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Abstract: Control chart is a very important tool used in Statistical Process Control. Monitoring variability is a 
vital part of modern statistical process control. In a situation where the in-control process has a constant mean 
and variance, the conventional Shewhart R and S charts are usually used to monitor the variation of the process. 
In cases where the mean and standard deviation are not constant, the coefficient of variation (CV) is often 
constant and is used to monitor variability. Improvement on the efficiency of these charts is often desirable 
especially with relatively small sample sizes. Moreover, the need of an efficient sampling scheme becomes more 
pronounced when the exact measurement of unit is difficult and expensive, but the visual ordering of units is 
possible and realizable. Consequently, in this paper, new CV charts based on ranked set sampling schemes are 
proposed to enhance the monitoring power of the classical CV chart. The charts are established based on ranked 
set sampling (RSS), median RSS (MRSS), extreme RSS (ERSS), systematic RSS (SRSS) and neoteric RSS 
(NRSS), and are evaluated in terms of their Probability to Signal.  The efficiency of the proposed charts is 
compared with the existing classical CV chart under simple random sampling (SRS) scheme. The results, based 
on a simulation study, indicate that the newly developed rank-based CV charts show better detection of 
monitoring signals in process CV than the classical CV chart. In particular, the CV chart based on the NRSS and 
SRSS technique performs notably better. A real-life application, concerning the non-isothermal Continuous 
Stirred Tank Chemical Reactor (CSTR), is also provided to show the implementation of the proposed charts in 
phase I. 
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I. INTRODUCTION 

Control chart is one of the statistical process 
control (SPC) problem-solving tools, used to ensure 
process uniformity (Montgomery, 2009). The basic 
purpose of the implementation of control chart 
procedures is to detect abnormal/un-natural 
variations in process parameters. Control charts are 
the most sophisticated and commonly adopted SPC 
tools in the manufacturing and processing industries. 
One of the fundamental principles of Statistical 
Process Control (SPC) is that a normally distributed 
process cannot be claimed to be in-control until it has 
a constant mean and variance. This implies that a 
shift in the mean and / or the standard-deviation 
makes the process out-of-control.  

However, there are many in-control 
processes where the mean μ is expected to fluctuate 
time to time and the standard deviation σ changes 
with the mean. In these cases, it is not possible to use 
��  and R or S control charts to perform online 
monitoring. When the process standard deviation is a 
linear function of the process mean and the mean 

itself is expected to fluctuate time to time, control 
charts monitoring the sample coefficient of variation 
(CV) can be efficiently used to keep track of the 
process variability and to detect shifts in the process 
mean or standard deviation due to assignable causes. 
Control charts are mostly employed in a two phase 
procedure. In phase I (retrospective phase), they are 
used to study a historical reference sample, which 
involves establishing the in-control state and 
evaluating the process stability to ensure that the 
reference sample is representative of the process 
(Zhou et al., 2007). Once the in-control reference 
sample is determined, the process parameters, if 
unknown, are estimated from phase I, and control 
chart limits are obtained for used in phase II. The 
phase II aspect involves online monitoring of the 
process. If there occur any shift in process 
parameters, it needs to be detected quickly so that 
corrective actions can be taken at an early stage. 

Most of the works on control charts focus 
on monitoring either the process mean or the process 
variability and are based on the requirements that the 
process mean is stable and independent of the 
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process standard deviation (Yeong et al., 2016). 
However, in many real-life processes, the process 
standard deviation σ is dependent of the mean, and 
the mean is not constant. In such operations, 
monitoring the mean or the variability using X chart 
or S(R) chart, seem to be hindered. In such cases, it is 
more appropriate to monitor the coefficient of 
variation (CV). 

Several univariate CV control charts have 
been adopted in many practical applications. A 
primary criterion for the usage of the univariate CV 
chart is that the standard deviation needs to be 
proportional to the mean so that the CV is constant. 
This is usually checked by plotting the rational group 
CV against the mean (Kang et al., 2007). In most 
cases, the plot is supplemented with a regression line 
and is also followed by a formal test of the regression 
slope. If the CV is constant, the CV is independent of 
the mean. The univariate CV is the ratio of the 
standard deviation to the mean of a random variable.  
As a relative dispersion measure to the mean, it is 
useful for comparing the variability of populations 
with really diverse means, and considerably 
straightforward to interpret in practice (Aerts et al., 
2015). The use of the CV is prevalent in many 
applications in science, medicine, engineering, 
economics, etc. For example, it can be used to 
measure the reliability of an assay in medicine and 
chemistry (Reed et al., 2002). Also, it can be used in 
clinical trials, to account for baseline variability of 
measurements (Pereira et al., 2002), and in quality 
control, to seek production processes with minimal 
dispersion. 

