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Abstract: Nowadays conventional well test analyses, such as straight line or type curve are used to estimate 
reservoir parameters. There are some challenges and problems in their procedure. Conventional well test methods do 
not provide such data. In addition, analyzing of transient pressure well test data contaminated with disturbance and 
noise with conventional methods is often difficult. Recent reservoir management methods and uncertainty analyses 
require probability distribution function of reservoir properties in each time step. Moreover the test duration maybe 
short or missing data and some assumptions are used to derive the mathematical formulations. For this reasons, we 
move on a new and more robust formulation of well test data analysis to eliminate all these problems. The ensemble 
Kalman filter (EnKF) is a sequential data assimilation base on Monte Carlo approach, in which an ensemble of 
models, instead of only one model as in traditional history matching methods and other Kalman filter related 
methods, is used. In this paper we use Ensemble Kalman Filter methods, for the first time, to interpret oil well test 
data and estimate unknown parameters in an on-line approach. In this method we convert the well test problem in to 
state space framework to use system identification procedures (in time-domain) to find solution of our stochastic 
problem. The Kalman filter procedure for integration consists of two steps: a forecast step and an update step. 
Mathematical formulations and measurement data are used in the forecast step and updating respectively. A 
synthetic example is used to examine the validity and effectiveness of the method. We made use of a real well test 
data with a lot of noise and missed data as well. For any example, first pure wellbore storage region and middle time 
region are identified then after receiving any measurement data, both dynamic variables, such as pressure and static 
variables as permeability, skin factor, wellbore storage coefficient and distance from fault with their probability 
density function (PDF) and standard deviation are updated. The results show that the Ensemble Kalman Filter 
method can be used as a powerful tools for well test analysis.  
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1. Introduction  
The Kalman Filter (Kalman, 1960) is the most 

common filtering technique for linear Gaussian 
models. The Kalman filter has historically been the 
most widely applied method for assimilating new 
measurements to continuously update the estimate of 
state variables. 

 Kalman filters have occasionally been applied to 
the problem of estimating values of petroleum model 
variables (Eisenmann et al., 1994; Corser et al., 2000), 
but they are most appropriate when the problems are 
characterized by relatively small numbers of variables 
and when the variables to be estimated are linearly 
related to the observations. 

 In essence, the Kalman filter state estimate is a 
weighted linear combination of the background 
(forecast) state and observations, where the weights 

depend on the uncertainties in model predictions and 
observations. For smaller observation errors (relative to 
the prediction errors) the analysis states are drawn 
closer toward the observation whereas for very 
uncertain observations model predictions are weighted 
more.  

Most data assimilation problems in petroleum 
reservoir engineering are highly non-linear and are 
characterized by many variables, often two or more 
variables. Application to non-linear problems was at 
least partially solved by the development of the 
extended Kalman filter.  However, it did not solve the 
critical problem with non-linear unstable dynamics, 
where it leads to a linear instability in the error 
covariance evolution (Evensen, 1994). The problem of 
weather forecasting is in many respects similar to the 
problem of predicting future petroleum reservoir 
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performance. The economic impact of inaccurate 
predictions is substantial in both cases, as is the 
difficulty of assimilating very large data sets and 
updating very large numerical models.  And it does not 
provide a practical solution for highly nonlinear 
problems.  Ensemble type filters were developed to 
remove linear error propagation constraint and avoid 
the computational cost associated with covariance 
propagation. Evensen (Evensen,1994)  proposed an 
ensemble version of the Kalman filter, the Ensemble 
Kalman Filter (EnKF), which can be used with any 
nonlinear state-space model.  

The EnKF has gained popularity in several large 
scale applications such as oceanography, metrology, 
and hydrology (Houtekamer ,et al.1998 ; Reichle ,et 
al.2002). However, its application to reservoir history 
matching has only recently been considered. In the first 
use of EnKF in reservoir modeling, Ncevdal et al. 
(Navdal ,et al. 2002) updated near-well reservoir 
models by adjusting the permeability field. They found 
that early measurements were more important in tuning 
the permeability field than the later ones. Lorentzen et 
al. (Lorentzen , et al. 2003) successfully used EnKF 
with a two-phase flow model to tune model parameters 
in underbalanced drilling. The ensemble Kalman filter 
is an attractive option for properties of reservoir 
estimation in real-time reservoir control applications. It 
is easy to implement, provides considerable flexibility 
for describing geological heterogeneity, and supplies 
valuable information about prediction uncertainty. 

