El-Sheikh, Beheira, and Gharbia).

Third: The relative importance of rice species during the period from (2016-2020):

One of the most important objectives of the National Rice Research Program is to develop new species with high productivity, resistance to pests and diseases and tolerating unfavorable environmental conditions, especially alkalinity and salinity of the soil, as well as with high quality qualities of cereals to suit local and international consumption.

Table (3) shows the most important species of rice crop in Egypt during the average period (2016-2020), where the Giza 178 specie is the most cultivated rice crop in Egypt with an area estimated at about 377.3 thousand feddens during the mentioned period, representing about 31.4% of the total area of rice crop

in Egypt, which is about 1202.2 thousand feddens, and the productivity of this variety was about 3.726 tons / fedden, and its average production was about 1410.4 thousand tons and represents about 31.2% of the total rice production in Egypt. By studying the geographical distribution of the population on the governorates of the Republic, it is clear from Appendix (2) that Dakahlia Governorate is the most cultivated governorate for the rice crop Giza 178 in terms of area for this specie, followed by Kafr El-Sheikh Governorate, then Sharkia Governorate by representing about 46%, 20%, 18%, respectively, of the total cultivated area of this specie in Egypt, with a productivity of about 4.151, 3.875, 3.439 tons / fedden for each of them, respectively.

Table (2): Geographical Distribution of Area, Productivity and Production of Rice Crop in Egypt Governorates during the Period Average (2016-2020)

Commente	Area	%	Productivity	0/ Drug drug offersion	Production	0/ Drug drugtion
Governorate	Fed	Area	Ton/Fed	%Productivity	Ton	%Production
Dakahlia	345803	28.8	3.959	105.5	1380501	30.5
Sharqia	248642	20.7	3.470	92.4	864819	19.1
Kafr El-Sheikh	248505	20.7	3.977	105.9	987870	21.8
Beheira	165121	13.7	3.672	97.8	606003	13.4
Gharbia	99228	8.3	3.688	98.3	365385	8.1
Lower Egypt Total	1196414	99.5	3.755	100.0	4504802	99.5
Upper Egypt Total	7	0.0	3.413	90.9	24	0.001
Total Middle Egypt	3692	0.3	3.582	95.4	13514	0.3
Total Country	1202227	28.8	3.754	100	4525386	100.0

Source: Collected and calculated by the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Bulletin of Agricultural Statistics, Miscellaneous Issues

Table (3): Relative Importance of the Most Important Rice Crop species in Descending Order by Area during the Period (2016-2020)

varieties	Area (k fed)	%	Productivity (ton/fed)	%	Production (k tons)	%
Giza 178	377.3	31.4	3.726	98.97	1410.4	31.2
Sakha 101	308.1	25.6	3.763	99.98	1160.6	25.6
Giza 177	193.1	16.1	3.756	99.79	725.6	16.0
Sakha 104	188.9	15.7	3.772	100.21	713.0	15.8
Sakha 108	44.7	3.7	3.809	101.20	170.6	3.8
Sakha 106	30.6	2.5	3.816	101.38	116.9	2.6
Giza 179	24.8	2.1	3.905	103.74	99.2	2.2
Sakha 105	24.0	2.0	3.833	101.84	91.4	2.0
Super 300	13.1	1.1	3.809	101.20	48.1	1.1
Sakha 102	9.2	0.8	3.520	93.51	34.0	0.8
Sakha 107	6.9	0.6	4.017	106.73	25.6	0.6
Sakha 103	1.9	0.2	3.668	97.44	7.0	0.2
Giza 171	1.9	0.2	3.351	89.02	6.3	0.1
Mongrel 1	0.9	0.1	4.064	107.97	3.3	0.1
Giza 170	0.1	0.01	3.265	86.75	0.2	0.01
Other Species	14.0	1.2	3.640	96.69	54.4	1.2
Total Country	1202.2	100	3.764	100	4525.4	100

Source: Collected and calculated by the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Agricultural Statistics Bulletins, during the period (2016-2020).

Journal of American Science

Websites: http://www.jofamericanscience.org http://www.sciencepub.net

Emails: editor@sciencepub.net sciencepub@gmail.com

The Sakha 101 specie ranks second in terms of area, which is estimated at about 308.1 thousand feddens, representing about 25.6% of the total area of the rice crop in Egypt, with an average productivity of about 3.763 tons / feddens during the average period (2016-2020).

By studying the class distribution of the specie Sakha 101, it is clear that the Sharkia Governorate comes in the first place in terms of the cultivated area of this specie, followed by Dakahlia and then Gharbia with percentages representing 29%, 28%, 16% for each of them, respectively, with a productivity of about 3.86, 4.097, 3.66 tons per fedden.

Fourth: Measuring the impact of the application of verities technology on the productivity of rice crop in Egypt:

To illustrate the effect of species technology on Rice crop productivity, analysis of variance and differences between Rice crop productivity was used according to the technological element used namely the species and the governorate. The results of Table (4), which shows the analysis of the variation between the fedden productivity of rice crop species, showed that there are statistically significant differences in the impact of cultivated rice species on the fedden productivity of these species and also the strength of the impact of governorates (geographical location) on this productivity at the probability level of 1%.

The analysis of comparisons ⁽⁴⁾ between the average fedden productivity of rice crop species was carried out with consideration of the results of the analysis of variance in two directions between the average fedden productivity of the most important rice

MARSLAND PRESS Multidisciplinary Academic Journal Publisher

crop species during the period (2016-2020) by estimating the analysis of the value of the lowest difference in the meaning of LSD, the results of which are shown in Table (5), and it was found that the Sakha 107 specie comes in first place in terms of average productivity per fedden, as its productivity reached about 4.017 tons / fedden during the average period (2016-2020) and it surpasses statistically significant differences over most species where it surpassed the species (Giza 179, Sakha 106, Sakha 105, Sakha 101, Sakha 104, Giza 178, Giza 177, Sakha 102, Sakha 103, Giza 170, Giza 171).

Table (4): Analysis of the variance in two directions between the fedden productivity of rice crop species during the period (2016-2020) to test the impact of the species and governorates.

	0			
Source of contrast	Degrees of freedom	Sum Square deviations	Average Square deviations	F calculated
Between the species	14	2.337	0.167	**2.443
Between Governorates	14	20.673	1.477	**21.615
Error	316	21.588	0.068	
Total	345	4631.379		

** Significant at the probability level of 1%.

Source: Results of statistical analysis using SPSS program for data of the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Agricultural Statistics Bulletin, Miscellaneous issues.