Monitoring of CV has found in literature, 
either classified as memory less-type, which is type 
using only information on current sample e.g. 
Shewhart chart or memory-type, which is type using 
information on both current and previous samples 
e.g. EWMA and CUSUM charts. Shewhart control 
charts are widely used statistical process control 
(SPC) tools for detecting changes in a quality 
characteristic of a process and triggering the search 
for assignable causes of variation. Charting has been 
used in manufacturing settings, but in recent times it 
has been extended to education, health care, and a 
variety of societal applications. The purpose of 
implementing control charts is to differentiate 
between random and special cause variations. A 
process working under   random causes is considered 
as in control while if assignable causes are at work, 
the process is declared to be out of control. It is 
always desirable to detect the assignable cause 
variation at an early stage for quick implementation 
of corrective actions. Control charts act as a familiar 
tool for this purpose. 

All the existing CV charts are based on the 
simple random sampling (SRS) scheme and are 
applicable in situations where the exact 
measurements of the process variable are available. 
Control charts, based on ranked set sampling 

schemes, and has been proposed recently for efficient 
monitoring of process location. All the proposals in 
the literature are based on the ideal assumption of 
normally distributed quality characteristics. The 
performance of CV charts under ranked-based 
sampling schemes in phase I has not been 
investigated in SPC literature. Hence, in the present 
study, we employed the CV charts under different 
ranked set sampling (RSS) plans to improve the 
detection power of the existing CV chart (based on 
SRS). The charts, named CV[R] charts, are proposed 
under various ranked sampling schemes, such as the 
RSS, MRSS, ERSS, SRSS and NRSS. The proposed 
enhancements in the deployment of the customary 
CV control chart are suitable in those real-life 
situations where the perfect measurement of the 
quality characteristic of concern is costly to obtain, 
but the rank ordering of its elements can be obtained 
at a negligible cost. 

In section 2, a brief review of the mean estimator 
under RSS, MRSS and ERSS, SRSS and NRSS 
schemes is given. The description of the design 
structure of the CV charts is presented in Section 3, 
and the control structure of the proposed CV charts 
in Section 4. The performance evaluation of the 
proposed charts is presented in Section 5. The 
simulation study and results’ discussion is presented 
in Section 6, A real data illustrative example is 
provided in Section 7, and conclusions and 
recommendations is given in Section 8. 

II. RANK SET SAMPLING SCHEMES 

In this section, we review the framework of the rank 
set sampling schemes under perfect ranking. The 
following subsections describe the different perfect 
ranked sampling schemes investigated in this study. 

Ranked Set Sampling (RSS) 
Ranked set sampling (RSS) was first suggested by 
McIntyre (1950) to estimate the mean pasture and 
forage yields. It is a cost-efficient sampling 
procedure alternative to the simple random sampling 
(SRS) for the population mean estimation in 
situations where visual ordering of a set units can be 
done easily, but the exact measurement of the units is 
difficult and expensive. The variance of RSS mean 
estimator is less than the variance of SRS mean 
estimator regardless of errors in ranking or the parent 
distribution. The ranked set sampling (RSS) method 
can be summarized as follows: Select n random 
samples of size n units and rank the units within each 
sample with respect to a variable of interest by a 
visual inspection. Then select for actual measurement 
the smallest unit from the first sample. From the 
second sample, select for actual measurement the 
second smallest unit. The procedure is continued 
until the largest from the nth sample is selected for 
measurement. In this way, we obtain a total of n 
measured units, one from each sample. The cycle 
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may be repeated r times until nr units have been measured. These nr units form the RSS data. 
 

 
The mean and the variance of the RSS are given by: 
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Median Ranked Set Sampling (MRSS) 
The method of median ranked set sampling (MRSS) proposed by Muttlak (1997) can be summarized as follows: 
Randomly select a sample of size n2 units from target population and partition the sample into n sets each of size 
n and rank the units of each set with respect to a variable of interest. The n measurements are then obtained 
depending on whether the set size is even or odd. For odd set sizes, select the median value for measurement 

from each ranked set (i.e. the ((� + 1)/2)�ℎ smallest rank). And for the even set sizes, select the (
�

�
)th smallest 

element from the first n/2 sets and select ((n+2)/2)th smallest element from the remaining n/2 sets. The cycle 
may be repeated m times until nm units have been measured. Thus, the nm units form the MRSS sample data. 
The mean and variance of the MRSS are given as: 
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Extreme Ranked Set Sampling (ERSS) 
Extreme Ranked Set Sampling was proposed by Samawi et al. (1996). The extreme ranked set sampling (ERSS) 
procedure, select n random samples of size n units from the population and rank the units within each sample 
with respect to a variable of interest by visual inspection. If the sample size n is even, select from n/2 samples 
the smallest unit and from the other n/2 samples the largest unit for actual measurement. If the sample size is 
odd, select from (n-1)/2 samples the smallest unit, from the other (n-1)/2 the largest unit and from one sample 
the median of the sample for actual measurement. The cycle may be repeated r times to get nr units. These nr 
units form the ERSS data. We can see that the ERSS in practical applications can be performed with fewer 
errors in ranking the units since all we have to do is find the largest or the smallest of the sample and measure it. 
The ERSS method is very easy to apply in the field and will save time in performing the ranking of the units 
with respect to the variable of interest. In addition, this method will reduce the errors in ranking and hence 
increase the efficiency of the ERSS when compared to RSS. 
The mean and variance are given as: 
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Systematic Ranked Set Sampling (SRSS) 
Systematic ranked set sampling was developed by Khan et al. (2019). Systematic ranked set sampling procedure 
(SRSS) was developed for application in situations where ranking of the sample observations is much easier 
than obtaining their actual magnitudes. Let Yij, Y2j, …, Ym2j be a simple random sample of size m2 units 
selected from target population. Also, let Y(1)j, Y(2)j, …, Y(m2)j be the order statistics of Yij, Y2j, …, Ym