 
1. Ensemble Kalman filter   

Kalman filter based methods perform sequentially 
and only update the model with the latest available 
data. An assimilation step is implemented to modify 
the model parameters, based on the difference between 
reservoir simulation responses and the data from the 
field. The updated model is then used to run forward 
until reaching the next measurement time. 

Different from the general Kalman filter, the EnKF 
runs multiple simulation models independently, 
assimilates only the new measurements, and updates 
the multiple models simultaneously. After each 
updating, the EnKF describes model parameters 
through two statistical properties: mean and variance, 
the first representing the most probable model and the 
second depicting the change range, i.e., uncertainty. 
Aside from the initial sampling, the EnKF consists of 
two steps for each time-recursive process: a forecasting 
step based on current state variables (which solves the 
flow equations with current static and dynamic 
parameters) and an assimilation step (which updates 
the state variables).  

The forecast step for the EnKF propagates the state 
vectors forward in time from a previous measurement 
time, using the estimates of the variables conditional to 
all the observed data up that time, to current 
measurement time. 
��

�

= �(����
� )

+ ����                                                                                                                1  
Where � represents the reservoir flow equations. It 

relates the state at the previous time step � − 1 to the 
state at the current time step � . It includes the zero-
mean process noise �� and covariance Qk, i.e. 
E[����

�] = Qk . 
We define ��

� (note the “p”) to be our a priori state 
estimate at step k given knowledge of the process prior 
to step k, and x�

��� to be our a posteriori state estimate 
at step k-1 given measurement ����.The relationship 
between the perturbed observation and the true state 
vector can be written as:  
��

= ���

+ ��                                                                                                                            2
where  ��  is the perturbation added to the noisy 

measured data; �� is Gaussian distributions with mean 
0 and covariance R,k, i.e. E[����

�]=R,k; the process 
noise �� and perturbation noise �� are uncorrelated in 
time (white), i.e. E[����

�] =0  for all k. In practice, 
the process noise covariance Qk and measurement 
noise covariance Rk matrices might change with each 
time step or measurement, however here we assume 
they are constant. 

Where H is an operator matrix or row vector, 
depending on the number of observations, which 
relates the state vector to theoretical data. H is a trivial 
matrix whose elements are only ones or zeroes. We can 
always arrange it as: 
H = [0 | I]            3 

The mean vector of the variables in the state vectors 
is computed from the following equation: 

��
����

= � ��
�

�

��

���

                                                                             4 

The matrix L is defined as: 
 

��
�

= ���
�

1 − �� 
�����    ��

�
2 − �� 

�����   …     ��
�

�� − �� 
������                5 

The matrix ��
�

is an approximation to the model 
error covariance matrix, that is estimated from the 
ensemble at any time using the standard statistical 
formula:  
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                                                                6 

 
The weighting matrix is the Kalman gain matrix 

and denoted by ��. 
��

= ��
�

��(���
�

��

+ ��)��                                                                              7 
 

In deriving the equations for the updating step in 
EnKF, we begin with the goal of finding an equation 
that computes an a posteriori state estimate ��

�  as a 
combination of a priori ��

�
 estimate and a weighted 

difference between an actual measurement �� and a 
measurement prediction ���

�
 as shown below in 

equation (8).  
��

�

= ��
�

+ �����

− ���
�

�                                                                               8 
Here, �� is perturbed observation. It means that a 

random error with mean zero and a covariance matrix 
of measurement error (��) is added to real observation 
to avoid Kalman gain collapse due to sampling error.  

The difference ��� − ���
�

�   in equation (8) is 
called the measurement innovation, or the residual. The 
residual reflects the discrepancy between the predicted 
measurement ���

�
and the actual measurement ��. A 

residual of zero means that the two are in complete 
agreement. 

Finally, The updated error covariance matrix ��
�, of 

the model can be computed along the same lines as ��
�
, 

the model error covariance matrix after the analysis 
step is: 
 
��

� = (� − ���)��
�

                                                            9 
The above is an illustration of the two-step 

procedure at one measurement time. 
 

