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Abstract: One limitation on evaluation of uncertain biological systems is existence of uncertain parameters which 
are not measurable with noninvasive instrument. In   such systems proposing a method which estimates these 
parameters from measurable outputs of system is a problem of interest. In this paper, we use a Homotopy based 
estimating method. By decreasing Homotopy parameter the initial problem which has the form of a high gain 
observer gradually transforms to a parameter estimation problem. This gradual transform to the main problem 
provides the capability of finding the global optimal value of uncertain parameter. This method is applied to diabetic 
system to demonstrate the effectiveness of the Homotopy method in obtaining the best estimate of uncertain 
parameters by finding the global minimum of a proposed optimization problem. 
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1. Introduction 
    The normal blood glucose concentration level in 

human is in a narrow range70– 110	��/��. Different 
factors including food intake, rate of digestion and 
exercise can affect this concentration. If for some 
reasons the human body is unable to control the normal 
glucose-insulin interaction (e.g. the glucose 
concentration level is constantly out of the above 
mentioned range), diabetes is diagnosed. The 
consequences of diabetes are mostly long-term; among 
others, diabetes increases the risk of cardiovascular 
diseases, neuropathy and retinopathy, [1]. As regards the 
generally invasive measurement is not possible to solve 
this spatial problem; parameter estimation using 
measurable outputs are useful step in health issues of 
medical engineering. The problem of identifying the 
parameters in a mathematical model governed by 
ordinary differential equations (ODEs), given a set of 
experimental measurements, is encountered in many 
fields of physics, chemistry, biology, and engineering 
[2]. These topics are receiving great attention in the 
recent systems biology literature. For instance, 
experimental design and optimal sampling for 
parameter estimation has been considered by [3, 4]. The 
important problem of model discrimination and its 
relation with parameter estimation has been studied by 
[5], while the key issue of identifiable checking has 
been illustrated by [6]. In the case of parameter 

estimation, [7] have highlighted the need of global 
optimization techniques in order to avoid the spurious 
solutions often found by traditional gradient-based local 
methods. [8] has discussed parameter estimation in 
biochemical pathways: a comparison of global 
optimization methods. A hybrid approach for efficient 
and robust parameter estimation in biochemical 
pathways have also been studied and reported upon [9]. 
This work focuses on a diabetes model presented by 
Bergman [10, 11], in which the dynamic concentration 
profiles of glucose and insulin are modeled. All 
constants in Bergman model are known, but some of 
parameters might vary in every patient. Using dynamic 
patient’s data, it is possible to extract the values of these 
parameters using parameter estimation. 
    As it is mentioned in the previous paragraph, the 
problem of parameter identification can be posed as an 
optimization problem [12], where the arguments of the 
global minimum of the objective function are the 
identified parameters. The optimization problems are 
usually solved using deterministic methods, which 
require the solution of differential equations at each 
optimization step. The solution of these ODEs can be 
obtained using initial-value methods [13]. When 
deterministic approaches like the steepest descent, 
Gauss–Newton [14], and Levenberg–Marquardt 
algorithms are used in the optimization procedure, it is 
not uncommon to converge to a local minimum rather 
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than the global minimum [15]. Stochastic methods, such 
as simulated annealing [16] can be used to find global 
minima, but these methods typically require a large 
number of iterations to converge and, thus, are 
time-consuming, especially for parameter identification 
problems where the equations of motion are integrated 
at every optimization step [13]. 
    Homotopy optimization method (HOM) is an 
effective algorithm for finding global minimum of 
optimization problems. Homotopy, as a fundamental 
part of topology, has a relevant place in constructing 
algorithms for solving systems of algebraic equations, 
which is referred to as the homotopy method. This 
method has become much more efficient and powerful 
since the probability-one homotopies were proposed by 
Chow et al. [17], and hence was widely applied and 
improved to solve many problems such as nonlinear 
systems [18], and nonlinear constrained optimizations 
[19], etc. Homotopy is a powerful technique that is used 
in several areas of mathematics, including optimization 
[20] and nonlinear root finding [17]. It is also 
successfully applied to ARMAX models [21] for the 
identification of linear parameters. More details of its 
development and application in computational science 
can be found in [22].   