2
j, (j = 1, 2, 

…, r). The SRSS procedure can be summarized as follows:  
Step 1: Select m2sample units randomly from the population.  
Step 2: Rank the m2selected units in an increasing order of magnitude based on a concomitant variable.  
Step 3: Select the ((m + 1)i + 1)th ranked units for (i = 0, 1, 2, …, m − 1).  
Step 4: Repeat steps 1 through 3 for r cycles to obtain an SRSS of size n = mr. 
We select m2 units in both SRSS and RSS methods, but we only measure m units. In addition, in SRSS, we rank 
all the m2selected units at the same time, while in RSS, we rank m units in each of the m sets. Unlike RSS, SRSS 
measured units Y ((m+1) i+1) j, i = 0, 1, 2, …, m − 1; j = 1, 2, …, r are dependent, and they follow the distribution 
of the ((m + 1)i + 1)th-order statistics of a sample of size m2. The mean and variance for SRSS are given below: 
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Neoteric Ranked Set Sampling (NRSS) 
Neoteric ranked set sampling was proposed by Zamanzade and Al-Omari (2016). It is a recently developed 
sampling plan, derived from the well-known ranked set sampling (RSS) scheme. Neoteric ranked set sampling 
(NRSS) was suggested to be applied in situations where the ranking of the sample observations is much easier 
than obtaining their precise values. The NRSS scheme can be described as follows: 
Step 1: Select a simple random sample of size k2 units from the target population. 
Step 2: Rank the k2 selected units in an increasing magnitude based on a concomitant variable, personal 
judgment or any inexpensive method. 
Step 3: If k is an odd, then select the {(k+1)/2 + (i-1) k}th ranked unit for i = 1, … , k. But if k is an even, then 
select the {l + (i- 1)}th ranked unit, where l = k/2 if i is an even and l = (k+2)/2 if i is an odd for i = 1, …, k. 
Step 4: Repeat steps 1 through 3 n times (cycles) if needed to obtain a neoteric ranked set sample of size N = nk. 
The mean and variance are given as: 
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III. RANKED SET BASED COEFFICIENT OF VARIATION (CV) CHARTS 
Here, we give the general form of the CV chart that can be used with any of the sampling schemes considered in 
this study. Assuming that X has a mean (µ) and standard deviation (σ), by definition, the CV, γ, for X is defined 
as:  

� =
�

�
        (1) 

The CV given above is a standardized measure of the dispersion of X and has several benefits over the other 
measures of the dispersion, such as σ, which is always understood in the context of µ. However, since the 
coefficient of variation depends on the process mean and the process standard deviation which are usually 
unknown; it is inapplicable from the practical perspective. Consequently, it is more appropriate to estimate γ 
from the preliminary reference sample of the process. Now, consider a historical in-control reference sample 
observations of size n (X1, X2, ..., Xn) from the process with underlying parameters: σ and µ. We assume that 
the underlying distribution of Xj (j = 1, 2...n) is a standard normal distribution with µ and σ. Let �� and s be the 
sample statistics representing mean and standard deviation, respectively, which is used for the estimation of the 
parameters µ and σ, respectively. The estimated γ of X denoted by Z, is defined as:        

Z = 
�

��
        (2) 

Let ��[�](�)  and �[�](�) � ymbolizing the sample mean and sample standard deviation attained from the nth 

sample, taking into account sampling scheme (R), where R represents any sampling schemes. We define CV[R], 
given in equation 3.13 are the sample coefficient of variation from the different sampling schemes, considered in 
this study. Here, Z[R](n) is the statistic estimated for CV that are computed using the subgroup of size n taken 
from the underlying process that has been scaled to estimate coefficient of variation γ, based on the different 
sampling schemes considered. 

Z[R](n) =  
�[�]

�̅[�]
�  

∀R = RSS, MRSS, ERSS, SRSS, NRSS                                                     (3) 
 
IV. THE PROPOSED CONTROL CHART STRUCTURE  
Here, we present the CV chart structure that can be used with any of the Ranked set sampling schemes. 
Let A[R](n) be a pivotal parameter that describes a link between the estimated CV statistics Z[R](n) and the 
process parameter value γ, given as: 

                                      �[�](�) = ��[�](�)� �⁄            
The expected value of A[R] (n) is given as: 

   ���[�](�)� = ���[�](�) �⁄ � = � ��[�](�)� �⁄      
Where R is the sampling schemes from RSS, ERSS, MRSS, SRSS, NRSS 
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Let E [A[R](n)] = d2,n,m where for a specific sampling scheme, d2 depends on n. E (Z[R](n) can be estimated as the 

average of [Z[R](n)] i.e  ���(�) = ����(�)�, computed from an appropriate size n obtained from a normal 
operating process conditions. Hence, we can define the unbiased estimator of γ for the nth samples as: 

