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Abstract: In this paper the Enhanced Auto-associative Neural Network (E-AANN) algorithm is used for sensor 
fault diagnosis. First Auto-associative neural network (AANN) is trained and is tested using healthy data and then is 
used as the main body of the E-AANN algorithm. The Algorithm is tested for faulty data. Squared Prediction Error 
(SPE) as monitoring index is used for monitoring the process condition. When a fault is occurred, the upper control 
limit of SPE is exceeded which show that a fault has been occurred. Then the E-AANN is applied which isolate and 
also reconstruct the faulty sensor. This E-AANN is used for single faulty sensor condition. The method is applied to 
a Continues Stirred Tank Heater (CSTH). 
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1. Introduction 

          Process monitoring means to monitor process 
variations and alert when a Fault is occurred. 
Actually process monitoring is used to assure that a 
process meets a specific condition. In chemical 
industry because of complexity, driving a process 
model is hard and maybe impossible, while there is 
huge information from sensor measurements which is 
prone for statistical process monitoring (SPM) which 
is the most common method for multivariate process 
monitoring [5]. Processes which are characterized by 
multiple variables and can be correlated and 
redundant are called multivariate processes, Often 
chemical processes are multivariate and therefor the 
conventional univariate SPC charts may do not 
satisfy the multivariate statistical process control 
(MSPC) and monitoring, therefor some methods 
based on MSPC may be used. The procedures are the 
same: first an appropriate reference is selected in a 
manner that defines the normal operating condition 
(NOC) and then when a measurement is out-of-
control, it exceeds the NOC in one or more univariate 
charts [2, 7]. T2 and Q are commonly used fault 
detection indices. 

Usually the MSPC is based on PCA or partial 
least square (PLS). MSPC based PCA is used when 
input or reduces the chance to miss an out-of-control 
situation due to the correlation in the original data 
[2]. The main advantage of MSPC compared to SPC 
is that the correlation between the variables is 
considered which output variables are available but 
PLS is used when both input and output variables are 

available. Both PLS and PCA are used for linear 
processes, however most chemical processes are 
nonlinear and there for nonlinear extensions have 
been derived. The best known approach is PCA and 
its extensions [2]. The nonlinear principal component 
analysis (NLPCA) is the more common method 
which is used in statistical process monitoring. To 
trace the past, the NLPCA is achieved using different 
methods such as Input training neural network (IT-
NN), Auto-associative neural network (AANN), and 
principal curves [1]. The NLPCA based on AANN is 
the most common approach. The difference between 
linear PCA and nonlinear PCA is that mapping 
function of linear PCA is linear while that of NLPCA 
is nonlinear [1]. The first step in fault diagnosis is 
fault detection which is achieved by finding fault 
indexes (T2 and Q) and their control limits using 
residuals generated by original data and the output of 
the AANN. The second step is fault isolation which 
is achieved using some methods such as: contribution 
plots, reconstruction based approach, classification 
based approach [3]. The process monitoring is 
categorized in monitoring the Sensor faults, process 
faults and actuator faults. Here we focus on sensor 
faults. 

In this paper, we explain the basic theory 
and structure of AANN being used as a nonlinear 
PCA method and its application to sensor fault 
detection and isolation. We train AANN with healthy 
data and test it with faulty data and then the fault is 
detected, using generated residuals, after that 
Enhanced AANN (E-AANN) is applied to isolate the 
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faulty sensor. The above mentioned approach is 
applied to a CSTH to monitor its variations, when is 
under static mode and one of its sensors is 
contaminated with drift (sensor error occurs 
gradually) and offset (sensor error occurs abruptly) 
fault. 

In the next section the structure of AANN is 
explained. Section 3 explains process monitoring and 
fault detection using NLPCA. Enhanced AANN (E-
AANN) and fault isolation using E-AANN is 
explained in section 4. In section 5, a CSTH is 

explained as case study. Results and discussions are 
in section 6 and conclusion is in section 7.  
 

2. Auto-Associative Neural Network 
           Auto-Associative neural network (AANN) is a 
kind of bottle neck neural networks which concludes 
five layers (input layer, mapping layer, bottle neck 
layer, de-mapping layer, output layer). Kramer 
[9],presented a nonlinear principal component 
analysis method based on AANN. The architecture of 
the neural network used in his method is shown in 
Figure 1.  