Та	ble (5): Resu	Its of LS	D Valu	ie Anal	ysis be	etween A	Averag	e Fedde	en Prod	uct1v1t	y in Tor	is of Cu	iltivated	1 species	s of Rice
Cr	op d	uring the	e Period	(2016-2	2020)											
				Sakha	Super	Giza	Sakha	Sakha	Sakha	Sakha	Giza	Giza	Sakha	Sakha	Giza	Giza

snecies	Creation	Average	Sakha 107	Super 300	Giza 179	Sakha 106	Sakha 105	Sakha 101	Sakha 104	Giza 178	Giza	Sakha 102	Sakha 103	Giza 170	Giza
species	history	Average	4.096	3.972	3.918	3.858	3.851	3.844	3.804	3.779	3.747	3.603	3.579	3.450	3.350
Sakha 107	2016	4.096	0												
Super 300	2019	3.972	.3344	0											
Giza 179	2013	3.918	.2334*	1010	0										
Sakha 106	2011	3.858	.2857*	0487	.0523	0									
Sakha 105	2010	3.851	.2377*	0967	.0043	048	0								
Sakha 101	2000	3.844	.3137*	0207	.0803	.0760	.0760	0							
Sakha 104	2000	3.804	.3400*	.0056	.1066	.1023	.1023	.0263	0						
Giza 178	2000	3.779	.4511*	.1167	.2177 *	.2134*	.2134°	.1374*	.1111	0					
Giza 177	2000	3.747	.4408*	.1064	.2074 *	.2031*	.2031*	.1271*	.1008	010	0				
Sakha 102	2000	3.603	.4545*	.1201	.2211 *	.2168*	.2168*	.1408	.1145	.0034	.0137	0			
Sakha 103	2000	3.579	.4899*	.1555	.2565 *	.2522*	.2522*	.1762	.1499	.0388	.0491	.0354	0		
Giza 170	2000	3.450	.5574*	.2230	.3240	.3197	.3197	.2437	.2174	.1063	.1166	.1029	.0675	0	
Giza 171	2000	3.350	.6483*	.3139	.4149 *	.4106*	.4106*	.3346*	.3084*	.1972 *	.2075*	.1938	.1584	.0909	0

- Hagin 1 specie was excluded because the farmer does not accept to grow it due to its low price on the one hand, and its lack of acceptance of the Egyptian taste on the other hand.

Source: Results of statistical analysis using SPSS program for data of the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Agricultural Statistics Bulletin, (2016-2020).

Fifth: The impact of the cultivation of modern species of rice crop on the transmission of the supply functions during the period (2010-2020):

To study the impact of planting new species of rice crop, the Harry- Eyre and Edwar coefficient ⁽¹⁾ called the Technological change coefficient was used to measure the transfer of the supply function of agricultural crops resulting from technological change in the introduction of modern species of these crops, and this equation is:

$$\sum_{\text{Where:}} \left[\left(1 - \frac{Yu * Fu}{Ya * Fa} \right) * Pa \right] \times 100$$

- **K** = The amount of relative transition in the resulting supply of the crop.
- **Yu** = Average productivity of old species of the crop under study.
- **Ya** = Average productivity of the species developed for the crop under study.
- **Fu** = Average extraction rate of old species of the crop under study.
- **Fa** = Average extraction rate of the new A specie of the crop under study.
- Pa = Relative importance of the modern specie = area of the modern specie / total crop area in Egypt ×100

Where the value of the coefficient of Harry- Eyre and Edwar positive roles indicates the superiority of the modern (or new) specie over the traditional (or old) specie, and this leads to the transfer of the supply function to the right, while if the value of the HarryEyre and Edwar coefficient - and negative roles, this means that the modern (or new) specie later than the traditional (or old) specie,

and this leads to the transfer of the supply function to the left. The aim of this laboratory is to monitor the possibility of increasing crop production by replacing low- productivity species with high-productivity species. The highest species were taken into account according to fedden productivity.

Table (6) indicates that before modifying the varietal composition of the rice crop in Egypt, it was found that the species Giza 178, Sakha 101, Giza 177, Sakha 104, achieved the highest relative transmission coefficient to the right by about 5.16%, 5.15%, 3.3%, and 2.7% respectively, due to the high percentage of the area of the specie, which amounted to about 31%, 27%, 17%, and 14% respectively of the total area of rice crop in Egypt during (2010-2020). While after modifying the increasing fedden productivity to about 3.990 Ton / Fedden for the same cultivated areas. As a result, the production of species Giza 179, Sakha 104, Sakha 101, Giza 177, Giza 178, Super 300, Sakha 108, Sakha 102, Sakha 103 with a rate of about 0.01%, 1.7%, 1.9%, 2.8%, 3.0%, 9.0%, 4.5%, 0.8%, and 2.8% respectively. increasing fedden productivity to about 3.990 Ton / Fedden for the same cultivated areas. As a result, the production of species Giza179, Sakha 104, Sakha 101, Giza 177, Giza 178, Super 300, Sakha 108, Sakha 102, Sakha 103 with a rate of about 0.01%, 1.7%, 1.9%, 2.8%, 3.0%, 9.0%, 4.5%, 0.8%, and 2.8% respectively.

Table (6): Relative Transition Coefficients in the Rice specie Supply Function in Egypt during the Average Period (2010-2020).

Items	Average area fed	% of item area	Average productivity of the modern specie (T/f)	Extraction rate of the new specie	Average productivity of the old specie	Extraction rate of the old specie	Transition coefficients in the supply function before modification (%)	Transition coefficients in the supply function after modification (%)
		Pa	Ya	Fa	Yu	Yu	K	K
Giza179	22824.1	2	4.039	0.68	3.258	0.71	0.3	0.4
Sakha 107	6858.6	1	4.017	0.72	3.258	0.71	0.1	0.1
Sakha 105	32113.5	3	4.011	0.72	3.258	0.71	0.5	0.5
Sakha 106	30369.9	2	3.942	0.72	3.258	0.71	0.5	0.5
Sakha 104	179625.3	14	3.926	0.72	3.258	0.71	2.7	2.9
Sakha 101	348188.7	27	3.902	0.72	3.258	0.71	5.15	5.6
Giza177	216391.3	17	3.869	0.73	3.258	0.71	3.3	3.5
Giza178	389220.5	31	3.864	0.71	3.258	0.71	5.16	6.3
Super 300	13130.5	1	3.809	0.75	3.258	0.71	0.19	0.21
Sakha 108	44681.5	4	3.809	0.72	3.258	0.71	0.6	0.7

Sakha 102	22308.1	1.75	3.788	0.72	3.258	0.71	0.3	0.4
Sakha 103	4171.2	0.33	3.734	0.72	3.258	0.71	0.05	0.07

- Hybrid 1 specie was excluded because the farmer does not accept to grow it due to its low price on the one hand and its lack of acceptance of the Egyptian taste on the other hand.

- The modern specie represents the average productivity of species (Sakha 107, Sakha 105, Sakha 106) which is 3.990 Ton /fedden. Source: - Calculated and collected from the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Agricultural Statistics Bulletins, Miscellaneous Issues.

- Ministry of Agriculture and Land Reclamation, Agricultural Research Centre, Agricultural Crops Research Institute, Rice Research Department.

Sixth: The impact of species technology on rice production:

Table (8) shows the production and area of rice crop species after replacing high-productivity species with low-productivity species and increasing fedden productivity to about 3.990 Ton / Fedden for the same cultivated areas. As a result, the production of species Giza 179, Sakha 104, Sakha 101, Giza 177, Giza 178,

Super 300, Sakha 108, Sakha 102, Sakha 103 with a rate of about 0.01%, 1.7%, 1.9%, 2.8%, 3.0%, 9.0%, 4.5%, 0.8%, and 2.8% respectively. This led to an increase in production achieved from about 4.829 million tons to about 4.950 million tons, an increase estimated at about 120.3 thousand tons, equivalent to about 2.5% of the actual production.