γ� =  
��[�](�)

��,�,�
       (4) 

For all the sampling schemes R, the probability limit is designed for the CV[R] chart with respect to the sampling 
scheme under consideration by using the quantile points of distribution of A[R]j (n). Let us define α as the false 
alarm probability (α), and A[R] (n) to be the α-quantile point of the underlying distribution of A[R] (n). Then the 
probability limit for the CV[R] chart established on Z[R](n) are given as 
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Where UCL[R](n) is the upper control limit for any of the sampling scheme 
 
V. PERFORMANCE EVALUATION 

This chapter provides a comprehensive study of the phase I analysis of the univariate CV control charts 
considered in this study. For a fixed False Alarm Probability (FAP) α =0.01, the chart that yields the highest 
probability of signaling is considered better than the other control charts. We aim to recommend the choice of 
the univariate CV control chart that gives the best phase I performance. The effects of the shift size (δ), the 
sample size (n), and m1 on the proposed charts are also studied. The PTS values are presented in tables 4.1A- 
4.1C.  The significant findings of the phase I analysis are summarized as follows.  

1. Only the control chart based on MRSS is performing poorly than the CV chart based on SRS, while all 
the other charts lead to enhanced detection power in comparison with the classical CV chart when n is 
5. For example, when n = 5, shift = 2, m1 =3, the PTS values are 0.3964 and 0.4076 for MRSS and SRS 
respectively. However, when n is 7 and 10, all the other charts lead to enhanced detection power in 
comparison with the classical CV chart. For example, when n = 7, shift = 2.25, m1 =3, the PTS values 
are 0.9576, 0.9570, 0.9446, 0.8979, 0.7938,0.7868 for NRSS, SRSS, ERSS, RSS, MRSS and SRS 
respectively. 

2. The UCVNRSS chart performed better than all the other charts. The UCVSRSS chart performed better than 
the UCVERSS chart. The UCVERSS chart performed better than the UCVRSS chart. The UCVRSS chart 
dominantly performed better than the UCVSRS and UCVMRSS charts especially for small to moderate 
shift in the in-control CV. For example, when n = 5, shift = 2.25, m1 = 9, the PTS values are 0.9923, 
0.9736, 0.8364, 0.7247, 0.5815, and 0.5712, for the UCVNRSS, UCVSRSS, UCVERSS, UCVRSS, UCVSRS 

and UCVMRSS respectively. 
3. It is observed that the PTS values approaches 1, as the size of the shift increases and m1 changes for all 

values of n. 
4. Greater PTS values are obtained when n is large for any value of m1 at moderate or high shift level 

The probability value for NRSS and SRSS equals 1 when m1 = 9 and 12 at a moderate or high shift level for all 
values of n. d    The probability value for NRSS, SRS and ERSS equals 1 when m1 = 9 and 12 at a moderate or 
high shift level when n = 7. When n = 10, the probability value for NRSS, SRSS, ERSS and RSS equals 1 at a 
moderate or high level of shifts when m1 = 9 and 12 
 
Table 4.1A: The PTS values of CV model when n = 5, m = 30, α = 0.01 at different levels of m1 

   
n = 5, m = 30 

   
m1  SRS RSS MRSS ERSS SRSS NRSS 

 d2 0.942578 1.033578 0.503314 1.289163 1.480282 0.978386 
 d3 0.344942 0.309002 0.184346 0.332126 0.254883 0.167241 

 
L 
δ 

3.872 
 

3.838 
 

3.902 
 

3.798 
 

4.081 
 

3.669 
 

0 1 0.0101 0.0101 0.0101 0.0103 0.0102 0.0102 
3 1.25 0.0288 0.0300 0.0266 0.0369 0.0531 0.0877 
 1.5 0.1050 0.1378 0.1003 0.1816 0.3234 0.4546 
 1.75 0.2392 0.3318 0.2357 0.4322 0.6740 0.7775 
 2 0.4076 0.5357 0.3964 0.6530 0.8593 0.8975 
 2.25 0.5514 0.6879 0.5423 0.7864 0.9230 0.9355 
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 2.5 0.6573 0.7844 0.6500 0.8570 0.9448 0.9490 
 2.75 0.7372 0.8428 0.7304 0.8979 0.9526 0.9542 
 3 0.7908 0.8782 0.7881 0.9185 0.9555 0.9562 
 3.5 0.8566 0.9156 0.8544 0.9390 0.9572 0.9573 
 4 0.8923 0.9325 0.8902 0.9478 0.9575 0.9575 
 4.5 0.9124 0.9416 0.9104 0.9519 0.9576 0.9576 
 5 0.9241 0.9470 0.9233 0.9539 0.9576 0.9576 
 6 0.9375 0.9519 0.9371 0.9559 0.9576 0.9576 
 7 0.9444 0.9540 0.9437 0.9567 0.9576 0.9576 