 

 
Figure 1) Architecture of AANN, [6] 

 
 
The first hidden layer for mapping and the third one for de-mapping are based on a nonlinear transfer 

function (sigmoid). The second hidden layer inside a network is called a bottleneck layer. In the first and third 
hidden layers, the transfer function is the sigmoid function defined as follows:  

 σ(x) =
�

�����
     

 
The output of a layer k is the input of the layer k+1. The output is an estimation of input. 

The number of nodes in mapping and de-mapping layers are determined by try and error and number of nodes in 
bottleneck layer is determined using some methods such as CPV (Cumulative Percent Variance). The number of 
nodes in input and output layers are equal and are the same as number of variables measured [10]. Actually AANN 
is a black box which models the process using healthy data measured by sensors S1, S2,… Sn . 
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Figure 2) AANN process model, [6] 

 
3. Fault diagnosis 

            In NLPCA, after determining the AANN 
structure (discussed in section 2), it is trained using 
normalized healthy data and Q control limit is 
calculated. Then normalized faulty data is presented 
to AANN and Q index is calculated using AANN 
output. If one of the sensors is faulty then control 
limit of Q is exceeded and the fault is detected. 

When a fault is detected it should be isolated 
(localized). For PCA usually contribution plot is 
applied, but for NLPCA due to correlation between 
variables and the fact that AANN captures correlation 
into its weight, it is not reliable. This means that 
when we have a faulty measurement in one of the 
sensors, all of the output values would be distorted 
[6]. However it depends on training algorithm and 
training performance, so contribution plot is not a 
confident isolation method. In the following sections 
a reconstruction based method is presented as 
remedy. 

 
4. Fault Isolation using the Algorithm 

This approach uses the fact that; the correct 
value of a faulty sensor can be evaluated using values 
of other sensors due to correlation between variables. 
Actually AANN captures the correlation between the 
variables, so it is used in Enhanced AANN (E-
AANN) algorithm to reconstruct faulty sensors.  

 
4.1 E-AANN algorithm 

The output of AANN is inherently 
reconstructed due to correlation between measured 
variables. Using this specification, E-AANN 
algorithm [11] is presented to detect, reconstruct and 
isolate the faulty sensors. E-AANN algorithm can be 
described as follows: 

The faulty data is fed to the trained AANN 
and for a sample we should find each sensor value in 
such a way that this value minimizes the cost 
function (SPE). To do this, each variable is increased 

from its minimum value to its maximum value with a 
step size and for each step the cost function (which is 
SPE) is evaluated. Then the sensor which has the 
most effect on cost function (SPE) is substitute with 
the founded value and the other sensor values do not 
change. This procedure is done for all the samples 
and finally the difference between input and output of 
E-AANN is calculated for each sensor.  
 

4.2 Application to fault isolation 
Due to correlation of variables, deficiency of 

contribution plot is highlighted when using NLPCA. 
Contribution plot may recognize different sensor as 
faulty for different samples, so a reconstruction based 
method is presented as a remedy to isolate and also 
reconstruct the faulty sensors. In this method, sensor 
measurements are reconstructed based on the 
Enhanced AANN (E-AANN) algorithm and the 
difference between input and output of E-AANN is 
evaluated. 

The mean of this difference for a healthy 
sensor is zero (or near zero) and for a faulty sensor is 
nonzero. When a sensor is contaminated, using this 
method the fault is detected and the faulty sensor is 
isolated and also reconstructed. 

 
5. Case study 

In this section the above mentioned approach 
is applied to a CSTH process to demonstrate the 
efficiency of this method. 

 
5.1  The CSTH process  

The simulated plant is a stirred tank in which 
hot and cold water are mixed, heated further using 
steam through a heating coil and drained from the 
tank through a long pipe. The configuration is shown 
in Fig.3. The CSTH is well mixed and therefore the 
temperature in the tank is assumed the same as the 
outflow temperature. The tank has a circular cross 
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section with a volume of 8 litters and height of 50 
cm. [12] 
  

 
Figure 3) Continuous Stirred Tank Heater (CSTH), 

[12] 
 

5.2 Data generation 
The CSTH is motivated by manipulating 

variables such as: hot water flow, hot and cold water 
temperatures. The four variables such as: outflow 

water temperature, cold water flow, tank level and 
the heat released by heater, are controlled. After 
passing dynamic or transient samples, about 2500 
sample of static data is gathered. The healthy data 
includes 7 variables with 2500 samples which are 
used for training AANN. An artificial offset (shift) 
fault is induced in inflow cold water sensor (which is 
an orifice flowmeter) for about 300 samples and then 
is removed. The second fault is an artificial drift fault 
which is induced in the same sensor. The set of faulty 
data includes 7 variables with 2500 samples. 