1. General mathematical formulation in well 
testing 
 

In this section, a brief overview of the governing 
equations in reservoir simulation and well testing are 
presented (Bourdet , 2002 ; Horne,1995). These 
equations will be referred as dynamic forward models 
in describing the data assimilation algorithm. The 
equation governing the flow is normally written in 
terms of the pressure. Since we assume radial 
symmetry, the pressure P depends only on the radius r 
and time t, the equation is as following:  
 

�

�

�

��
�r

��

��
� =

�

�

��

��
                                                                                  10              

                   
Here, �  is diffusivity constant and is equal to 

� = 0.0002637�/���  and r (ft), P (psi), � (fraction), 
� (cp), c (psi-1), k (md), t (hr) are the radius from well 
center, reservoir pressure, porosity, total 
compressibility, permeability and time, respectively.  

This is the so-called diffusivity equation and it is 
considered one of the most important mathematical 
expressions in petroleum engineering. This equation is 
derived under the assumption that the permeability and 
viscosity are constant over pressure, time and distance 
ranges. The fluid is assumed to be slightly 

compressible, like, say, oil. The notation 
��

��
 and 

��

��
 

means partial derivative with respect to r and t 
respectively. 

For infinite cylindrical reservoir we assume that (1) 
a well produces at a constant flow rate q; (2) the well 
has zero radius; (3) the reservoir is at uniform pressure 
Pi, before production begins; and (4) the well drains an 
infinite area (i.e. that � → �� as  ,� → ∞). The solution 
of the diffusivity equation is given by the expression:  
 

�� − ��� = −70.6
���

��
��� �−

���������
�

��
� −

2�                                                                                 11      

 
 Here, �� ��� ���  are the in initial pressure and 

well flowing pressure in psi, q is flow rate of oil 
(stb/day), B is oil formation volume factor (bbl/stb), s 
is skin factor and h is reservoir thickness. 

The Ei function or exponential integral is: 
 

��(−�)

= − �
���

�

�

�

��                                                             3 

 The most important parameter in early time is 
wellbore storage coefficient (cs), when the wellbore is 
shut in at the surface, the fluid will continue to flow 
into or out of the wellbore until pressure is equalized 
between the wellbore and formation. It is calculated 
from the early time data we use equation (12) to 
estimate wellbore storage coefficient. 

�� =
��

24

∆�

∆�
                                                                  12 

The important case in many reservoirs at latter time 
is appearance of a fault. Superposition helps us to 
derive a general equation that is a function of time and 
distance from well to fault. The equation describing a 
reservoir with fault is: 
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�� − ��� = −70.6
���

�ℎ
�ln

1688������
�

��

+ �� �−
948����(2�)�

��
�

− 2��                                                13 

From the above equation, L (distance from well to 
the fault) is estimated. 

 
1.1. Convert the mathematical formulation to 

the state space model 
To solve the problem here with EnKF theory, we 

should at first convert the well test formulations into a 
state-space model. State space model is a 
representation framework for dynamic of system. To 
do so, it is required that dynamic process model and 
measurements model be formulated for given problem. 

We define state of system �� = �����  be well 

flowing pressure and system parameter vector � =
[����������]� .  Here, T represents transpose of 
vector system dynamic model in state space form can 
be displayed as ( Lewis ,et al. 2006) : 
 
��

= ��(����, �)
+ ��                                                                                14 

��  shows nonlinear relationship between well 
flowing pressure and unknown parameters and is a 
function of time. We will assume that due to some 
assumption made during derivation of equations, there 
is certainly some error associated with model 
dynamics. So we show that error with ��  which is a 
additive Gaussian noise with mean zero and variance 
��

� described with a normal probability distribution of 
�(0, ��

� ).  We suppose that through time, our 
observation, ��, will be bottomhole pressure and it will 
be measured with some interval period. Now, we are 
able to present the measurement model for state space 
representation as: 
��

= ��

+ ��                                                                                 15 
As, it is clear, any measurement is noisy and it is 

included here through �� which is a additive Gaussian 
noise with mean zero and variance  ��

� distributed with 
a normal probability distribution of �(0, ��

� ) 
equations (14) and (15) define our state space model, 
cooperatively. 