6 1.25 0.0357 0.0399 0.0350 0.0453 0.0668 0.1081 
 1.5 0.1360 0.1661 0.1227 0.2250 0.3741 0.5351 
 1.75 0.2986 0.3908 0.2847 0.5066 0.7534 0.8686 
 2 0.4770 0.6133 0.4648 0.7389 0.9292 0.9681 
 2.25 0.6329 0.7721 0.6245 0.8720 0.9796 0.9901 
 2.5 0.7476 0.8688 0.7382 0.9359 0.9923 0.9955 
 2.75 0.8241 0.9220 0.8175 0.9652 0.9961 0.9973 
 3 0.8748 0.9511 0.8716 0.9797 0.9975 0.9980 
 3.5 0.9332 0.9774 0.9304 0.9909 0.9984 0.9985 
 4 0.9599 0.9875 0.9593 0.9947 0.9986 0.9987 
 4.5 0.9736 0.9918 0.9732 0.9963 0.9987 0.9987 
 5 0.9810 0.9940 0.9809 0.9971 0.9987 0.9987 
 6 0.9886 0.9961 0.9884 0.9979 0.9988 0.9988 
 7 0.9919 0.9970 0.9918 0.9982 0.9988 0.9988 

9 1.25 0.0378 0.0386 0.0349 0.0456 0.0640 0.1049 
 1.5 0.1255 0.1563 0.1180 0.2067 0.3261 0.4921 
 1.75 0.2727 0.3562 0.2596 0.4589 0.6919 0.8436 
 2 0.4360 0.5594 0.4212 0.6853 0.9025 0.9654 
 2.25 0.5815 0.7247 0.5712 0.8364 0.9736 0.9923 
 2.5 0.6981 0.8342 0.6912 0.9179 0.9929 0.9979 
 2.75 0.7846 0.8989 0.7769 0.9577 0.9977 0.9993 
 3 0.8457 0.9383 0.8399 0.9776 0.9991 0.9997 
 3.5 0.9160 0.9743 0.9116 0.9925 0.9998 0.9999 
 4 0.9508 0.9877 0.9478 0.9969 0.9999 0.9999 
 4.5 0.9688 0.9934 0.9671 0.9984 0.9999 1.0000 
 5 0.9791 0.9959 0.9778 0.9991 1.0000 1.0000 
 6 0.9890 0.9981 0.9884 0.9996 1.0000 1.0000 
 7 0.9932 0.9989 0.9929 0.9997 1.0000 1.0000 

12 1.25 0.0348 0.0362 0.0339 0.0403 0.0532 0.0863 
 1.5 0.1061 0.1308 0.1013 0.1621 0.2503 0.3940 
 1.75 0.2178 0.2771 0.2078 0.3556 0.5468 0.7355 
 2 0.3493 0.4470 0.3296 0.5610 0.7921 0.9179 
 2.25 0.4723 0.5916 0.4533 0.7218 0.9193 0.9775 
 2.5 0.5783 0.7106 0.5610 0.8271 0.9714 0.9938 
 2.75 0.6656 0.7996 0.6508 0.8969 0.9897 0.9981 
 3 0.7354 0.8594 0.7233 0.9366 0.9961 0.9994 
 3.5 0.8288 0.9280 0.8229 0.9752 0.9993 0.9999 
 4 0.8860 0.9603 0.8808 0.9888 0.9998 1.0000 
 4.5 0.9200 0.9765 0.9164 0.9944 0.9999 1.0000 
 5 0.9416 0.9853 0.9391 0.9970 1.0000 1.0000 
 6 0.9653 0.9931 0.9629 0.9988 1.0000 1.0000 
 7 0.9771 0.9962 0.9752 0.9994 1.0000 1.0000 
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Table 4.1B: The PTS values of the CV model when n = 7, m = 30, α = 0.01 at different levels of m1 

   

n = 7, m = 30 
   
   

m1  SRS RSS MRSS ERSS SRSS NRSS 

 d2 0.960999 1.033145 0.439712 1.459326 1.43675 0.98498 

 d3 0.284996 0.234545 0.130347 0.260965 0.187558 0.114736 

 

L 
 
δ 

 
3.846 
 
 

3.838 
 
 

3.787 
 
 

3.716 
 
 

4.106 
 
 

3.502 
 
 

