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Abstract: An analytical study of channel flow with heat in an induced magnetic field in cylindrical domain has been 
done. The flow is considered along the channel axis, and is taken to be axi-symmetric. No-slip boundary condition is 
considered for velocity while the temperature has non-zero positive constants on the boundary. The physics of the 
problem is termed by the usual MHD equations with suitable boundary conditions. The basic equation governing the 
flow is that of Partial Differential Equation which was later reduced using an appropriate transformation. The two 
coupled system were solved analytical using Frobenius method and method of undetermined coefficient to obtain 
two solutions of flow variables. The expressions of these flow variables were displayed graphically.  
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1. Introduction:  

Mathematical models grow out of equations of 
which fluid dynamics models cannot be left behind due 
to its numerous applications in our daily lives. Such 
applications include the human blood vessels, oil and 
water, filtration and purification process in chemical 
engineering, thermal insulation and underground 
energy transportation etc. However, channel flow 
related problems can be seen in the works of [1], [2], 
[5],[7],[8] and [9] etc . 

More so, channel flows are very essential in 
real life applications because it is the medium in which 
the physical quantities are modeled for the purpose of 
practical findings. This is why, it is imperative to 
understand the dynamic nature of the physical problem 
to be solved and also know why such method is good. 
Physical problem of this nature needs analytic 
approach, which can give exact solutions for proper 
mathematical predictions. On the general note, model 
signifies an abstraction of naturally or technically 
occurring phenomena or complex systems. Models are 
aimed to understand the essential parameters of the 
phenomena and to assemble them into mathematical 
equations that can be solved analytically or 
numerically. In fluid dynamics transport models allow 
an integrating consideration of complex physical 
systems. Such models have proven to be indispensible 
tools in many Engineering problems, for example, for 

improving process understanding and identification, 
interpretations of measurement data etc, A model helps 
in explaining situations, for example ,the appearance or 
distribution of a contamination in a ground water 

system, or the origin/leakage path of 2Co  that is 

detected somewhere at the ground surface. Models can 
also simulate interventions into systems and predict 
their effects. In addition, analysis of parameter 
sensitivities is an important purpose of model 
applications. 

It is essential to study channel flow related 
problems, well formulated and accurate analytical 
solutions in order to stimulate realistic flow results; 
therefore, the analytical solution is adopted based on 
the specific feature of the problem, even though fluid 
characteristics may depend on additional physical 
quantities in terms of modeling, [15]. 

More so, an aspect of fluid dynamics that is of 
great interest in this study is non-isothermal flow, 
which is a channel flow with a non- constant 
temperature. This condition can enhance some certain 
process taking place within the fluid; which may be 
useful in carrying out certain operations. For instance, 
when a fluid is subjected to a temperature change, its 
material properties, such as density and viscosity 
change accordingly. In some certain circumstances, 
these changes are large enough to have substantial 
influence on the flow field. So, in non-isothermal fluid 



Journal of American Science 2021;17(12)                                       http://www.jofamericanscience.org   JAS    

 

 
 71

 

flow interface, it sets the temperature in the model 
input section and defines the density in the fluid 
properties. 

It is important to know that, magnetic field as 
one of the fluid properties in the model helps to 
engender mechanical forces which adjust the flow of 
the fluid. Such interface occurs with a non- constant 
temperature. The studies of [3], [6] are significant in 
this purpose. Secondly we cannot be ignorant to the 
fact that many transport procedures exist in its natural 
nature and many real-life applications where heat and 
mass transfer arises as a result of joint buoyancy effects 
on the flow. Heat is form of energy transferred by 
virtue of a difference in temperature. Heat exists 
everywhere to a greater or lesser degree. Then, on 
aspect of cooling parameter applied in the model 
measures the relative change of temperature. It is a 
term referring to lack of heat in an object and its rate 
depends upon the area of the surface through which 
heat is lost. Another fundamental issue is problem of 
mass concentration in the model.  

These flows, such as those in human 
cardiovascular system takes place in cylindrical 
domain;  the human blood vessel, for example. Fluid 
dynamics models in such domains are more 
challenging than those in Cartesian coordinate systems. 
The problem gets more difficult when the transport of 
heat and mass are incorporated into the system. To this 
end, we propose an accurate analytical solution in a 
cylindrical channel flow. 

This paper investigated the problem of heat 
and mass transfer in cylindrical channel under non-
isothermal flow. The two fundamental equations 
governing the flow are in the form of partial 
differential equations and besides have been reduced to 
set of non-linear ordinary differential equations by 
means of suitable transformations. The governing 
coupled equations are solved analytically using 
Frobenius method and method of undetermined 
coefficient to obtain two different solutions of flow 
variables. The expressions for velocity and temperature 
are obtained graphically. The effects of key parameters 
are examined, discussed, and presented graphically. 

The paper is presented as follows: In Section 
2, we present the physical and mathematical models of 
the problem, and a detailed analytical solution is 
derived in Section 3, the derived analytic solution in 
Section 4. The results are presented and discussed in 
Section 4. The paper is concluded in Section 5. 
 