 Table (7): Area and Production of the Most Important Species of Rice Crop after Modifying the Varietal Composition during the Period (2010-2020)

Species	Average area	Average productivit y	Productivit y	Production after modificatio n	Increase in productio n	Percentag e of increase	Availabl e area
	Fedden	Ton/Fedden	Ton	Ton	Ton	%	Fedden
Giza179	22824.1	4.039	91065.8	91077.18	11.4	0.01	2.8
Sakha 104	179625.3	3.926	704730.3	716775.1	12044.8	1.7	3068.3
Sakha 101	348188.7	3.902	1363159.7	1389409	26249.4	1.9	6727.6
Giza177	216391.3	3.869	840162.4	863485.8	23323.4	2.8	6028.5
Giza178	389220.5	3.864	1507608.5	1553142	45533.6	3.0	11785.5
Super300	13130.5	3.809	48072.5	52395.83	4323.3	9.0	1134.9
Sakha 108	44681.5	3.809	170638.0	178296.7	7658.7	4.5	2010.5
Sakha 102	22308.1	3.788	88331.1	89018	686.9	0.8	181.4
Sakha 103	4171.2	3.734	16187.5	16644.72	457.2	2.8	122.4
Total	1240541. 2	3.893	4829955.8	4950245	120288.8	2.5	30895.3

- Production after modification = average area of the cultivar \times average productivity of high- productivity cultivar (Sakha 107, Sakha 105, Sakha 106) 3.99 Ton/Fedden.

- Available area = Increase in production (K tons) ÷ Average fedden productivity (tons/fed).

Source: Collected and calculated from data from the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Agricultural Statistics Bulletin, during (2010-2020).

In the case of replacing the highest productivity Species according to the results of the LSD:

Table (8) shows the production and area of rice crop Species after replacing high-productivity Species according to the results of LSD, which is Sakha 107 Species, replacing low-productivity Species and increasing fedden productivity to about 4.017 tons / fedden for the same cultivated areas. As a result, the production of Species Giza 179, Sakha 104, Sakha 101, Giza 177, Giza 178, Super 300, Sakha 108, Sakha 102, Sakha 103 increased by about 0.7%, 2.4%, 2.6%, 3.5%, 3.7%, 9.7%, 5.2%, 1.5% and 3.5% respectively. This led to an increase in production achieved from about 4.829 million tons to about 4.983 million tons, an increase estimated at about 153.86 thousand tons, equivalent to about 3.2% of the actual production.

Seventh: The varietal map of the rice crop, which achieves the maximum possible production in light of the available resources:

To reach the most suitable area planted with different Species of rice crop, linear programming ⁽⁵⁾ using WinQSB2.0 will be used and consists of:

A- Objective function:

The first model: maximizing the net return:

Max
$$\sum_{j=1}^{m} \alpha_j X_j$$

Where: α j refers to the net fedden yield of the rice Specie j, Xj refers to the area planted with different Species of rice crop.

The second model: maximizing production:

where:
$$\gamma j$$
 Mfars to $t = \beta r \mathbf{X} ductivity of the rice Specie j.$

Table (8): Area and production of the most important species of rice crop after modifying the varietal composition according to the results of LSD during the period (2010-2020)

Species	Average area	Average productivity	Production	Production after modification	Increase in production	Percentage of increase	Available area
	Ton	Ton/Fedden	Ton	Ton	Ton	%	Fedden
Giza179	22824.1	4.039	91065.8	91695	629	0.7	156
Sakha104	179625.3	3.926	704730.3	721636	16906	2.4	4306
Sakha101	348188.7	3.902	1363159.7	1398832	35672	2.6	9142
Giza177	216391.3	3.869	840162.4	869342	29180	3.5	7542
Giza178	389220.5	3.864	1507608.5	1563676	56067	3.7	14510
Super300	13130.5	3.809	48072.5	52751	4679	9.7	1228
Sakha108	44681.5	3.809	170638.0	179506	8868	5.2	2328
Sakha102	22308.1	3.788	88331.1	89622	1291	1.5	341
Sakha103	4171.2	3.734	16187.5	16758	570	3.5	153
Total	1240541.2	3.893	4829955.8	4983818	153862	3.2	39523

- Production after modification = average area of the item \times average productivity of high- productive items (Sakha 107, Sakha 105, Sakha 106) 3.99 Ton / Fedden.

- Available area = increase in production (thousand tons) ÷ average fedden productivity (Ton / Fedden).

Source: Collected and calculated from data from the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Agricultural Statistics Bulletin Miscellaneous Issues.

B- Restrictions:

- 1- The restriction on the area planted with rice crop: It includes
- The restriction that the area planted with rice crop in different governorates should not fall below the minimum area planted with rice crop in different governorates during the study period.

$$\sum_{i=1}^{n} X_i \ge W_i$$

Where: ^{*i*=1}

- N Number of provinces that cultivate rice.
- Xi refers to the area planted with rice crop in a particular province i.
- Wi the minimum area planted with rice crop in different governorates i.

- The restriction on not exceeding the area planted with rice crop in different governorates from the maximum area planted with rice crop in different governorates during the study period.

Where:
$$\sum_{i=1}^{n} X_i \leq Y_i$$

- Yi The maximum area planted with wheat crop in different governorates i.
- The restriction on not exceeding the area planted with different Species of rice crop than the maximum area planted with different Species during the study period.

$$\sum_{i=1}^{m} X_{j} \leq Z$$

Where:

j Cultivated rice class where $j = 1, 2, 3, \dots, 14$ M Number of rice species cultivated.

- Xj Refers to the area planted with different species of rice crop j.
- Zj Minimum area planted with different species of rice crop j.
- 2- Labor restriction:

It is for not to increase the labor used for what is available

$$\sum_{i=1}^{n} \beta_i X_i \leq U_i$$

Where:

- i Rationed rice crop in different governorates of employment per day work / man.
- Ui The maximum available rice crop in different governorates of employment per day work/man.
- 3- The restriction of 33.5% Nitrogen fertilization: It is for not increasing the nitrogen fertilization 33.5% used for what is available.

$$\sum_{i=1}^{n} d_i X_i \leq S_i$$

Where:

- Di Rationed rice crop in different provinces of nitrogen fertilization 33.5% per sack.
- Si The maximum available limit for rice crop in different governorates from nitrogen fertilizer is 33.5% in Shikara.
 - 4- The restriction of Nitrogen fertilization is 46.5%: It is for not increasing the nitrogen fertilization 46.5% used for what is available.

$$\sum_{i=1}^{n} e_i X_i \leq R_i$$

Where: ^{*i*=1}

- Ei Rationed rice crop in different governorates of Nitrogen fertilization 46.5% per sack.
- Ri The maximum available yield of rice in different governorates from nitrogen fertilizer is 46.5% in Shikara.
- 5- The restriction on Phosphate fertilization is 15%: It is for not to increase the phosphate fertilization 15% used for what is available.

$$\sum_{i=1}^{n} f_i X_i \leq Q$$

Where:

- Fi Rationed rice crop in different governorates of phosphate fertilization 15% per sack.
- Qi The maximum available rice crop in different governorates of phosphate fertilizer is 15% per sack.
- 6- The restriction on potash fertilization is 48%: It is for not increasing the potash fertilization 48% used for what is available.

$$\sum_{i=1}^{n} g_i X_i \leq V_i$$

Where:

- Gi Rationed rice crop in different governorates of potash fertilization 48% per sack.
- Vi The maximum available rice crop in different governorates of potash fertilizer is 48% per sack.
- 7- The restriction of the water rationed: It is for not exceeding the water used than the available

$$\sum_{i=1}^{n} c_i X_i \leq T_i$$

- Ci Rationed rice crop in different governorates of water in cubic meters.
- Ti The maximum available rice crop in different governorates of water in cubic meters.