0 1 0.0101 0.0102 0.0102 0.0103 0.0102 0.0104 

3 1.25 0.0304 0.0441 0.0313 0.0694 0.0887 0.2421 

 1.5 0.1399 0.2228 0.1481 0.4029 0.5478 0.8150 

 1.75 0.3426 0.5163 0.3551 0.7360 0.8691 0.9384 

 2 0.5414 0.7332 0.5558 0.8777 0.9413 0.9550 

 2.25 0.6915 0.8459 0.7030 0.9272 0.9547 0.9573 

 2.5 0.7868 0.8979 0.7938 0.9446 0.9570 0.9576 

 2.75 0.8439 0.9239 0.8489 0.9518 0.9575 0.9576 

 3 0.8800 0.9379 0.8840 0.9548 0.9576 0.9576 

 3.5 0.9167 0.9496 0.9191 0.9569 0.9576 0.9576 

 4 0.9336 0.9540 0.9353 0.9574 0.9576 0.9576 

 4.5 0.9426 0.9557 0.9433 0.9575 0.9576 0.9576 

 5 0.9475 0.9567 0.9476 0.9576 0.9576 0.9576 

 6 0.9524 0.9572 0.9525 0.9576 0.9576 0.9576 

  7 0.9545 0.9574 0.9546 0.9576 0.9576 0.9576 

6 1.25 0.0401 0.0574 0.0434 0.0888 0.1095 0.2961 

 1.5 0.1740 0.2705 0.1875 0.4699 0.6172 0.9074 

 1.75 0.4054 0.5906 0.4219 0.8303 0.9397 0.9920 

 2 0.6248 0.8181 0.6438 0.9545 0.9907 0.9977 

 2.25 0.7784 0.9236 0.7938 0.9856 0.9971 0.9985 

 2.5 0.8713 0.9663 0.8820 0.9938 0.9983 0.9987 

 2.75 0.9235 0.9830 0.9293 0.9965 0.9986 0.9987 

 3 0.9517 0.9900 0.9560 0.9976 0.9987 0.9988 

 3.5 0.9776 0.9953 0.9795 0.9983 0.9988 0.9988 

 4 0.9875 0.9971 0.9884 0.9986 0.9988 0.9988 
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 4.5 0.9918 0.9977 0.9924 0.9987 0.9988 0.9988 

 5 0.9940 0.9981 0.9945 0.9987 0.9988 0.9988 

 6 0.9961 0.9984 0.9964 0.9987 0.9988 0.9988 

  7 0.9970 0.9986 0.9972 0.9988 0.9988 0.9988 

9 1.25 0.0435 0.0594 0.0447 0.0883 0.1023 0.2796 

 1.5 0.1636 0.2491 0.1721 0.4252 0.5485 0.8932 

 1.75 0.3653 0.5341 0.3827 0.7931 0.9125 0.9951 

 2 0.5727 0.7714 0.5915 0.9462 0.9906 0.9996 

 2.25 0.7294 0.9015 0.7502 0.9867 0.9988 0.9999 

 2.5 0.8377 0.9584 0.8513 0.9963 0.9997 1.0000 

 2.75 0.9003 0.9816 0.9108 0.9987 0.9999 1.0000 

 3 0.9389 0.9913 0.9458 0.9994 0.9999 1.0000 

 3.5 0.9747 0.9975 0.9775 0.9998 1.0000 1.0000 

 4 0.9878 0.9990 0.9893 0.9999 1.0000 1.0000 

 4.5 0.9933 0.9995 0.9942 0.9999 1.0000 1.0000 

 5 0.9959 0.9997 0.9965 1.0000 1.0000 1.0000 

 6 0.9981 0.9998 0.9984 1.0000 1.0000 1.0000 

  7 0.9989 0.9999 0.9990 1.0000 1.0000 1.0000 

12 1.25 0.0373 0.0522 0.0400 0.0749 0.0858 0.2311 

 1.5 0.1364 0.2013 0.1446 0.3357 0.4237 0.8111 

 1.75 0.2869 0.4226 0.3000 0.6678 0.8079 0.9867 

 2 0.4573 0.6414 0.4761 0.8794 0.9633 0.9993 

 2.25 0.6069 0.7994 0.6283 0.9616 0.9947 0.9999 

 2.5 0.7204 0.8933 0.7426 0.9879 0.9992 1.0000 

 2.75 0.8048 0.9438 0.8229 0.9960 0.9999 1.0000 

 3 0.8621 0.9706 0.8781 0.9986 1.0000 1.0000 

 3.5 0.9306 0.9906 0.9391 0.9997 1.0000 1.0000 

 4 0.9618 0.9965 0.9666 0.9999 1.0000 1.0000 

 4.5 0.9776 0.9985 0.9808 1.0000 1.0000 1.0000 

 5 0.9859 0.9992 0.9878 1.0000 1.0000 1.0000 

 6 0.9933 0.9997 0.9944 1.0000 1.0000 1.0000 

 7 0.9962 0.9999 0.9968 1.0000 1.0000 1.0000 
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Table 4.1C: The PTS values of the CV model when n = 10, m = 30, α = 0.01 at different levels of m1 

   

n = 10, m = 30    

m1  SRS RSS MRSS ERSS SRSS NRSS 

 d2 0.974315 1.029015 0.361855 1.714042 1.383358 0.976043 

 d3 0.234549 0.175752 0.086924 0.204471 0.136237 0.076911 

 

L 
 
δ 

3.736 
 
 

3.882 
 
 

3.745 
 
 

3.652 
 
 

4.137 
 
 

3.499 
 
 