In homotopy method, the objective function to be 
minimized is modified by adding another function 
whose optimum is known, herein referred to as the 
known function, and a homotopy parameter is used to 
transform the modified function into the original 

objective function. A series of optimizations is 
performed while slowly varying the homotopy 
parameter until the modified function is transformed 
into the original objective function [23]. A new 
generalized homotopy algorithm for the solving multi 
objective optimization problems with equality 
constraints have also been studied and reported upon 
[20], The mentioned paper gives a necessary and 
sufficient condition for the set of Pareto candidates to 
form a (k-1) dimensional differentiable manifold, 
provides the numerical details of the proposed algorithm, 
and applies the method to two multi objective sample 
problems. 
   The application of homotopy to the general 
parameter identification in biomedical model has not 
been studied in the literature yet. In this work, we 
present a methodology to apply homotopy to the 
problem of parameter identification for a diabetic model. 
Also, the application of the homotopy optimization 
method on diabetes mathematical models are shown and 
its uncertain parameters to be estimated. 
   The paper is structured as follows: In the next 
section, we state the mathematical model of the diabetes. 
Next, homotopy optimization method (HOM) is 
presented as a parameter estimation method. The main 
idea of this paper and the simulation results which show 
the efficiency of presented algorithm in parameter 
estimation has been proposed section follows, ending 
with a set of conclusions.  

 
 

1. Mathematical Method 
    Diabetes mellitus is a metabolic disease characterized by irregular glucose metabolism. Patients with diabetes 
mellitus usually develop serious long-term effects, which increase their risk of developing serious cardiovascular, 
renal, and neural complications [24]. Several different models of diabetic systems exist in the literature including, 
for example, the very detailed 21st order metabolic model of Sorensen, [25]. This work focuses on a diabetes model 
presented by Bergman [10, 11], in which the dynamic concentration profiles of glucose and insulin are modeled. 
This model has three state variables (as well as outputs) that are the plasma glucose deviation �(�)	(��/��), 
remote compartment insulin utilization �(�)	(1/���), and plasma insulin deviation �(�)	(��/��). Equation (1) 
describes the change in glucose concentration, �� ��⁄ 	 [��/��/���] , with respect to the current glucose 
concentration �(�)	[��/��], the plasma insulin concentration, �(�)	[��/�], the basal glucose value for a healthy 
human subject, ��	[��/��]: 
 
��

��
= −��� − �(� + ��)																																																	(1)  

 
Equation (2) describes the change in the plasma insulin concentration, ��/��	[��/�/���], with respect to the 
current plasma insulin concentration �	(�) and the free plasma insulin concentration above basal value,	�	(�)	[��/
�]. 
 
��

��	
= 	−���	 + ���																																																											(2) 

 
Equation (3) denotes the change in the free plasma insulin concentration above basal value, ��/��	[��/�/���], 
with respect to the free plasma insulin concentration above basal value �	(�)	[��/�], the basal value of free plasma 
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insulin, �� (in [��/�], the typical free insulin level for controlled diabetic patients), the fractional insulin 
disappearance rate, n. Fisher et al [26] modified this equation of the Bergman model, adding an insulin infusion term 
and omitting an insulin secretion term: 
 
��

��
	= 	−�(� + ��)																																																																(3)     

All constants in this Bergman model are known, but parameters ��,��,��	���	� might vary in every patient. Using 
dynamic patient data, it is possible to extract the values of these parameters using parameter estimation. Other 
variables represent parameters of system (1). The physiological parameters are �� the basal glucose level	(��/
��), �� basal insulin level (��/��), and ��,��,��	���	� represent the model parameters. The nominal values 
of parameters are determined by [27]:  
 
�� 	= 	0.025, �� 	= 	0.00013,		 

�	 =
5

54
,								��	 = 	110,							�� = 	1.5																										(4) 

