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Abstract: This paper presents an exact solution and a finite element method (FEM) for a Piezoceramic Plate under 
static load. The rectangular plate is made from polarized ceramics (piezoceramic). The unbounded ceramic plate is 
poled in the thickness direction. The major surfaces of the plate are under a normal traction and are electroded. Two 
cases of shorted and open electrodes (short circuit and open circuit) will be considered. The traction-produced 
charge or voltage on the electrodes can be used to detect the pressure electrically. Finally, a finite element model 
will be used to compare the results with an exact solution. The study uses ABAQUS (v.6.7) software to derive the 
finite element model of the ceramic plate.  
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1. Introduction 

The pattern and relationships between species 
diversity and Piezoelectric materials are used widely 
in transducers such as ultrasonic transmitters and 
receivers, sonar for underwater applications, and as 
actuators for precision positioning devices. 
Piezoelectric materials exhibit Electromechanical 
Coupling, which is useful for the design of devices for 
sensing and actuation. The coupling is exhibited in the 
fact that piezoelectric materials produce an electrical 
displacement when a mechanical stress is applied and 
can produce mechanical strain under the application of 
an electric field. Due to the fact that the mechanical-
to-electrical coupling was discovered first, this 
property is termed the direct piezoelectric effect, while 
the electrical-to-mechanical coupling is termed the 
converse piezoelectric effect [1].  

The physical basis for piezoelectricity in 
solids is widely studied by physicists and materials 
scientists. Most piezoelectric materials belong to a 
class of crystalline solids. Crystals are solids in which 
the atoms are arranged in a single pattern repeated 
throughout the body. Crystalline materials are highly 
ordered, and an understanding of the bulk properties 
of the material can begin by understanding the 
properties of the crystals repeated throughout the 
solid. The individual crystals in a solid can be thought 
of as building blocks for the material. Joining crystals 
together produces a three-dimensional arrangement of 
the crystals called a unit cell.  

One of the most important properties of a 
unit cell in relation to piezoelectricity is the polarity of 
the unit cell structure. Crystallographers have studied 

the structure of unit cells and classified them into a set 
of 32 crystal classes or point groups. Each point group 
is characterized by a particular arrangement of the 
constituent atoms. Of these 32-point groups, 10 have 
been shown to exhibit a polar axis in which there is a 
net separation between positive charges in the crystal 
and their associated negative charges. This separation 
of charge produces an electric dipole, which can give 
rise to piezoelectricity [1,2]. 

Induced strain actuators like piezoelectric 
materials have been effectively used as integrated 
sensors and actuators for monitoring and further 
controlling the mechanical behavior of advanced 
structures [3,4]. Over the past decade, Finite Element 
Analysis (FEA) techniques have been employed to 
model the overall structural response involving the 
electromechanical coupling effects of the piezoelectric 
sensing/actuating elements [5]. Superior to analytical 
methods, the FEA technique provides greater 
geometric flexibility and allows use of more complex 
electrical and mechanical boundary conditions. 
Although much research effort has been devoted to 
finite element formulation for the electromechanical 
coupling effects of piezoelectric materials (Tzou and 
Tseng, 1990; Ha et al., 1991), fully electromechanical-
coupled piezoelectric elements have just recently 
become available in commercial FEA software [6].  

Before the new piezoelectric capability was 
developed in commercial FEA codes, the induced 
strain actuation function of piezoelectric materials had 
been modeled using analogous thermal 
expansion/contraction characteristics of structural 
materials [7]. This method was helpful in the studies 
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of the resulting stress distribution in actuators and host 
substructures and the overall deformation of integrated 
structures under static actuation. However, the 
intrinsic electromechanical coupling effects of 
piezoelectric materials cannot be modeled. Moreover, 
the dynamic actuation response of piezoelectric 
actuators on host substructures is difficult to 
implement by this method.  