0 1 0.0101 0.0101 0.0101 0.0101 0.0104 0.0101 

3 1.25 0.0404 0.0627 0.0415 0.1854 0.1774 0.5562 

 1.5 0.2220 0.3778 0.2255 0.7646 0.8067 0.9451 

 1.75 0.5013 0.7309 0.5132 0.9299 0.9476 0.9574 

 2 0.7149 0.8815 0.7190 0.9536 0.9572 0.9576 

 2.25 0.8283 0.9304 0.8292 0.9570 0.9576 0.9576 

 2.5 0.8863 0.9467 0.8865 0.9575 0.9576 0.9576 

 2.75 0.9157 0.9530 0.9157 0.9576 0.9576 0.9576 

 3 0.9320 0.9555 0.9318 0.9576 0.9576 0.9576 

 3.5 0.9464 0.9572 0.9465 0.9576 0.9576 0.9576 

 4 0.9523 0.9575 0.9519 0.9576 0.9576 0.9576 

 4.5 0.9547 0.9576 0.9544 0.9576 0.9576 0.9576 

 5 0.9559 0.9576 0.9557 0.9576 0.9576 0.9576 

 6 0.9570 0.9576 0.9569 0.9576 0.9576 0.9576 

 7 0.9574 0.9576 0.9573 0.9576 0.9576 0.9576 

6 1.25 0.0529 0.0771 0.0546 0.2318 0.2106 0.6535 

 1.5 0.2712 0.4327 0.2645 0.8593 0.8828 0.9946 

 1.75 0.5849 0.8175 0.5827 0.9876 0.9940 0.9986 

 2 0.8047 0.9536 0.8071 0.9972 0.9984 0.9988 

 2.25 0.9129 0.9863 0.9143 0.9984 0.9987 0.9988 

 2.5 0.9583 0.9944 0.9595 0.9987 0.9988 0.9988 

 2.75 0.9784 0.9969 0.9788 0.9987 0.9988 0.9988 

 3 0.9874 0.9978 0.9875 0.9988 0.9988 0.9988 

 3.5 0.9942 0.9984 0.9941 0.9988 0.9988 0.9988 

 4 0.9964 0.9986 0.9964 0.9988 0.9988 0.9988 

 4.5 0.9974 0.9987 0.9973 0.9988 0.9988 0.9988 

 5 0.9978 0.9987 0.9978 0.9988 0.9988 0.9988 
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 6 0.9983 0.9988 0.9983 0.9988 0.9988 0.9988 

 7 0.9985 0.9988 0.9984 0.9988 0.9988 0.9988 

9 1.25 0.0557 0.0758 0.0556 0.2096 0.1891 0.6149 

 1.5 0.2514 0.3950 0.2457 0.8317 0.8373 0.9976 

 1.75 0.5357 0.7679 0.5300 0.9897 0.9948 0.9999 

 2 0.7659 0.9403 0.7640 0.9993 0.9998 1.0000 

 2.25 0.8925 0.9860 0.8925 0.9999 1.0000 1.0000 

 2.5 0.9514 0.9963 0.9524 0.9999 1.0000 1.0000 

 2.75 0.9773 0.9988 0.9776 1.0000 1.0000 1.0000 

 3 0.9885 0.9995 0.9887 1.0000 1.0000 1.0000 

 3.5 0.9963 0.9999 0.9964 1.0000 1.0000 1.0000 

 4 0.9985 0.9999 0.9985 1.0000 1.0000 1.0000 

 4.5 0.9992 1.0000 0.9992 1.0000 1.0000 1.0000 

 5 0.9996 1.0000 0.9995 1.0000 1.0000 1.0000 

 6 0.9998 1.0000 0.9998 1.0000 1.0000 1.0000 

 7 0.9999 1.0000 0.9999 1.0000 1.0000 1.0000 

12 1.25 0.0514 0.0699 0.0522 0.1679 0.1477 0.5103 

 1.5 0.2018 0.3067 0.1956 0.7228 0.7028 0.9936 

 1.75 0.4285 0.6309 0.4194 0.9706 0.9778 1.0000 

 2 0.6451 0.8594 0.6353 0.9981 0.9993 1.0000 

 2.25 0.7957 0.9549 0.7941 0.9998 1.0000 1.0000 

 2.5 0.8881 0.9865 0.8872 1.0000 1.0000 1.0000 

 2.75 0.9390 0.9957 0.9392 1.0000 1.0000 1.0000 

 3 0.9663 0.9985 0.9662 1.0000 1.0000 1.0000 

 3.5 0.9883 0.9998 0.9883 1.0000 1.0000 1.0000 

 4 0.9953 0.9999 0.9953 1.0000 1.0000 1.0000 

 4.5 0.9978 1.0000 0.9978 1.0000 1.0000 1.0000 

 5 0.9988 1.0000 0.9988 1.0000 1.0000 1.0000 

 6 0.9996 1.0000 0.9996 1.0000 1.0000 1.0000 

 7 0.9998 1.0000 0.9998 1.0000 1.0000 1.0000 
 
 
 

Comparison of the Proposed Charts 

We present the comparisons of the proposed charts. 
A chart with a higher probability to signal (PTS) 
value is considered better than others. We compare 
the performance of the proposed charts based on the 
various ranked set sampling schemes (RSS, MRSS, 

ERSS, SRSS and NRSS) with the classical CV chart 
based on simple random sampling (SRS).  The PTS 
of each univariate CV chart is plotted against shift δ. 
The PTS comparison of the charts is shown in figures 
4.3A to 4.3C for the values of n (5, 7 and 10), m =30, 
and α=0.01 at different levels of m1. As clearly seen 
in the figures 4.3A - 4.3C, the proposed charts 
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predominantly performed better than the classical CV 
chart. The PTS values of all the charts approaches 1, 

as the size of the shift increases (Figure 4.3A – 
4.3C). 