- Maximized net income results:

The first scenario:

Where:

Deleting a restriction less than the maximum area:

The number of governorates included in the programming analysis for this scenario reached 8 governorates, while the number of Species reached about 14 Species and the number of activities, which are the Species planted in the different governorates, reached about 76, while the number of restrictions reached about 64.

Table (9) shows that the net return was about 5.1 billion pounds, with increase of about 1.3 billion pounds, with the provision of about an fedden, the provision of about 30.52 working days / man, about 1.33 nitrogen fertilizers 33.5%, about 1.44 nitrogen fertilizers 46.5%, about 1.53 phosphate fertilizers 15%, about 0.53 phosphate fertilizers 49%, and the provision of about 5700 cubic meters of water, and the number of Species planted according to this result about 7 Species (Specie Sakha 101 in Sharkia Governorate, Sakha 104 in Beheira Governorate, Sakha 102 in Kafr El-Sheikh Governorate, Sakha 103 in Damietta Governorate, Giza 179 in Qalyubia Governorate, Giza 177 in Ismailia Governorate, Sakha 107 in Gharbia Governorate, and Dakahlia.

The most successful production according to the most successful area was estimated at about 4749.3 thousand tons, with an increase of about 12.1 thousand tons, representing about 0.3% over the current production, which is estimated at about 4727.1 thousand tons on average for the period (2016-2020).

The second scenario:

Using all restrictions:

The number of governorates included in the programming analysis for this scenario reached 8 governorates, while the number of Species reached about 14 Species, and the number of activities, which are the Species cultivated in the different governorates, reached about 76 Species, while the number of restrictions reached about 140. Table (11) shows that the net return reached about 4.1 billion pounds, an increase of about 165.1 million pounds, with the provision of about an fedden, the provision of

about 30.52 working days / man, about 1.33 nitrogen fertilizers 33.5%, about 1.44 tons of nitrogen fertilizers 46.5%, about 1.53 tons of phosphate fertilizers 15%, about 0.53 cigarettes for potash fertilizers 49%, and the provision of about 5700.36 cubic meters of water, and the number of Species planted according to this result about 13 items, as in Table (10). The most successful production according to the most successful area was estimated at about 4760.5 thousand tons, with an increase of about 23.3 thousand tons, representing about 0.5% over the current production, which is estimated at about 4737.1 thousand tons on average for the period (2016-2020).

- Maximizing production results:

The first scenario:

Deleting a restriction less than the maximum area: The number of governorates included in the programming analysis for this scenario reached 8 governorates, while the number of Species reached about 14 Species and the number of activities, which are the Species cultivated in the different governorates, reached about 76 items, while the number of restrictions reached about 64, Table (11) shows that the most successful production reached about 4959 thousand tons, with an increase of about 221 thousand tons, with the provision of about an fedden, and the provision of about 30.52 working days /man, And about 1.33 nitrogen fertilizers 33.5%, about 1.44 nitrogen fertilizers 46.5%, about 1.53 phosphate fertilizers 15%, and about 0.53 sack for potash fertilizers 49%, and provide about 5700 cubic meters of water, and the number of Species planted according to this result about 6 Species .

The second scenario:

Using all restrictions:

The number of governorates included in the programming analysis for this scenario reached 8 governorates, while the number of Species reached about 14 Species and the number of activities, which cultivated in the different are the Species governorates, reached about 76 Species, while the number of restrictions reached about 140, while Table (12) shows that the most successful production amounted to about 4769.8 thousand tons, an increase of about 32.7 thousand tons, with the provision of about an fedden, about 30.52 working days / man, and about 1.33 fertilizer bags Nitrogen 33.5%, about 1.44 tons of nitrogen fertilizers 46.5%, about 1.53 tons of phosphate fertilizers 15%, about 0.53 cigarettes for potash fertilizers 49%, and providing about 5700.36 cubic meters of water, and the number of Species planted according to this result about 14 Species.

Table (9): the first scena	rio of the results of	linear programming	and the target function	for maximizing the net income
of rice crop during the av	verage period (2010	5-2020).		

Statement	Current Area	Ideal Area	Difference	Current Production	Ideal Production	Difference	Current Return	Net Return	Difference	%
	Fedden	Fedden	Fedden	K Ton	K Ton	K Ton	Mil EGP	Mil EGP	Mil EGP	
Giza170	63	-	-63	0.237	0	-0.2	0.046	0	0	-100
Giza171	2674	-	-2674	9.1	0.0	-9.1	4.8	0.0	-4.8	-100
Giza177	187860	4739	-183121	708.8	16.4	-692.4	571.9	11.0	-560.9	-98
Giza178	359819	-	-359819	1353.2	0.0	-1353.2	1152.4	0.0	-1152.4	-100
Giza179	48047	6702	-41345	190.3	23.3	-167.0	121.1	18.7	-102.4	-85
Sakha101	308185	255524	-52661	1160.6	923.0	-237.6	962.2	632.4	-329.7	-34
Sakha102	16416	286873	270457	62.3	1172.1	1109.8	50.9	1103.7	1052.8	2067
Sakha103	3728	59467	55739	13.8	204.6	190.8	12.5	189.0	176.6	1415
Sakha104	188007	174643	-13364	708.5	634.4	-74.1	594.1	627.3	33.2	6
Sakha105	26722	-	-26722	102.2	0.0	-102.2	87.1	0.0	-87.1	-100
Sakha106	33788	-	-33788	129.0	0.0	-129.0	112.2	0.0	-112.2	-100
Sakha107	9177	466741	457564	33.9	1775.4	1741.6	28.1	2560.9	2532.8	9005
Sakha108	57301	-	-57301	217.8	0.0	-217.8	180.5	0.0	-180.5	-100
Super300	12903	-	-12903	47.3	0.0	-47.3	32.8	0.0	-32.8	-100
Total	1254689	1254688	-1	4737.1	4749.3	12.1	3910.7	5143.1	1232.4	32
Ismailia (Giza177)	4739	4739	0.00	15.7	16.4	0.7	9.1	11.0	1.9	21
Beheira Sakha(104)	174643	174643	-0.22	637.3	634.4	-2.9	545.8	627.3	81.5	15
Dakahlia Sakha (107)	356108	356108	-0.10	1421.7	1388.2	-33.5	1490.7	2135.4	644.7	43
Sharqiah Sakha (101)	255524	255524	0.00	887.9	923.0	35.1	542.6	632.4	89.9	17
Gharbiah Sakha(107)	110634	110634	-0.10	410.2	387.3	-23.0	292.6	425.5	132.9	45
Qalyubia)Giza(179	6702	6702	-0.20	22.6	23.3	0.7	6.8	18.7	11.9	175
Damietta)Sakha(103	59467	59467	0.00	201.5	204.6	3.1	116.0	189.0	73.1	63
Kafr El Sheikh)Sakha(102	286873	286873	-0.23	1140.3	1172.1	31.8	907.1	1103.7	196.6	22
Total	1254689	1254688	-1	4737.1	4749.3	12.1	3910.7	5143.1	1232.4	32