In this paper, ��  is considered as an uncertain parameter and other parameters are supposed to have fixed defined 
values. So, if the states are assumed as followed: 
 
 �(�) 	=	 �� , �(�) 	= 	 �� , �(�) 	= 	 �� 
 
Replacing (4) in (3) yields: 
 
��̇ = −0.025�� + 0.00013�� 
 
��̇ = −(5 54⁄ )(�� + 1.5) 
 
��̇ = −���� + ��(�� + 110)																																										(5) 
 
After identifying the model, in the next section, we present a new method to estimate uncertain parameter �� . 
    
 
2. Estimation Uncertain Parameter Using Homotopy Optimization Method  
2.1 Homotopy Optimization Method 

In this part, the framework of HOM is briefly presented for solving a nonlinear optimization problem. To clarify 

the method, at first, we explain how homotopy is applied to a simple algebraic minimization problem. Let )( pF be 

a convex objective function with a local minimum at �∗. So we apply HOM to find �∗ . If we start from an 
arbitrary point ��, and if the function has multiple local minimas, it is likely that the optimization procedure will 
converge to a local minimum. In the homotopy method, we first construct the following function: 

 
H(x,λ) = 	 (1 − 	λ)G(x) + λ	F(x)																																				(6) 
 
Where�(�), is usually a simple convex function for which the arguments of its global minimum are known. We now 
begin the process by choosing λ� = 1 and minimizing�(�,1) 	= 	�(�). In the first step, the minimum of �(�,1) 
is equal to the minimum of G(x), which is known. Once the minimum has been found for λ=1, λ is declined by a 
small amount ∆ and H(x,λ�) is minimized, where λ�=λ� + ∆	. Using the converged result from the previous stage 
as the initial guess for p and using    λ�=λ��� + ∆. The process is continued until �	 = 	0 is obtained and the 
objective function has been morphed back into �(�).  As we are always finding the minimum of H(x, λ) with an 
initial guess that is close to its global minimum, it is more likely that we will find the global minimum of the 
function F(x) (if we choose small enough	∆ parameter). Note that the choice of known function G(x) is nontrivial. 

 In general, the homotopy method is only capable of finding the local minima; however, if the nature of F(x) is 
known, it may be possible to construct the homotopy transformation in a way that increases the chance of finding 
the global minimum. Figure 1 presents the details of HOM algorithm. 
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Algorithm 1 Homotopy Optimization Method 
 
Step 1. Enter the following inputs: 

x(0) = ��, 
a local minimizer of G(x); 
m ≥ 1; 
∆(�) > 0 (k = 0, ... , m − 1). 

Step 2. Initialize: ��= 0; 
Step 3.  

for k = 1, ... , m 
      ��	= ����+�(���) 
     Use a local minimization method,  
      starting with �(���), to  compute  
      an  approximate  Solution x (k)  
      to ����∈�	 h(x, λ (k)). 

       End 
  Step 4. Output: �∗ = �(�) 

 
 
2.2 Representing the Parameter Estimation in the form of an Optimization Problem 
   The nonlinear equations of the physical system for which the parameters must be identified are assumed to be of 
the following form: 
 
��̇ = �� 
��̇ = �� 
⋮ 

��̇ = �(��,…,��,�,�)																																																										(7) 
 
For above system �(�) 	= 	 [��(�	),��(�),. . . ,��(�)]

� is the independent coordinates and p is a vector of parameters 
to be identified. The system is assumed to be nonlinear which is appears in �. Experimental data       ��(�) 	=
	[���(�	),���(�	),. . . ,���(�)]

� of all the displacements is assumed to be available over time T. Note that it is 
possible to identify the system parameters with only a few components of ��(�) since, in coupled systems, each 
component of ��(�) contains information from all the parameters due to the coupling between the system 
equations. The aim is to estimate the parameters in the mathematical model such that the solution of the differential 
equations (7) closely matches the experimental data. To identify the parameters, the integral of the squared 
difference between the experimental and simulated states which is an error indicator should be minimized: 

min
�

�	(�) = 	
1

2
��� ����(�) − ��(�,�)�

�
��

�

�

�

�

���

								(8) 