The new piezoelectric finite element 
capability in commercial FEA packages such as 
ABAQUS gives convenient access to perform both 
static and dynamic analysis for the fully coupled 
piezoelectric and structural response. In addition, 
since most commercialized FEA packages are 
generally equipped with well-developed pre and post-
processors and user-friendly interactive graphics 
working environments, the time-consuming tasks of 
finite element model generation and solution 
extraction can be significantly reduced [7]. A finite 
element model for a sandwich plate containing a 
piezoelectric core for deflection and stress analysis 
using ABAQUS software were investigated by 
Pouladkhan et al. [8]. Pouladkhan et al. [9] presented 
an exact solution and a finite element method (using 
ABAQUS software) for a smart piezoelectric ceramic 
rod under static load.  

   
2. Linear Piezoelectricity for Infinitesimal Fields   

Nonlinear theory of Electroelasticity is used 
for large deformations and strong electric fields. In 
linear theory like Piezoelectricity, we can specialize 
the nonlinear equations to the case of infinitesimal 
deformations and fields, which results in the linear 
theory of piezoelectricity. For Linearization, we 
reduce the nonlinear electroelastic equations in the 
nonlinear theory to the linear theory of piezoelectricity 
for infinitesimal deformations and fields. We consider 
small amplitude motions of an electroelastic body 
around its reference state due to small mechanical and 
electrical loads [10]. It is assumed that the 
displacement gradient is infinitesimal in the following 
sense that:  

 
𝑢!,! ≪ 1 (1) 

 
Under some norm, e.g., 𝑢!,! = 𝑚𝑎𝑥 𝑢!,! . It is also 
assumed that the electric potential gradient 𝜙,!  is 
infinitesimal.  
 
𝜙,! ≪ 1  (2) 

 
We neglect powers of 𝑢!,!  and 𝜙,!  higher than the 
first as well as their products in all expressions. The 
linear terms themselves are also dropped in 
comparison with any finite quantity such the 
Kronecker delta or 1. Under (1),  

𝜕𝑢!
𝜕𝑋!

=
𝜕𝑢!
𝜕𝑦!

𝑦!,! =
𝜕𝑢!
𝜕𝑦!

𝛿!" + 𝑢!,!

≅
𝜕𝑢!
𝜕𝑦!

𝛿!" 

𝜙,! = 𝜙,!𝑦!,! ≅ 𝜙,!𝛿!" 
 

(3) 

Which implies that, to the first order of 
approximation, the displacement and potential 
gradients calculated from the material and spatial 
coordinates are numerically equal. Therefore, within 
the linear theory, there is no need to distinguish capital 
and lowercase indices. Only lowercase indices will be 
used in the linear theory. The material time derivative 
of an infinitesimal field variable 𝑓(𝑦, 𝑡) is simply the 
partial derivative with respect to t:  
 
𝐷𝑓
𝐷𝑡

=
𝜕𝑓
𝜕𝑡
|!  !"#$%

=
𝜕𝑓
𝜕𝑡
|!  !"#$% +

𝜕𝑓
𝜕𝑦!

|!  !"#$%
𝜕𝑦!
𝜕𝑡

|!  !"#$% 

              =
𝜕𝑓
𝜕𝑡
|!  !"#$% + 𝑣!

𝜕𝑓
𝜕𝑦!

≅
𝜕𝑓
𝜕𝑡
|!  !"#$% 

(4) 

For the finite strain tensor:  

𝑆!" =
1
2
(𝑢!,! + 𝑢!,! + 𝑢!,!𝑢!,!)

≅
1
2
(𝑢!,! + 𝑢!,!) 

(5) 

In the linear theory, the infinitesimal strain tensor will 
be denoted by:  

𝑆!" =
1
2
(𝑢!,! + 𝑢!,!) (6) 

The material electric field becomes:  
𝐸! = 𝐸!𝑦!,! ≅ 𝐸!𝛿!" → 𝐸! 
 