Source: Linear programming results using WinQSB2.0

Statement		Curren t Area	Ideal Area	Differenc e	Current Production	Ideal Production	Differenc e	Current Return	Net Return	Differenc e	
Sta	tement	Fed	Fed	Fed	K Ton	K Ton	K Ton	Mil EGP	Mil	Mil EGP	%
	Beheira	45136	69 922	24 786	166.6	258.1	91.5	143.1	221.7	78.6	54.9
	Gharbiah	44401	57,636	13,235	164.5	213.5	49.0	116.7	151.5	34.8	29.8
	Kafr El Sheikh	30738	38,078	7,340	123.2	152.6	29.4	106.6	132.1	25.5	23.9
Sakha	Dakahlia	82976	97,230	14,254	330.6	387.4	56.8	346.5	406.0	59.5	17.2
101	Damietta	11514	13,477	1,964	39.6	46.4	6.8	23.3	27.3	4.0	17.1
	Sharqiah	89008	104,408	15,400	321.5	377.1	55.6	220.3	258.4	38.1	17.3
	Qalyubia	2687	1,384	-1,303	8.8	4.5	-4.3	2.1	1.1	-1.0	-48.5
	Ismailia	1726	1,799	74	5.8	6.0	0.2	3.5	3.6	0.1	4.3
	Beheira	28249	41,192	12,943	102.6	149.6	47.0	101.5	148.0	46.5	45.8
	Kafr El Sheikh	45599	54,771	9,172	183.5	220.4	36.9	158.2	190.0	31.8	20.1
Sakha	Dakahlia	36308	47,266	10,958	147.8	192.5	44.6	161.8	210.6	48.8	30.2
104	Damietta	13053	13,552	500	44.8	46.6	1.7	28.1	29.2	1.1	3.8
	Sharqiah	44439	65,196	20,757	156.0	228.8	72.8	95.8	140.5	44.7	46.7
	Ismailia	1754	1,808	54	5.8	6.0	0.2	3.4	3.5	0.1	3.1
	Qalyubia Babaira	2399	4,995	2,596	8.0	17.9	9.3	3./	13.4	4.0	61.3
Sakha	Kafr Fl	2903	4,082	1,779	10.0	17.0	0.5	0.3	13.4	5.1	01.5
102	Sheikh	7842	8,029	188	32.0	32.8	0.8	30.2	30.9	0.7	2.4
	Sharqiah	4282	10,382	6,100	14.7	35.6	20.9	10.0	24.2	14.2	142.5
	Beheira	3438	5,954	2,516	12.7	22.0	9.3	10.3	17.8	7.5	73.2
	Gharbiah	3031	5,516	2,486	11.1	20.2	9.1	8.1	14.8	6.7	82.0
Sakha 105	Sheikh	9817	14,806	4,989	39.2	59.1	19.9	32.9	49.6	16.7	50.8
100	Dakahlia	4685	6,506	1,821	19.1	26.6	7.4	23.5	32.6	9.1	38.9
	Damietta	480	490	0.150	1.0	1.7	0.0	1.0	1.0	0.0	2.2
Sakha	Dakahlia	1523	2.645	1 123	6.4	11.1	47	67	11.7	4 9	73.7
103	Damietta	432	523	92	1.5	1.8	0.3	1.4	1.7	0.3	21.2
0.11	Sharqiah	6395	12,166	5,771	21.3	40.6	19.2	14.2	27.1	12.9	90.2
Sakna 108	Beheira	17821	17,821	0	63.4	63.4	0.0	58.6	58.6	0.0	0.0
100	Gharbiah	7419	7,419	0	31.0	31.0	0.0	23.0	23.0	0.0	0.0
	Beheira	7606	9,285	1,679	27.9	34.0	6.2	22.8	27.8	5.0	22.1
Sakha	Kafr El Sheikh	8657	10,295	1,639	35.0	41.6	6.6	33.2	39.5	6.3	18.9
106	Dakahlia	8915	13,325	4,410	36.1	54.0	17.9	38.6	57.7	19.1	49.5
	Sharqiah	4931	9,616	4,686	17.4	33.9	16.5	11.9	23.1	11.3	95.0
Giza 171	Sharqiah	1626	3,941	2,315	5.5	13.4	7.9	3.4	8.3	4.9	142.3
	Beheira	7382	11,340	3,958	26.9	41.3	14.4	22.3	34.3	12.0	53.6
	Gharbiah	7584	10,090	2,506	28.7	38.2	9.5	24.1	32.1	8.0	33.0
	Kafr El Sheikh	73137	104,422	31,285	289.6	413.4	123.9	239.3	341.7	102.4	42.8
Giza	Dakahlia	165963	162,939	-3,024	658.2	646.2	-12.0	686.9	674.3	-12.5	-1.8
178	Damietta	28552	26,326	-2,227	95.1	87.7	-7.4	50.7	46.7	-4.0	-7.8
	Sharqiah	76314	6,638	-69,67	251.9	21.9	-230.0	127.9	11.1	-116.8	-91.3
	Ismailia	756	572	-184	2.4	1.8	-0.6	1.0	0.8	-0.3	-24.3
	Qalyubia	131	155	25	0.4	0.5	0.1	0.2	0.2	0.0	18.8
	Beheira	2153	3,540	1,388	8.0	13.2	5.2	6.8	11.2	4.4	64.5
Giza	Dakahlia	14110	21,405	7,295	58.7	89.1	30.4	63.6	96.5	32.9	51.7
179	Sharqiah	2839	5,617	2,778	10.1	20.1	9.9	5.7	12.8	7.1	123.7
	Gharbiah	849	1,707	858	3.1	6.3	3.2	2.6	5.1	2.6	101.1
	Qalyubia	168	168	0	0.6	0.6	0.0	0.5	0.5	0.0	0.0
	Gharbiah	20357	26,902	6,545	73.4	97.0	23.6	54.3	71.7	17.5	32.2
Giza 177	Kafr El Sheikh	66475	56,472	-10,00	261.3	222.0	-39.3	212.7	180.7	-32.0	-15.0
	Damietta	4413	5,099	686	15.5	17.9	2.4	10.1	11.7	1.6	15.5
	Sharqiah	17917	23,127	5,210	62.7	80.9	18.2	38.5	49.7	11.2	29.1
	Ismailia	504	560	57	1.7	1.9	0.2	1.2	1.3	0.1	11.2
Super 300	Beheira	6589	5,463	-1,126	23.2	19.2	-4.0	18.8	15.6	-3.2	-17.1
500	Beheira	2462	5.444	2,982	9.0	19.9	10.9	8.4	18.6	10.2	121.1
Sakha	Gharbiah	275	1,364	1,089	1.0	4.8	3.8	1.1	5.2	4.2	395.3
107	Dakahlia	1893	4,792	2,899	7.4	18.7	11.3	8.9	28.7	19.9	223.6
Total		1,254,68 9	1,254,688	1-	4737.1	4760.5	23.3	3910.7	4075.9	165.1	4.2

Table (10): The second scenario of the results of linear programming and the objective function for maximizing the net yield of rice crop during the average period (2016-2020)

Source: Linear programming results using WinQSB2.