2.  Mathematical Formulation:  

The flow is assumed to be dominated along 
the channel axis, and is taken to be axi-symmetric. No-
slip boundary condition is considered for velocity 
while the temperature and concentration have non-zero 
positive constants on the boundary. Let r  be the 

distance from the channel centre and ,u T 


 are the fluid 

velocity and temperature as shown in Figure 1.Let the 

fluid velocity be  0,0,u u


 
 
 
 
 
 
                                                       
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Physical Model 

 

Since the flow is axisymmetric let  , ,r z    be the cylindrical channel coordinates, where r  is the radius 

of the channel, the directions of flow lies along horizontal axis z  and flow is maintained at non-constant 
temperature (non-isothermal) the directions without flow lies along the vertical axis z  see Figure 1.Based on the 
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assumption of Boussinessq approximation of fluid model and taken consideration of  induced magnetic field and 
steady flow; the equations governing  the flow are:  
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 (3)  

with following boundary conditions 

 0 , , onau r a       (4) 

 , for allu r     (5) 

 Where u w   is the  velocity components of fluid,   is the fluid density , 0B  is the magnetic field , k  is the 

thermal conductivity, T   is the wall temperature , k  is the thermal conductivity, g  is the acceleration due to gravity 

and   is the  viscosity of the fluid,  is the electrical conductivity , pC  is the heat capacity , rq  is constant 

magnetic field and   is the coefficient volumetric expansion.  

 
2.1 Non-dimensionalization:  

From equations (1)-(3) and boundary conditions (4) and (5) respectively the following non- dimensional 
variables were used: 
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where, Gr  is the Grashof number .Substituting (6) in  (2)-(5) gives 
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Subject to 

 0, , 0 1au n r      (9) 

 ,u      (10) 

Equation(1) implies that  u u z  ,hence u  is a function of r  alone and we arrived at the following system of 

ordinary differential equations:  
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Subject to the following boundary conditions 

 
0, , 1au on r   

  (13) 

 , for 0 1u r       (14) 

where p  is constant term M  represents magnetic field parameter,  represents injection term and   represents 

cooling term.   
3.   Method of Solution: Equations (11) and (12) are coupled  non-linear  differential equations .We implements the 

method of  Ferobenius in solving for    , and ,u r t r t  Firstly, we solve equation (12)  and substituting the 

result in equation(11) then solving the  resulting systems individually to obtain the following flow variables: 

3.1 Solution of the Temperature Model: We assume  
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Putting (15)-(17) into (12) and performing long algebraic expressions gives the solution below 
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3.2 Solution of Velocity Model: Also we assume a solution of the form: 
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Putting equations (19)-(21) into the left hand side of equation (11)  gives  
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3.2.1 Non-homogenous part of  Velocity Model: To get the particular solution of (11) which is the non-

homogenous part of the problem, we solve using the method of undetermined coefficients. 
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2 2 2 2 2 2 2 2 2 2
( ) 1 ,

2 2 4 2 4 6 2 4 6 8

r r r r
y r A A

    
       

      
 

                        (23) 

The  complementary  solution for (11)  is 
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Consider the particular solution:   2 4 6 8
0 1 2 3 4pu r A A r A r A r A r      (25) 
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Putting (25)-(27) into (11) the RHS and performing some algebraic simplifications gives a solution of (11) 
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5 Results and Discussion:  

However, the following parameter values were clearly used in the simulation study: Vary velocity with 

magnetic field Pr 4, 1.0, 180.0Gr    ,Vary velocity with : M 1.5, p 1, 1000Gr    ,Vary 

velocity with  : M 2.5, 0.05, 188Pr Gr    ,Vary velocity with : M 2.5, Pr 6, 0.05Gr     

 
5.1 Results:  

Consequently we present our graphical results and discussions: 
 
 

 
Figure .2: Velocity profiles  for Pr 4, 1.0, 180.0Gr   

    and different values of velocity cooling 

parameter,  
 
 

Figure 2 shows the various fluid velocity with the cooling parameter. It can be observed that the velocity 

diminishes with increasing cooling parameter. This is quite obvious since a rise in cooling parameter  diminishes 
fluid temperature which of course rises the fluid viscosity, therefore diminishes the fluid velocity.  This result is in 
consonance with the results of [3]. 
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Figure  3: Velocity profiles for M 1.5, p 1, 1000    and different values of Grashof,  number Gr  
 

In Figure 3 ,It is clear that an increase in Grashof number increases  fluid velocity. This agrees with the 
results of [11] and [13].  
 

 
Figure 4: Velocity profiles   for M 2.5, 0.05, 188Gr    and different values of Magnetic field 

parameter, M  
 

In Figure 4, It can be seen that increase in the magnetic field parameter decreases the fluid velocity. This is 
in line with the results of [3] , [4],[9],[10] ,[12]  and [14]. 

 

 

Figure 5: Temperature profiles for with 1.0a 
 
and different values of temperature cooling parameter,  

 
Figure 5, It is observed that the temperature decreases as the cooling parameter increases.  These agree with 

the result of [10]. 
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6 Conclusions:  

This paper considered the problem of heat 
transfer for simulation of non-constant flow in a 
cylindrical channel. A coupled system of two 
differential equations was judiciously framed. 
Complete analytical solutions were obtained; the 
graphical solutions displayed (i) a rise in cooling 

parameter,  drops the fluid velocity (ii) temperature 

drops as the cooling parameter rises    (iii) a rise in 

Grashof Gr  number also leads to a rise in fluid 
velocity. 
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