(7) 

Similarly,  
 
𝜎!"! ≅ 0  ,𝜎!"! ≅ 0  ,𝜎!" ≅ 𝜎!"! ≅ 𝜏!" 
𝑀!" ≅ 0  ,𝐾!" ≅ 𝐹!" ≅ 𝛿!"𝜎!"   ,𝑇!"!

≅ 𝛿!"𝛿!"𝜎!! 
𝒫! → 𝑃!  ,𝒟! → 𝐷! 
 

(8) 

Where: 
 
𝜎!"! = Electrostatic strees tensor  
𝜎!"!  , 𝑀!"  = Symmetric Maxwell stress tensor in 
spatial, two point  
𝜎!" = Cauchy stress tensor  
𝜎!"!  , 𝐹!" , 𝑇!"!  = Symmetric stress tensor in spatial, two 
point, and material form 
𝜏!" , 𝐾!" = Total stress tensor in spatial, two point  
𝒫! = Reference electric polarization vector  
𝒟! = Reference electric displacement vector  
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Since the various stress tensors are either 
approximately zero (quadratic in the infinitesimal 
gradients) or about the same, we will use 𝑇!" to denote 
the stress tensor that is linear in the infinitesimal 
gradients. This is according to the IEEE Standard on 
Piezoelectricity. The notation for the rest of the linear 
theory will also follow the IEEE Standard [11]. Then: 
  
𝜎!" ≅ 𝜎!"! ≅ 𝜏!" → 𝑇!" 
𝐾!" ≅ 𝐹!" ≅ 𝛿!"𝜎!" → 𝑇!" 
𝑇!"! ≅ 𝛿!"𝛿!"𝜎!" → 𝑇!" 
 

 (9) 

For small fields the total free energy can be 
approximated by:  
 
𝜌!𝜓 𝑆!" ,𝐸! = 𝜌!𝜓 𝑆!" ,𝐸!

−
1
2
𝜀!𝐽𝐸!𝐸! 

≅
1
2
𝑐!  !"#$𝑆!"𝑆!" − 𝑒!"#𝐸!𝑆!"

−
1
2
𝜒!  !"𝐸!𝐸!

−
1
2
𝜀!𝐽𝐸!𝐸! 

→
1
2
𝑐!"#$! 𝑆!"𝑆!" − 𝑒!"#𝐸!𝑆!" −

1
2
𝜀!"!𝐸!𝐸!

= 𝐻(𝑆!" ,𝐸!) 
 

(10) 

Where:  
 
𝜀!"! = 𝜒!  !" + 𝜀!𝛿!" 
 

(11) 

The superscript 𝐸  in 𝑐!"#$!  indicates that the 
independent electric constitutive variable is the 
electric field 𝑬. The superscript 𝑆 in 𝜀!"!  indicates that 
the mechanical constitutive variable is the strain 
tensor 𝑺. We have also denoted the total free energy of 
the linear theory by H, which is usually called the 
electric enthalpy. The electrical enthalpy (H) in a 
piezoelectric body is an energy quantity similar to 
strain energy in an elastic structure. The constitutive 
relations generated by H are:  

𝑇!" =
𝜕𝐻
𝜕𝑆!"

= 𝑐!"#!! 𝑆!" − 𝑒!"#𝐸! 

𝐷! = −
𝜕𝐻
𝜕𝐸!

= 𝑒!"#𝑆!" + 𝜀!"! 𝐸! 
(12) 

Where:  
 
𝑐!"#$!  = Elastic stiffness constants  
𝑒!"# = Piezoelectric stress constants  
𝜀!" = Dielectric constants   
 

Hence T, D and P are also infinitesimal. The material 
constants in Equation (12) have the following 
symmetries:  
 
𝑐!"#$! = 𝑐!"#$! = 𝑐!"#$!  
𝑒!"# = 𝑒!"# 
𝜀!"! = 𝜀!"! 
 