St	atement	Current Area	Ideal Area	Difference	Current Production	Ideal Production	Difference	%
		Fedden	Fedden	Fedden	K Ton	K Ton	K Ton	
G	iza170	63	6702	6639	0.24	25	24.8	10496
G	iza171	2674	0	-2674	9	0	-9.1	-100
G	iza177	187860	4739	-183121	709	16	-692.4	-98
G	iza178	359819	0	-359819	1353	0	-1353.2	-100
G	iza179	48047	234109	186062	190	861	670.5	352
Sa	kha101	308185	255524	-52661	1161	923	-237.6	-20
Sa	kha102	16416	286873	270457	62	1172	1109.8	1782
Sa	kha103	3728	356108	352380	14	1499	1485.5	10785
Sa	kha104	188007	0	-188007	709	0	-708.5	-100
Sakha105		26722	0	-26722	102	0	-102.2	-100
Sakha106		33788	0	-33788	129	0	-129.0	-100
Sakha107		9177	0	-9177	34	0	-33.9	-100
Sakha108		57301	110634	53333	218	462	244.1	112
Suprt300		12903	0	-12903	47	0	-47.3	-100
	Total	1254689	1254688	-1	4737	4959	221	5
Statement	Governorates	Current Area	Ideal Area	Difference	Current Production	Ideal Production	Difference	%
		Fed	Fed	Fed	K Ton	K Ton	K Ton	
Giza177	Ismailia	4739	4739	0.00	15.7	16.4	0.7	5
Giza179	Beheira	174643	174643	-0.22	637.3	652.1	14.8	2
Sakha103	Dakahlia	356108	356108	-0.10	1421.7	1499.3	77.6	5
Giza179	Sharqiah	255524	255524	0.00	887.9	923.0	35.1	4
Sakha108	Gharbiah	110634	110634	-0.10	410.2	461.9	51.7	13
Giza170	Qalyubia	6702	6702	-0.20	22.6	25.1	2.5	11
Giza179	Damietta	59467	59467	0.00	201.5	208.7	7.2	4
Sakha102	Kafr El Sheikh	286873	286873	-0.23	1140.3	1172.1	31.8	3
Total		1262422	1254689	1-	4737.1	4958.6	221.5	5

Table (11): the first scenario of the results of linear programming and the objective function for most rice crop production during the average period (2016-2020)

Source: Linear programming results using WinQSB2.

Statement		Current Area	Ideal Area	Difference	Current Production	Ideal Production	Difference	%
Stater	nent	K Fedden	K Fedden	K Fedden	K Ton	K Ton	K Ton	
	Beheira	45136	69,922	24,786	166.6	258.1	91.5	54.9
	Gharbiah	44401	61,026	16,625	164.5	226.0	61.6	37.4
	Kafr El Sheikh	30738	38,078	7,340	123.2	152.6	29.4	23.9
Sakha101	Dakahlia	82976	97,230	14,254	330.6	387.4	56.8	17.2
	Damietta	11514	13,477	1,964	39.6	46.4	6.8	17.1
	Sharqiah	89008	104,408	15,400	321.5	377.1	55.6	17.3
	Qalyubia	2687	2687 1,234		8.8	4.0	-4.7	-54.1
	Ismailia	1726	1,799	74	5.8	6.0	0.2	4.3
	Beheira	28249	4,455	-23,795	102.6	16.2	-86.4	-84.2
	Gharbiah	16206	14.045	-2.162	59.4	51.4	-7.9	-13.3
	Kafr El Sheikh	45599	54,771	9,172	183.5	220.4	36.9	20.1
Sakha104	Dakahlia	36308	47,266	10,958	147.8	192.5	44.6	30.2
	Damietta	13053	13,552	500	44.8	46.6	1.7	3.8
	Sharqiah	44439	65,196	20,757	156.0	228.8	72.8	46.7
	Ismailia	1754	1,808	54	5.8	6.0	0.2	3.1
	Oalvubia	2399	4,995	2.596	8.6	17.9	9.3	108.2
	Beheira	2903	4.682	1.779	10.6	17.0	6.5	61.3
Sakha102	Kafr El Sheikh	7842	8,029	188	32.0	32.8	0.8	2.4
	Sharqiah	4282	10 382	6 100	14.7	35.6	20.9	142.5
	Dakahlia	691	691	0,100	2.9	2.9	0.0	0.0
	Beheira	3438	5 954	2 516	12.7	22.9	9.3	73.2
	Gharbiah	3031	5,516	2,510	12.7	22.0	9.5	82.0
	Kofr El	5051	5,510	2,400	11.1	20.2	9.1	82.0
سخا105	Sheikh	9817	14,806	4,989	39.2	59.1	19.9	50.8
	Dakahlia	4685	6,506	1,821	19.1	26.6	7.4	38.9
	Damietta	480	490	11	1.6	1.7	0.0	2.2
	Sharqiah	5273	14,432	9,159	18.5	50.5	32.1	173.7
Sakha103	Dakahlia	1523	2,645	1,123	6.4	11.1	4.7	73.7
Sulliuroo	Damietta	432	523	92	1.5	1.8	0.3	21.2
Sakha108	Kafr El Sheikh	13797	27,374	13,577	55.3	109.7	54.4	98.4
Sakila106	Sharqiah	6395	12,166	5,771	21.3	40.6	19.2	90.2
	Gharbiah	7419	7,419	0	31.0	31.0	0.0	0.0
	Beheira	7606	9,285	1,679	27.9	34.0	6.2	22.1
سخا106	Kafr El Sheikh	8657	10,295	1,639	35.0	41.6	6.6	18.9
	Dakahlia	8915	13,325	4,410	36.1	54.0	17.9	49.5
	Sharqiah	4931	9,616	4,686	17.4	33.9	16.5	95.0
Giza171	Sharqiah	1626	3,941	2,315	5.5	13.4	7.9	142.3
	Beheira	7382	11,340	3,958	26.9	41.3	14.4	53.6
	Gharbiah	7584	10,090	2,506	28.7	38.2	9.5	33.0
Giza178	Kafr El Sheikh	73137	104,422	31,285	289.6	413.4	123.9	42.8
	Dakahlia	165963	167.040	1.077	658.2	662.5	4.3	0.6
	Damietta	28552	26.271	-22.82	95.1	87.5	-7.6	-8.0
	Sharqiah	76314	1.646	-74.668	251.9	5.4	-246.5	-97.8
	Ismailia	756	572	-184	2.4	18	-0.6	-24 3
	Oalvubia	131	155	25	0.4	0.5	0.0	18.8
	Beheira	2153	3 540	1 388	8.0	13.2	5.2	64.5
Giza179	Dakahlia	14110	21 405	7 295	58.7	89.1	30.4	51.7
Gizari	Sharqiah	2839	5.617	2,778	10.1	19.5	9.4	92.5

Table (12) the second scenario of the results of linear programming and the objective function for maximizing rice crop production during the average period (2016-2020)