These equations are the core for EnKF 
implementation. The aim, here, is to utilize the concept 
of state space modeling to estimate parameter vector of 
the system. To do so, we use state space augmentation 
procedure known as self-organizing state space model 

to compute state and parameters of system 
simultaneously. At first we should modify state vector 

of system as �� = ����, ��
�

  = ����, �, ��
�
  to embed 

parameter evolution through time. It should be noted 
that parameters are constant and not vary with time but 
we impose time dependency into them to provide their 
variability through time and during the identification 
period. Thus, following equations are added to system 
dynamic model: 
�� = ���� + ��                                                                  16 
��

= ����

+ ��                                                                                     17 
��

= ����

+ ��                                                                                    18 
��

= ����

+ ��                                                                                    19 
Where ��  , �� ,  ��  and  ��  are some noise with 

decreasing variance over time to model the 
uncertainties therein .  
 

2. The general algorithm  
The procedure in the following is intended to 

provide a general idea of the basic computations and 
the reasons for computational efficiency of the EnKF 
algorithm. The general algorithm is summarized below: 
 
Initialization Step: 
1. Sets of N realizations from prior knowledge for any 
unknown parameters are generated. 

Forward Step: 
2. Each realization is replaced in the dynamic model 
equations (10 to 13) for calculations of the predicted 
realizations ��

� , the superscript “p” denotes the prior. 
��

�

= [�1  �2 �3 �4 �5 , … , ���]�
�

                                  20 
Assimilation Step: 
3. The mean of two previous steps are calculated from 
equation (4).  
4. The matrixes L and ��

�
 are computed from equations 

(5, 6), respectively.    
5. The Kalman gain matrix is computed from equations 
(7). 
6. By arriving the new observation ��, each realization 
and state error covariance matrix are updated from 
equations (8, 9), respectively.  
7. If there are additional data, return to Step 2 with 
initial guess from previous step. 

The interval between two consecutive measurement 
times might be as short as a few seconds, such as data 
from permanent gauges, or as long as hours, days. The 
two-step procedure is repeated at each measurement 

Initial 
Ensemble  
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time till the last measurements are assimilated. Figure 1 illustrates the basic workflow chart of the EnKF.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Basic workflow chart of the EnKF. 
 
 

3. Numerical Implementation of EnKF 
 

5.1 Synthetic well test data 
This section is used for validation of the method. In the examples we present, all measurements are generated 

synthetically by running the model with a given numerical values in Table 1, and adding noise to the obtained values 
to generate measurements. 

This method calculates parameters step by step. If the next data is very different from the previous data or the 
noise of data is increased by the time, these properties will not converge and deviate from true value. From this point 
of view, we can guess the time that the pressure response reaches to the external boundary or the regime changes or 
there may be some problems about observational.  

In this research, first we should identify the regions of earlier time, middle time and late time for estimation of 
wellbore storage coefficient, skin factor, permeability and distance from well to the fault. We estimated these 
properties from this synthetic draw down well test data and then compared with their true values. Of course, some 
noise are added to synthetic well test data to approach to the real situation. 

 
 

Table 1: Parameters used in the equations for synthetic oil well test data generation. 
Parameters Value Parameters Value 

Initial Pressure psi 5000 Reservoir Thickness (ft) 30 
Oil Rate (STB/D) 400 Formation Volume Factor (  Bo  ) RB/STB 1.25 

porosity 0.2 Wellbore Radius (ft) 0.24 
Compressibility (psi-1) 12e-6 Oil Viscosity (cp) 1.5 

Skin factor 8 Permeability (md) 80 
Wellbore storage coefficient (bbl/psi) 0.04 Distance from well to the fault (ft) 1210 

 
 

Calculation of the wellbore storage coefficient needs some of data which are lied on straight line with unit slope 
in log-log plot. In particular, they should be after opening of well. 

Wellbore storage is normally assumed to be constant during a test and, in practice, this assumption is often 
reasonable. However, there are numerous situations where wellbore storage is not constant, passing of earlier time to 
middle time is one of them. From this point of view, the end of pure wellbore storage can be determined. In Figure 
2, 100 measurement data were assimilated. This figure shows that the ensemble mean wellbore storage is 
approaching to a constant value (true value 0.04 bbl/psi) and the model perfectly matches observation data from step 
1 to 40. After 40th time step model and observation data deviate from each other highly and mean wellbore storage 
increase with time. It can arguably be concluded from the trend that end of pure wellbore storage is time step 40. 
 
 

Forward integration 

Forecast 
Ensemble  

Measurement 
data 

EnKF analysis 

Update 
Ensemble  

Measurement 
data 
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Figure 2: Ensemble mean wellbore storage through time (left) and ensemble mean pressure with observation 
pressure through time (right). 