(13) 

We also assume that the elastic and dielectric material 
tensors are positive definite in the following sense:  
 
𝑐!"#$! 𝑆!"𝑆!" ≥ 0  𝑓𝑜𝑟  𝑎𝑛𝑦  𝑆!"

= 𝑆!" 
𝑎𝑛𝑑  𝑐!"#$! 𝑆!"𝑆!" = 0 → 𝑆!"

= 0 
𝜀!"!𝐸!𝐸! ≥ 0  𝑓𝑜𝑟  𝑎𝑛𝑦  𝐸! 
𝑎𝑛𝑑  𝜀!"!𝐸!𝐸! = 0 → 𝐸! = 0 
 

(14) 

3. Compact Matrix Notation  
We now introduce a compact matrix notation. 

This notation consists of replacing pairs of indices 𝑖𝑗 
or 𝑘𝑙 by single indices 𝑝 or 𝑞 where 𝑖, 𝑗, 𝑘 and 𝑙 take 
the values of 1, 2, and 3, and 𝑝 and 𝑞 take the values 
1, 2, 3, 4, 5, and 6 according to [10]:  

  
𝑖𝑗  𝑜𝑟  𝑘𝑙
∶ 11    22    33    23  𝑜𝑟  32    31  𝑜𝑟  13    12  𝑜𝑟  21 
𝑝  𝑜𝑟  𝑞 ∶       1        2          3                    4                                5                                6 
 

(15) 

Thus  
 
𝑐!"#$ → 𝑐!"  , 𝑒!"# → 𝑒!"  ,𝑇!"

→ 𝑇! 
 

(16) 

For the strain tensor, we introduce 𝑆! such that:  
 
𝑆! = 𝑆!!  ,   𝑆! = 𝑆!!  ,   𝑆!

= 𝑆!! 
𝑆! = 2𝑆!"  ,   𝑆! = 2𝑆!"  ,   𝑆!

= 2𝑆!" 
 

(17) 

The constitutive relations in Equation (12) can then be 
written as:  
 
𝑇! = 𝑐!"! 𝑆! − 𝑒!"𝐸! 
𝐷! = 𝑒!"𝑆! + 𝜀!"! 𝐸! 
 

(18) 

In matrix form, Equation (18) becomes:  
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𝑇!
𝑇!
𝑇!
𝑇!
𝑇!
𝑇!

=

𝑐!!! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"!

𝑐!"! 𝑐!!! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"!

𝑐!"! 𝑐!"! 𝑐!!! 𝑐!"! 𝑐!"! 𝑐!"!

𝑐!"! 𝑐!"! 𝑐!"! 𝑐!!! 𝑐!"! 𝑐!"!

𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!!! 𝑐!"!

𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!"! 𝑐!!!

𝑆!
𝑆!
𝑆!
𝑆!
𝑆!
𝑆!

−

𝑒!! 𝑒!" 𝑒!"
𝑒!" 𝑒!! 𝑒!"
𝑒!" 𝑒!" 𝑒!!
𝑒!" 𝑒!" 𝑒!"
𝑒!" 𝑒!" 𝑒!"
𝑒!" 𝑒!" 𝑒!"

𝐸!
𝐸!
𝐸!

 

(19) 
𝐷!
𝐷!
𝐷!

=
𝑒!! 𝑒!" 𝑒!" 𝑒!" 𝑒!" 𝑒!"
𝑒!" 𝑒!! 𝑒!" 𝑒!" 𝑒!" 𝑒!"
𝑒!" 𝑒!" 𝑒!! 𝑒!" 𝑒!" 𝑒!"

𝑆!
𝑆!
𝑆!
𝑆!
𝑆!
𝑆!

+
𝜀!!! 𝜀!"! 𝜀!"!

𝜀!"! 𝜀!!! 𝜀!"!

𝜀!"! 𝜀!"! 𝜀!!!

𝐸!
𝐸!
𝐸!