	Gharbiah	849	1,707	858	3.1	6.3	3.2	101.1
	Qalyubia	168	168	0	0.6	0.6	0.0	0.0
	Damietta	55	55	0	0.2	0.2	0.0	0.0
	Beheira	50905	60,021	9,117	186.3	219.7	33.4	17.9
Giza177	Kafr El Sheikh	66475	25,496	-40,979	261.3	100.2	-161.1	-61.6
	Damietta	4413	5,099	686	15.5	17.9	2.4	15.5
	Sharqiah	17917	23,127	5,210	62.7	80.9	18.2	29.1
	Ismailia	504	560	57	1.7	1.9	0.2	11.2
	Gharbiah	5420	10,831	5,411	20.5	41.0	20.5	99.8
سوبر 300	Kafr El Sheikh	894	1,068	175	3.6	4.3	0.7	19.5
	Beheira	2462	5,444	2,982	9.0	19.9	10.9	121.1
Sakha107	Kafr El Sheikh	2045	2,534	489	8.2	10.1	2.0	23.9
	Sharqiah	2501	4,992	2,491	8.3	16.6	8.3	99.6
Total		1,254,689	1,254,688	-1	4737.1	4769.8	32.7	1

Source: Linear programming results using WinQSB2.0

Conclusions:

Main findings and recommendations:

- The area of rice crop in Egypt ranged between 858.7 thousand Acers in 2018 as a minimum, after the decision of the Minister of Water Resources to reduce the areas of rice crop in order to reduce water consumption and about 1472.1 thousand Acers in 2012 as a maximum. The average productivity of rice crop in Egypt was about 3.886 tons / fedden during the study period and ranged between 3.635 tons / fedden in 2018 as a minimum and about 4.028 tons / fedden in 2014 as a maximum. The average production of rice crop in Egypt amounted to about 4955.6 thousand tons during the study period and ranged between 3121.9 thousand tons as a minimum in 2018, and about 5896.6 thousand tons in 2012 as a maximum.

- The governorates of Lower Egypt are considered one of the most cultivated governorates for the rice crop, which represents about 95.5% of the total area of rice in Egypt, and the average productivity of an fedden is about 3.755 Tons / Fedden with an average production of about 4504.8 thousand tons during (2016-2020). Rice production was concentrated in five governorates: Dakahlia, Sharqia, Kafr El-Sheikh, Beheira, and Gharbia.

- Dakahlia Governorate ranks first in rice production with an area of 345.8 thousand Acers, representing about 28.8% of the total area of rice in Egypt, with an average productivity of about 3.959 tons / Acers.

- The Giza 178 variety is the most cultivated rice crop in Egypt with an area that represents about 31.4% of the total area of the rice crop in Egypt, which is about 1202.2 thousand Acers, and the productivity of this variety is about 3.726 tons / Acers, and its average production represents about 31.2% of the total rice production in Egypt.

- The analysis of the variance between the fedden productivity of rice crop species indicates that there

are statistically significant differences in the impact of cultivated rice species on the fedden productivity of these species, and by estimating the analysis of the value of the lowest significant difference LSD, it was found that the Sakha 107 variety comes in first place in terms of average productivity per fedden, as its productivity reached about 4.017 tons / fedden during the average period (2016-2020) and statistically significantly superior to most species.

- Using the Harryair coefficient and Roles, it was found after modifying the class composition and replacing the high-productivity species Sakha 107, Sakha 105, and Sakha 106 with the low-productivity species, as this results in increasing the fedden productivity to about 3.990 tons / fedden using the same cultivated area, which leads to an increase in the transfer coefficients in the supply function of the species Giza 179, Sakha 104, Sakha 101, Giza 177, Giza 178, Super 300, Sakha 108, Sakha 102, and Sakha 103 with a transfer coefficient of about 0.4%, 2.9%, 5.6%, 3.5%, 6.3%, 0.21%, 0.7%, 0.4% and 0.07% each, respectively, led to an increase in production achieved from about 4.829 million tons to about 4.950 million tons, an increase estimated at about 120.3 thousand tons, equivalent to about 2.5% of the actual production.

One of the results of linear programming for most of the net return is the scenario of deleting a constraint less than the maximum area that the net return reached about 5.1 billion pounds, an increase of about 1.3 billion pounds over the current net return, with the provision of about an fedden, while the scenario of all restrictions reached the net return of about 4.1 billion pounds and an increase estimated at about 165.1 million pounds, with the provision of about an fedden.
While one of the results of linear programming for most of the production is the scenario of deleting a constraint less than the maximum area, the successful

production reached about 4959 thousand tons, an increase of about 221 thousand tons over the current production, with the provision of an fedden, while the scenario of all restrictions The successful production reached about 4769.8 thousand tons, an increase of about 32.7 thousand tons over the current production, with the provision of an fedden.

Recommendations:

- Work to increase the production of improved seeds of rice species (Sakha 107, Sakha 105, Sakha 106) and replace them with low production species.

- Improving the efficiency of the distribution of seeds of rice species (Sakha 107, Sakha 105, Sakha 106) through the multiplicity of distribution outlets at the level of rice-growing governorates, such as agricultural cooperative societies scattered in villages. - Activating the role of agricultural extension by communicating with farmers through the work of extension seminars and field work days to educate farmers to cultivate high-productivity species such as (Sakha 107, Sakha 105, Sakha 106), and replace them with low-productivity species in the regions or governorates where the cultivation of these species is good.

- Attention to the work of periodic varietal maps of the rice crop to know the most productive species in order to increase production with the optimal use of resources.

References:

- [1]. Iman Salem Al-Batran (Doctor), An Economic Study of the Possibility of Increasing the Production of Yellow Maize in Egypt, The Egyptian Journal of Agricultural Economics, Volume Twenty-Seven, Issue Three, September 2017.
- [2]. Central Agency for Public Mobilization and Statistics - Annual Bulletin of Irrigation and Water Resources Statistics - various issues.
- [3]. Doaa Samir Mohamed Morsi Ahmed (Doctor), An Economic Study of the Impact of Using Varieties Technology on Rice Production (A Case Study in Sharkia Governorate), Journal of Agricultural Sciences, Mansoura University https://jaess.journals.ekb.eg Volume 9, August 2018 Issue.
- [4]. Samia Aboul Fotouh Salem (Doctor), Samir Kamel Ashour (Doctor), Introduction to

Analytical Statistics, Institute of Statistical Studies and Research, Cairo University, 1987.

- [5]. Sayeda Hamed Amer Abdel-Gawad (Doctor), Hussein Mohamed Ahmed Rostom (Doctor), A Comparative Study of the Optimal Varietal Map of Wheat Crop in Egypt, Fayoum Journal for Agricultural Research and Development, Issue (32), No. (1), January 2016.
- [6]. 6) Sarhan Ahmed Sarhan, Fouad Mohamed Hafez Mekki (Doctors), The Impact of Agricultural Policy on Rice Production and Marketing in Egypt, Egyptian Journal of Agricultural Economics, Volume Twenty-Eight, Issue Four, December (B) 2018.
- [7]. Mohamed Nagy Bakr Abdel Meguid (Doctor), An Analytical Study of the Rice Crop, The Egyptian Journal of Agricultural Economics -Volume Twenty-Eight, Issue Four, December (B)2, 2018.
- [8]. Maha Abdel Fattah Ibrahim Sayed, Hossam El-Din Hamed Mansour (Doctors), An Analytical Economic Study of the Rice Crop in Egypt, Alexandria Journal of Agricultural Research, Volume (60), Issue (1), 2015.
- [9]. Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Agricultural Statistics Bulletin, Miscellaneous Issues.
- [10]. Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economy, Food Balance in the Arab Republic of Egypt, Miscellaneous Numbers.
- [11]. The Egyptian Gazette, Supplement to the Official Gazette, Dr. Mohamed Abdel Atty, Minister of Water Resources Decree No. 32 of 2022.
- [12]. https://www.youm7.com/story/2018/1/27/36 20187/ Minister of Irrigation reduces the area of rice cultivation from 100 million and 100 thousand
- [13]. Dr.Ibrahim El said and others,"The Economics Effect of Varieties Technology on Production of White Summer Maize In Gharbia Governorate", Egypt. J. Agric Res, 97,2019.
- [14]. https://gate.ahram.org.eg/News/3502263.asp x