Note that a discrete summation can be used in place of the integral in this equation. Given the initial estimates of the 
parameters, we can use Gauss-Newton [14] which is a fast gradient base optimization method to minimized (8). 
Using Gauss-Newton algorithm, parameter p is updated according to (9):  
 
���� = �� + ��																																																																				(9)   
Where �� is the search direction, which can be obtained from the following relation [23]: 
 
�(��)�� = −��(��)																																																					(10) 
 
In (10), G and H are the gradient and the approximate Hessian of the objective function, which can be calculated 
through (11) and (12) by neglecting the higher order terms: 

�(�) =
��

��
= −��� ����(�) − ��(�,�)�

���

��
��

�

�

�

�

���

							(11) 
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�(�) =
���

���
≈���

���

��

� ���

��

�

�

���

�

���

																								(12) 

 

The sensitivity data 
���

��
	= [	

���

���
	,
���

���
		,. . . ,

���

	���
	] can be obtained by solving the sensitivity differential equations, 

which can be derived by directly differentiating (7), with respect to the individual parameters: 
���̇
���

=
���
���

 

 
���̇
���

=
���
���

 

⋮ 
���̇
���

=
��(��,��,…,��,�,�)

���
+
��(��,�� …,��,�,�)

���

���
���

+
��(��,��,…,��,�,�)

���

���
���

+ ⋯

+
��(��,��,…,��,�,�)

���

���
���

																																											(13) 

We will briefly explain how homotopy is applied to a simple algebraic minimization problem. Let �(�) be the 
objective function. We are interested in finding parameters �∗ at which F has a global minimum. 
 
2.3 Parameter Estimation Using HOM 
   We now discuss how the homotopy method can be applied to the problem of parameter identification. To modify 
the objective function, the experimental data is coupled to the mathematical model as follows:  
   
��̇ = �� + ���(��� − ��) 
��̇ = �� + ���(��� − ��) 
⋮ 

��̇ = �(��,��,…,��,�,�) + ���(��� − ��)													(14) 
 
Initially, when λ = 1, the coupling term acts as a high-gain observer [28], and if sufficiently high values of Ki are 
used, the experimental data and simulated response will synchronize. Note that λ is introduced to the traditional 
definition of a high-gain observer so as to construct the homotopy transformation. Also note that the sensitivity 
equations (13) must be modified to account for the added coupling term. For very large Ki, the cost function 
becomes a flat surface with a very small magnitude, and the experimental data x�� and simulated response x1 will 
reach together in the last step. We decrease � by a small amount �� and minimize the objective function (8), 
treating (14) as the mathematical model. We then decrease λ further to �	 − 	��; since the parameter guesses have 
been refined. At each stage in this process, we use the converged result from the previous stage as the initial guess 
for p. This process is repeated until λ = 0, and (14) has transformed into (7). In summary, the homotopy optimization 
approach follows the path of minimal error as the observer gain is decreased. We ensure that the error is close to 
zero in the last stage, with the hope that the refined parameter guesses at the final stage are sufficiently close to the 
global optimum of the original problem. The process of applying the homotopy method to the problem of parameter 
identification is summarized in Algorithm 2. 
 
3. Simulation & Discussion 
    In this paper, HOM is applied to estimate uncertain parameters of a diabetic model which is defined in section 
two. The state space model of such system is: 
��̇ = −0.025�� + 0.00013�� 
��̇ = −(5 54⁄ )(�� + 1.5) 
��̇ = −��� + ��(�� + 110)																																																				(15)  
Where P is an uncertain parameter. We consider an experimental model with nominal value of P=0.028. Using the 
state of experimental model (���) we construct the cost function as follows: 

�	(�) = 	
1

2
��� ����(�) − ��(�,�)�

�
��

�

�

�

�

���
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Algorithm 2 Parameter identification using homotopy 
  