 

  
4. Displacement – Potential Formulation  

In summary, the linear theory of 
piezoelectricity consists of the equations of motion 
and charge [10]:  
 
𝑇!",! + 𝜌𝑓! = 𝜌𝑢!               , 𝐷!,! = 𝜌! 
 

(20) 

Constitutive relations:  
 
𝑇!" = 𝑐!"#$𝑆!" − 𝑒!"#𝐸!      ,     𝐷!

= 𝑒!"#𝑆!" + 𝜀!"𝐸! 
 

(21) 

And the strain-displacement and electric field-
potential relations:  
 
𝑆!" = (𝑢!,! + 𝑢!,!) 2        ,       𝐸! = −𝜙,! 
 

(22) 

Where u is the mechanical displacement vector, T is 
the stress tensor, S is the strain tensor, E is the electric 
field, D is the electric displacement (electric flux 
density), 𝜙  is the electric potential, 𝜌  is the known 
reference mass density, 𝜌!  is the body free charge 
density, and f is the body force per unit mass. We 

have neglected the superscripts in the material 
constants. With successive substitutions from 
Equations (21) and (22), Equation (20) can be written 
as four equations for u and:  
 
𝑐!"#$𝑢!,!" + 𝑒!"#𝜙,!" + 𝜌𝑓!

= 𝜌𝑢! 
𝑒!"#𝑢!,!" − 𝜀!"𝜙,!" = 𝜌!  
 

(23) 

5. Thickness Stretch of a Ceramic Plate  
Consider an unbounded ceramic plate poled 

in the thickness direction. The major surfaces of the 
plate are under a normal traction 𝑝 and are electroded. 
Two cases of shorted and open electrodes (short 
circuit and open circuit) will be considered. The 
traction-produced charge or voltage on the electrodes 
can be used to detect the pressure electrically. This 
problem is an electrostatic case, which is very formal 
in the piezoelectric problems. Fig. 1 shows an 
electroded ceramic plate under mechanical loads.  

 

 
Fig. 1. An electroded ceramic plate under 

mechanical loads [10]. 
 

5.1. Boundary Value Problem  
The boundary value problem is:  
 
𝑇!",! = 0      ,      𝐷!,! = 0      in      𝑉 
𝑇!" = 𝑐!"#$! 𝑆!" − 𝑒!"#𝐸!      ,      𝐷!

= 𝑒!"#𝑆!" + 𝜀!"! 𝐸!      in      𝑉 
𝑆!" = (𝑢!,! + 𝑢!,!) 2        ,       𝐸! = −𝜙,!       in      𝑉 
𝑇!"𝑛! = 𝑝𝛿!!       ,      𝑥! = ±ℎ 
𝜙 𝑥! = ℎ
= 𝜙 𝑥!
= −ℎ     ,      if  the  electrodes  are  shorted  
𝐷! 𝑥! = ±ℎ
= 0      ,      if  the  electrodes  are  open  
  

(24) 

Consider the possibility of the following displacement 
and potential fields:  
 
𝑢! = 𝑢! 𝑥!     ,      𝑢! = 𝑢! = 0      ,      𝜙 = 𝜙(𝑥!) 
 

(25) 

The nontrivial components of strain, electric field, 
stress and electric displacement are  
𝑆!! = 𝑢!,!      ,      𝐸! = −𝜙,! (26) 

 
And  
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𝑇!! = 𝑇!! = 𝑐!"𝑢!,!
+ 𝑒!"𝜙,! 

𝑇!! = 𝑐!!𝑢!,! + 𝑒!!𝜙,! 
𝐷! = 𝑒!!𝑢!,! − 𝜀!!𝜙,! 
 

(27) 

The equation of motion and the charge equation 
require that  
 
𝑇!!,! = 𝑐!!𝑢!,!! + 𝑒!!𝜙,!! = 0 
𝐷!,! = 𝑒!!𝑢!,!! − 𝜀!!𝜙,!! = 0 
 

(28) 

Hence  
𝑢!,!! = 0      ,      𝜙,!! = 0 
 

(29) 

Unless  

𝑘!!! =
𝑒!!!