 
 
 

 

Figure 4.3A: PTS comparison of the univariate CV charts, when n=5, m =30, and α=0.01 at different 
levels of m1 

 

 
Figure 4.3B: PTS comparison of the univariate CV charts, when n=7, m =30, and α=0.01 at different 
levels of m1 
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Figure 4.3C: PTS comparison of the univariate CV charts, when n=10, m =30, and α=0.01 at different 
levels of m1 

 

 

 

VII. INDUSTRIAL APPLICATION 

This section provides an example based on real data 
to better illustrate the significance and application of 
proposed CV control charts designed under different 
sampling schemes (i.e., RSS, MRSS, ERSS, SRSS 
and NRSS). The data set considered here is the non-
isothermal Continuous Stirred Tank Chemical 
Reactor (CSTR) obtained from Yoon and MacGregor 
(2001) and also used by Mahmood and Abbasi 
(2021). The outlet temperature (X) variable is 
selected as a study variable from the CSTR dataset. 

We obtained m = 40 ranked set samples of size n = 5 
considering different perfect ranked set schemes.  
To check the constancy of the proposed CV control 
charts statistics, we plotted the means under ranked 
set schemes against the square of the computed CV 
statistics of SRS, RSS, MRSS, ERSS, SRSS and 
NRSS of different sample subgroups. The results in 
Figure 4.4A show that the plotted CV statistics based 
on SRS, RSS, MRSS, and ERSS against ��  SRS, 
�� RSS , ��  MRSS , and ��   ERSS , respectively, are 
constant.  
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Figure 4.4A: A chart showing CV constancy at different ranked set sampling schemes 

 
 
As shown in Figure 4.4A, there is no apparent correlation between the estimated CV statistics with their 
respective averages. Hence, the idea of using the CV charts is justified. The hypothesis of constant CV is further 
tested by running a regression model with the null hypothesis that CV statistics are constant with respect to their 
respective means.  The regression supports the null hypothesis as the p-value is greater than 0.05 level of 
significance.  
 
 
Response: CV_SRS 
                    Df             Sum Sq       Mean Sq               F value         Pr(>F) 
mean_SRS      1  1.5000e-09  1.5230e-09   0.0154         0.9019 
Residuals  38  3.7561e-06  9.8846e-08  
 
Response: CV_RSS 
            Df      Sum Sq    Mean Sq  F value         Pr(>F) 
mean_RSS     1  1.1100e-08  1.113e-08   0.0983        0.7556 
Residuals  38  4.3014e-06  1.132e-07  
 
Response: CV_MRSS 
            Df      Sum Sq     Mean Sq   F value          Pr(>F) 
mean_MRSS        1  8.0000e-10  7.6800e-10   0.0048         0.9448 
Residuals      38  6.0182e-06  1.5837e-07   
 
Response: CV_ERSS 
            Df      Sum Sq      Mean Sq   F value         Pr(>F) 
mean_ERSS      1  0.0000e+00  1.0000e-12        0         0.9979 
Residuals     38  7.0213e-06  1.8477e-07 
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Response: CV_SRSS 

            Df    Sum Sq     Mean Sq  F value          Pr(>F) 
mean_SRSS   1  1.00e-10  7.3000e-11    5e-04            0.983 
Residuals  38  6.05e-06  1.5921e-07 
 
Response: CV_NRSS 
            Df      Sum Sq     Mean Sq  F value         Pr(>F) 
mean_NRSS   1  1.2000e-09  1.1710e-09   0.0103        0.9196 
Residuals  38  4.3114e-06  1.1346e-07  
 
 
To investigate the detection ability of the charts, a shift of size δ = 1.5 was applied to the last 20 samples. The 
results given in Figure 4.4B show that the CV control charts based on SRSS and NRSS detect more out-of-
control samples than the other charts. This indicates that the CV control chart based on NRSS and SRSS offer 
the best detection ability. This superiority of the NRSS and SRSS based CV chart for real data validates the 
findings in the simulation study. 
 
 

 
 
Figure 4.4B: A univariate coefficient of variation control chart based on different ranked set sampling 
schemes 
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VIII. CONCLUSION AND 
RECOMMENDATIONS 
 In this study, a new set of CV control 
charts, designed under different rank set sampling 
schemes; RSS, MRSS, ERSS, SRSS and NRSS were 
proposed. The CV control charts were evaluated and 
compared with each other. Our simulation results 
showed that CV control charts, based on SRSS and 
NRSS schemes, outperformed the SRS, RSS, ERSS 
and MRSS CV control charts. The CV control chart 
based on SRSS and NRSS schemes are the best 
performing CV chart for detecting shifts in process 
CV. Based on the findings and conclusion of this 
study, the use of NRSS and SRSS-based CV chart in 
phase I of SPC is performing best for the detection of 
process variability. This study will help quality 
practitioners to choose an efficient coefficient of 
variation CV control chart in phase I. Further 
research can be carried out on univariate coefficient 
of variation CV control chart based on different 
ranked set sampling schemes in phase II of statistical 
process control (SPC).  
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