¥	Area	Production	Production	Farm Price	Total Revenue	Total Costs	Net Return	
rears	K Feddens	Ton/Feddens	K Tons	Pound/Feddens	Pound/Feddens	Pound/Feddens	Pound/Feddens	
2010	1093.3	3.958	4327.1	1837	7503	4073	3430	
2011	1409.2	4.020	5665.4	2008	8340	4423	3917	
2012	1472.1	4.005	5896.6	2067	8568	4948	3620	
2013	1419.4	4.028	5717.1	2110	8786	5205	3581	
2014	1363.8	4.004	5460.8	2130	8829	5465	3364	
2015	1215.8	3.963	4818.0	2136	8757	5809	2948	
2016	1353.3	3.923	5308.2	2268	9196	6805	2391	
2017	1307.1	3.793	4957.6	3500	13580	8359	5221	
2018	858.7	3.635	3121.9	3552	13233	10475	2758	
2019	1303.6	3.681	4798.3	3556	13437	9678	3759	
2020	1188.5	3.737	4441.0	3565.0	13682.0	7793.0	3275.0	
Average	1271.3	3.886	4955.6	2611.7	10355.5	6639.4	3478.5	

Appendix (1): Evolution of the most important productivity variables of rice crop during the period (2010-2020) Years Production Area Farm Price Total Revenue Total Costs Net Return

Source: Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Agricultural Economics, Agricultural Statistics Bulletin, Miscellaneous issues.

A descen	Arrange provinces in scending order according to area			Provin a	Province order in descending order according to productivity				Arrange provinces in descending order according to area				Province order in descending order according to productivity			
vaniti	Governo	Are	%	vaniti	Governo	Producti	%	vaniti	Governo	Ar	%	vaniti	Governo	Producti	%	
	Dakahlia	182	46		Dakahlia	4.151	10		Kafr El-	9.9	30		Dakahlia	4.236	11	
178	Kafr El-	79.	20	178	Kafr El-	3.875	10	so.	Sharkia	8.5	26	2	Kafr El-	4.008	10	
iza	Sharkia	70.	18	iza	Sharkia	3.439	89	10	Dakahlia	6.8	21	a 10:	Beheira	3.724	97	
9	Total	395	10	9	Total	3.849	10	kh	Beheira	4.7	14	kh	Gharbia	3.589	93	
	Sharkia	98.	29		Dakahlia	4.097	10	Sa	Gharbia	4.3	13	Sa	Sharkia	3.566	93	
_	Dakahlia	94.	28	_	Kafr El-	4.087	10		Total	32.	10		Total	3.844	10	
a10	Gharbia	54.	16	a10	Sharkia	3.863	99		Kafr El-	6.9	45		Dakahlia	4.194	11	
lkh	Beheira	46.	14	ıkh	Beheira	3.829	99	5	Beheira	5.6	37	5	Kafr El-	4.056	11	
ŝ	Kafr El-	27.	8	ŝ	Gharbia	3.667	94	a10	Sharkia	4.8	31	a10	Beheira	3.691	10	
	Total	337	10		Total	3.886	10	ıkh	Al-	0.9	6	ıkh	Sharkia	3.504	96	
	Kafr El-	76	36		Dakahlia	4.040	10	Š	Dakahlia	0.7	5	š	Al-	3.220	88	
	Beheira	52	24		Kafr El-	3.867	10		Total	15.	10		Total	3.644	10	
5	Dakahlia	32	15	77	Beheira	3.672	98		Beheira	3.6	57		Dakahlia	4.333	10	
cal,	Gharbia	24	11	hal	Sharkia	3.526	94	107	Kafr El-	1.9	30	01	Gharbia	4.165	10	
Gi	Sharkia	20	9	Sak	Gharbia	3.462	92	hal	Dakahlia	1.6	26	Sakha1	Kafr El-	3.997	96	
	Damietta	5	2	Damie	Damietta	3.359	90	Sak 06	Gharbia	0.5	7		Beheira	3.949	95	
	Total	212	10		Total	3.751	10		Total	6.3	10		Total	4.144	10	
	Sharkia	43.	23		Dakahlia	4.180	10		Sharkia	2.3	74		Gharbia	3.531	10	
	Kafr El-	41.	22		Kafr El-	4.046	10	Giza171	Al-	0.6	19	71	Al-	3.399	10	
04	Dakahlia	40.	22	04	Sharkia	3.660	96		Gharbia	0.3	11	za1'	Sharkia	3.313	99	
thal	Beheira	24.	13	[ha]	Beheira	3.634	95		Ismailia	0.3	8	Gi	Ismailia	3.000	90	
Sak	Gharbia	19.	10	Sak	Gharbia	3.519	92		Total	3.2	10		Total	3.335	10	
	Damietta	12.	6		Damietta	3.321	87		Gharbia	1.8	56		Dakahlia	3.975	10	
	Total	188	10		Total	3.824	10	9	Dakahlia	1.3	41	3	Al-	3.526	97	
	Dakahlia	12.	29		Dakahlia	4.211	10	a10	Beheira	1.1	36	a10	Gharbia	3.389	93	
و	Kafr El-	10.	26	و	Kafr El-	4.011	10	akh	Al-	0.5	15	akh	Damietta	3.320	91	
a10	Beheira	7.9	19	a10	Beheira	3.708	96	Š	Damietta	0.2	7	Š	Beheira	3.300	90	
akh	Sharkia	6.2	15	akh	Gharbia	3.637	94		Total	3.1	10		Total	3.652	10	
ŝ	Gharbia	4.0	9	š	Sharkia	3.541	91		Sharkia	0.3	44		Dakahlia	5.108	11	
	Total	41.	10		Total	3.879	10	el 1	Dakahlia	0.2	36	el 1	Beheira	4.430	96	
	Kafr El-	21.	56		Kafr El-	3.908	98	ngn	Beheira	0.2	26	ıgı	Sharkia	4.270	93	
	Dakahlia	16.	42		Beheira	3.776	95	Mo	Gharbia	0.1	9	Mo	Gharbia	4.113	89	
	Beheira	5.8	15		Sharkia	3.555	89		Total	0.8	10		Total	4.601	10	
179	Sharkia	5.3	14	179	Al-	3.298	83	<u>ى</u>	Damietta	0.2	28	9	Dakahlia	3.750	10	
iza	Al-	2.7	7.	iza	Damietta	3.298	83	nin	Dakahlia	0.0	7	nin	Damietta	3.502	95	
c	Damietta	2.7 0	7. 0	3	Total	3.985	10 0	jasr	Total	0.0 8	10 0	jasr	Total	3.667	10 0	
		38. 9	10 0		Kafr El- Sheikh	3.908	98									

Appendix (2): Relative Importance of Area (The	usand feddens) an	nd Productivity (Ton/fe	dden) of Rice Crop by
Governorates during the Period (2016-2020)			

Source: Collected and calculated by the Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Agricultural Statistics Bulletins, during the period.

5/6/2023