Input: Experimental data (���), 
Output: Identified parameters (p) 
Initialize 
while λ ≥ 0 do 
      for i=1:m 
         Solve ODEs for x1 and ∂x1 ∂pj ∀j Minimize   

        			�	(�) = 		
�

�
∑ �∫ (���(�) − 	��(�,�))

���
�

�
��

���  

         Solve �(�)	�	 = −��(�) for d 
         � = � + � 
      end for 
    λ=λ−δλ 
end while 
return  
 
 
To estimate the uncertain parameter we use the proposed algorithm 2 for system below: 
��̇ = −0.025�� + 0.00013�� + ���(��� − ��) 
 
��̇ = −(5 54⁄ )(�� + 1.5) + ���(��� − ��) 
 
��̇ = −��� + ��(�� + 110) + ���(��� − ��)									(17) 
 
 
 The simulation results of optimization algorithm for different values of initial point of P are illustrated 
in figure 1. For � = 1 the described system (17) has the structure of a high gain observer. In this observer we 
consider large values of K gain which forced the system states to track their related experimental data. This leads to 
dramatic decline of E(p) as it is shown in figure 1. By decreasing the � value, the structure of (17) transforms to a 
parameter dependent equation.  Considering the E(p) value for small values of � shows that the presented 
algorithm efficiently estimation the uncertain parameter p=0.028, and the accuracy of parameter estimation is not 
depends on the initial guess of p. 
 The process of estimated P convergence to its nominal value by decreasing � is defined in table 1. 
To indicate the efficiency of algorithm 2, we employ the algorithm for an initial guess � = 20. For each fixed value 
of �, we consider � = 3. According to table 1, estimated p converges to its actual value as � converges to zero.  

   Considering this example shows that HOM algorithm is an effective method for estimating uncertain 
parameters of biological model. Independence on initial value of P is one of the main advantages of this method. 
 
 
4. Conclusions 
   In this work, we have presented a new methodology for applying the homotopy optimization method to the 
parameter estimation. As it was seen in pervious sections, this method could find the global optimization of the 
uncertain parameter and this estimation is equal to the nominal value of the parameter. The proposed homotopy 
method can successfully find global minima given a wide domain of initial parameter guesses. The efficient of the 
proposed method for parameter estimation has been demonstrated by applying to diabetic model. The authors are 
currently investigating the use of HOM to apply to other biological systems and set the controller up to these 
systems and identification parameters with controller as next works. 
 
 
 
 
 
 
 



Journal of American Science 2022;18(5)                  http://www.jofamericanscience.orgJAS  

 34

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. simulation results of optimization algorithm for different values of initial point of P and � 
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Table 1. Process of estimated P convergence to its nominal value 

Lambda Uncertain Parameters Squared Error 
1 20 1.6e4 
1 19.25 1.5e4 
1 16.94 1.3e4 

0.9 10.24 7.5e3 
0.9 3.7 1.4e3 
0.9 2.94 942.5 
0.8 2.463 836.6 
0.8 2.075 608.5 
0.8 1.79 462 
0.7 1.58 461.9 
0.7 1.35 358.2 
0.7 1.22 284.5 
0.6 1.101 304.9 
0.6 0.977 242 
0.6 0.876 195.4 
0.5 0.79 220.4 
0.5 
0.5 

0.71 
0.63 

176.6 
142.8 

   

 

Lambda Uncertain Parameters Squared Error 

0.4 0.574 174.8 

0.4 0.51 137.0 
0.4 0.455 108.9 
0.3 0.41 146.4 
0.3 0.357 110.6 
0.3 0.315 84.6 
0.2 0.28 132.8 
0.2 0.236 91.87 
0.2 0.20 64.7 
0.1 0.17 142.3 
0.1 0.133 75.2 
0.1 0.1054 41.4 

1.4e-016 0.0858 487.0 
1.4e-016 0.012 72.7 
1.4e-016 0.0282 32.3 
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