 
6. Results and discussions 

AANN is trained using Scaled Conjugate 
gradient (train scg) algorithm. Number of bottleneck 
nodes is obtained to be 4 using CPV, and by trial and 
error the best structure is obtained as: 7-12-4-12-7.  
The healthy normalized variables with 1% noise are 
illustrated in figure 4.  

 

 
Figure 4) Healthy sensors 
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The sensor 1 which is an orifice flowmeter is contaminated with shift fault which is illustrated for 2500 

samples in figure 5.  
 
 

 
Figure 5) sensor 1 is contaminated with shift fault 

 
Then it is contaminated with drift fault which is illustrated for another 2500 samples in figure 6. 

 
Figure 6) sensor number 1 is contaminated with drift fault 

 
After training the AANN with healthy data, the faulty set of data is presented to the trained AANN. The Q 

statistic and its control limit is calculated which is illustrated in figure 7 and 8 for shift and drift fault respectively.  
 
 
 
 
Figure 7 illustrates that something is wrong between samples 1540 to 1840. 
Figure 8 illustrates that something is wrong between samples 2000 to 2500. 
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Figure 7) Q (SPE) plot for offset fault of sensor 1 

 

 
Figure 8) Q (SPE) plot for drift fault of sensor 1 

 
The SPE plot just alert that a fault has been occurred,but does not have any information about the source of 

the fault. To localize the source of the fault the conventional contribution plot is applied. Figures 9 and 10 illustrate 
the contribution plot for 6 random faulty samples for shift and drift fault respectively.  
 

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample number

Q
 v

a
lu

e

 

 

Q

99% control limit

95% control limit

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample number

Q
 v

a
lu

e

 

 

Q

99% control limit

95% control limit



Journal of American Science 2021;17(11)                                           http://www.jofamericanscience.org   JAS     

 

 60

 
 

 
Figure 9) SPE contribution plot for offset fault 

 

 
Figure 10) SPE contribution plot for drift fault 
 

Figures 9 and 10 illustrate that although sensor 1 has the most effect on SPE and has been highlighted to be 
faulty but due to the fact that it highly depends on training performance and algorithm, this conclusion is not 
reliable. So we should use another way to isolate the faulty sensor confidently. E-AANN is presented as a remedy. 
The difference between input and output of E-AANN for sensors is illustrated in figures 11 and 12 for shift and drift 
faults respectively. From these figures it is clear that sensor 1 is faulty, because the difference value is not zero for 
some samples. 
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Figure 11) Difference value of input and output of E-AANN for offset fault 

 

 
Figure 12) Difference value of input and output of E-AANN for drift fault 

 
 Figures 13 and 14 illustrate the mean of the difference for shift and drift fault respectively. It is clear the 

mean for all the sensors are zero (or near zero) except for sensor 1. 
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Figure 13) Mean of difference for input and output of the E-AANN for offset fault 

 

 
Figure 14) Mean of difference of input and output of the E-AANN for drift fault 

 
If we zoom on the faulty samples the reconstructed, healthy and faulty values of sensor 1 are illustrated in 

figures 15 and 16 for shift and drift faults respectively. 
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Figure 15) healthy, faulty and reconstructed values of sensor 1 for offset fault 

 

 
Figure 16) healthy, faulty and reconstructed values of sensor 1 for drift fault 
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7. Conclusion 

        In this paper we have used a reconstruction 
based approach called E_AANN proposed in [11] for 
sensor fault detection and isolation. Although other 
approaches like contribution plots are used but they 
aren’t reliable and E-AANN is proposed as a remedy. 
The E-AANN algorithm explained and was 
implemented on a CSTH as case study. In this 
approach in addition to detection and isolation of 
faulty sensor, its correct value is reconstructed which 
is very useful in fault tolerant control. 
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