 
End of middle time is determined by the same way. 

Permeability and skin factor are estimated using middle 
time region. After middle time we expect to see the 
effect of boundary. Figure 3 shows if 120 of data are 
used to estimate the permeability, from step 1 to 60, 
ensemble mean permeability is trying to approach the 

constant values (80md) and model and observation data 
are matching with each other. After time step 60 that 
fault effect has been observed, model and observation 
data deviate from each other highly and ensemble mean 
permeability decrease with time, from this trend we can 
understand that end of middle time is time step 60. 

 
 

 
 

Figure 3: Ensemble mean permeability through time (left) and ensemble mean pressure with observation pressure 
through time (right). 
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Now, the parameters of its region time can be 

calculated. Figure 4 shows 1000 initial realizations 
with uniform distribution are used for filter 
implementation. More mathematically, it can be said 
that probability of wellbore storage, permeability, skin 

factor and distance from well to the fault shown in 
figure 4 is nearly for all data the above-mentioned 
range. This initial guesses tend towards closure when a 
new measurement arrives. 

 
 

 
 

  
 

Figure 4:  Histogram of initial realization without data assimilation. 
 

 
Figure 5 shows probability density function of each parameter, after assimilation of second measurement. 

Comparing figure 5 and 4, it can be said that that EnKF is trying to modify our initial belief into a new probability 
density function (PDF), Being closer than the previous one. 
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Figure 5:  Histogram of realizations after assimilation of second measurement. 
 

 
 
 

Figure 6 shows the histograms of each parameter 
after assimilation of the last measurement data. 
Comparison of figure 6 and 4 shows that range of data 
for wellbore storage coefficient, skin factor, 
permeability and fault are reduced from [0-0.2] to 

[0.0395-0.043] and [0-10] to [7.85-8.2] and [0-100] to 
[79.2-81.5] and [200-5000] to [1210-1213] 
respectively. Table 2 represent the summarized of final 
results from synthetic well test data using ensemble 
Kaman filter with their details. 
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Figure 6:  Histogram of final assimilation measurement. 
 
 

Table 2: Summary of results from synthetic well test data using ensemble Kaman filter. 
Unknown Parameter True value Mean final range Rk Final STD  
Wellbore storage coefficient (bbl/psi) 0.04 0.040832 [0.0395-0.043] 0.1 0.00064478 
Permeability  (md) 80 80.1159 [79.2-81.5] 4 0.21836 
Skin factor 8 8.0266 [7.85-8.2] 4 0.042079 
Distance from well to fault (ft) 1210 1210.9972 [1210-1213] 1 1.1709 
 
 

 
istory of ensemble mean parameters through time 

are shown in Figure 7. From this figure the 
determination of unknown parameters with EnKF is 
feasible and the final values are very close to true 

values used in synthetic data generation. True values of 
unknown parameters can be obtained from mean of 
ensemble. 
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Figure 7:  History of ensemble mean parameters through time. 

 
 
 
 
 
5.2 Real Well test Data  

In this section to see the effectiveness of 
EnKF, we use a real drawdown well test data with 
much noise and several time periods of this test are 
missed. Figure 8 shows the plot of this real well test 

data. The test lasted for 600 hrs. We do not have any 
data between 56-100 hr and 200-300 hr. In the 
implementation of this test with EnKF, Figure 4 was 
used to make the initial guesses. 
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Figure 8:   Plot of bottom-hole pressure versus time for a real well test. 

 
Figure 9 shows that only 12 points are in earlier time and after passing 5 time steps wellbore storage 

tries to close to a true value which is  0.023 (bbl/psi). After time step 12 wellbore storage deviate from true 
value and increase with time step. 
 

 
Figure 9:  Ensemble mean of wellbore storage through time for real well test. 
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Figure 10 shows the ensemble mean 

unknown parameters through time. This figure 
shows at early observed data filter cannot 
obtain much information from measurement 
because initial ensemble mean is far from the 
real value and the well test data have more 
noise. After passing some time steps ensemble 
mean converges to the true value. Trend of 
this figure for permeability and skin is similar. 

Figure 11 shows the histograms of each 
parameter after assimilation of the last 
measurement data. This figure shows the 
probability distribution of skin and 
permeability are almost similar.in addition, 
Figure 10 shows that their trends are similar. 
Details of results after final assimilation of 
measurement are shown in table 3.  

  
 
 

 
Figure 10:  Ensemble mean of permeability (left) and skin factor (right) through time for real well test. 

 

 
Figure 11: Historam of releazations of permeability (left) and skin factor (right) after assimilation final measurment. 
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Table 3: Summary of results from real well test data using ensemble Kaman filter 
Unknown parameters True value Mean final range Rk STD  
Wellbore storage coefficient (bbl/psi) 0.023 0.022845 [0.02-0.025] 1 0.00071 
Permeability  (md) 48 47.8638 [47.5-48.5] 2 0.44413 
Skin factor 5.37 5.2788 [5.2-5.5] 2 0.11762 

 
 
 

4. Discussion 
We found that the EnKF is suitable for data from 

time series when the changes made to the model 
parameters and state variables are both small at every 
measurement time. However, when the changes in the 
variables are large or numbers of variable is high, the 
EnKF may provide invalid solutions because only 
pressure versus time is the observation vector and it is 
not usually enough. We need other observation vectors 
to decrease the effect of bottom-hole pressure. 

The performance of the EnKF depends on the 
number of realizations and distribution of these 
realizations at the first time step. 

The noise is other important case in the algorithm 
that contains observational data, which is expressed by 
��. This �� is standard deviation of added noise to the 
observation data and must change by the time steps, but 
we assumed it constant. 

The results with a relatively small number of 
ensemble models are remarkably good. It seems that 
larger ensemble will be required for problems with 
larger amounts of data to be assimilated. At this time, 
we do not know if the results might begin to deteriorate 
if the assimilation period is much longer or if the 
models are much larger. We also find from both 
examples that with the arrival of significant data at 
some measurement times, the error in the estimates of 
variables may grow after assimilating the data. This 
might be caused by the big changes in the state 
variables where the formulation used in the EnKF 
update formula is not acceptable. 

History matching of petroleum reservoirs is a 
difficult task, and is very CPU demanding because of 
the reservoir simulator, which must be run a large 
number of times. Use of the Ensemble Kalman filter 
for history matching allows for parallel reservoir 

simulator runs, which save time. The Ensemble 
Kalman filter is tested and further developed for history 
matching by several people, and the results are 
promising. But still, much work can be done in this 
field. 

 
 
5. Conclutions 

We have demonstrated that the ensemble Kalman 
filter is an algorithm that is well suited for producing 
forecasts with uncertainty. It is observed that the 
forecasts are improved after assimilation of production 
data. For the first time, ensemble Kalman filter is used 
to identify unknown parameters and region time from 
the well test data. 

The data assimilation algorithms were tested using 
synthetic reservoirs. Data was generated with reservoir 
models and noise was added. Real reservoir models 
which consists of a lot of noise and missed data are 
used to reconstruct the original parameters. We have 
shown that the ensemble mean of estimated static 
variables (the ensemble mean of permeability, skin 
factor and wellbore storage coefficient converge to the 
true values just after arriving a few points. 

The results have been associated with the 
histograms incorporating the range of value with a 
specified probability, we have concluded that any value 
of final histogram could be a result, but with a 
specified probability.  While in conventional method a 
constant value is represented a parameter. 

We have observed in the synthetic and real well test 
when as we were calculating the two parameters 
simultaneously, their behavior is similar at each time 
step. This means that if permeability changes in every 
time step, skin changes at the same time step.  
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6. Nomenclature 

 
Ei : Exponential integral 
EKF : Extended Kalman Filter 
EnKF : Ensemble Kalman Filter 
��  : Nonlinear relationship 
H : Measurement matrix 
i : Index (members of ensemble ) 
K : Kalman gain matrix 
Ne : Number ensemble members 
P : Covariance matrix of model uncertainty 
L : Difference matrix 
x : State vector 
y : Measurement data  
 <Greek Symbols >  

�  : System parameter vector 
��   : Additive Gaussian noise 
��

�  : Variance additive Gaussian noise 
�  : Viscosity  
��  : Additive Gaussian noise 
��

�    : Variance additive Gaussian noise 
<Subscripts>   
t : Time step index 
k : Time step index 
 <Superscripts >  
u : updated state, updated, meaning that the values are from the assimilation step 
p : Predicted state, prior, meaning that the values are from the forward step 
T  : Transpose 
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