𝜀!!! 𝑐!!!
= 1 

 
(30) 

Which we do not consider because usually 𝑘!!! < 1. 
Equation (28) implies that all the strain, stress, electric 
field, and electric displacement components are 
constants.  
 
5.2. Shorted Electrodes  
Since the potential at the two electrodes are equal and 
𝐸! is a constant, we must have  
 
𝐸! = 0 
 

(31) 

The mechanical boundary conditions require that 
𝑇!! = 𝑝. Then  
𝑆!! = 𝑢!,! =

𝑝
𝑐!!

      ,      𝑇!! = 𝑇!!

=
𝑐!"
𝑐!!

𝑝      ,      𝐷!

=
𝑒!!
𝑐!!

𝑝 

(32) 

The work done to the plate per unit volume is  

𝑊! =
1
2
𝑇!!𝑆!! =

𝑝!

2𝑐!!
 

 
(33) 

5.3. Open Electrodes  
In this case the boundary conditions require that  
 
𝑇!! = 𝑐!!𝑢!,! + 𝑒!!𝜙,! = 𝑝 
𝐷! = 𝑒!!𝑢!,! − 𝜀!!𝜙,! = 0 
 

(34) 

Which imply that  
𝑆!! = 𝑢!,! =

𝑝
𝑐!!(1 + 𝑘!!! )

      ,      𝐸! = −𝜙,!

= −
𝑒!!

𝜀!!𝑐!!(1 + 𝑘!!! )
𝑝 

 

(35) 

The work done to the plate per unit volume is  

𝑊! =
1
2
𝑇!!𝑆!!

=
𝑝!

2𝑐!!(1 + 𝑘!!! )
 

 

(36) 

5.4. Electromechanical Coupling Factor  
Clearly, 
𝑊! > 𝑊! 
 

(37) 

The electromechanical coupling factor for the 
thickness-stretch of a ceramic plate poled in the 
thickness direction is  

(𝑘!!! )! =
𝑊! −𝑊!

𝑊!
= 1 −

1
1 + 𝑘!!!

=
𝑘!!!

1 + 𝑘!!!
 

 

(38) 

For PZT-7A, from the material constants in tables 1 
and 2, 

(𝑘!!! )! =
(9.50)!

235×8.85×10!!" (13.1×10!")
= 0.33 

𝑘!!! = 0.58 
 

Table 1. Mechanical properties of a few polarized 
ceramics [10]. 

Material 𝑐!! 𝑐!" 𝑐!" 𝑐!! 𝑐!! 𝑐!! 
PZT-4 13.9 7.78 7.40 11.5 2.56 3.06 

PZT-5A 12.1 7.59 7.54 11.1 2.11 2.26 
PZT-6B 16.8 8.47 8.42 16.3 3.55 4.17 
PZT-5H 12.6 7.91 8.39 11.7 2.30 2.35 
PZT-7A 14.8 7.61 8.13 13.1 2.53 3.60 
PZT-8 13.7 6.99 7.11 12.3 3.13 3.36 
BaTiO3 15.0 6.53 6.62 14.6 4.39 4.24 

 ×10!"𝑁 𝑚! 
 

Table 2. Electrical properties of a few polarized 
ceramics [10]. 

Material 𝑒!" 𝑒!! 𝑒!" 𝜀!! 𝜀!! 
PZT-4 -5.2 15.1 12.7 0.646 0.562 

PZT-5A -5.4 15.8 12.3 0.811 0.735 
PZT-6B -0.9 7.1 4.6 0.360 0.342 
PZT-5H -6.5 23.3 17.0 1.505 1.302 
PZT-7A -2.1 9.5 9.2 0.407 0.208 
PZT-8 -4.0 13.2 10.4 0.797 0.514 
BaTiO3 -4.3 17.5 11.4 0.987 1.116 

 𝐶 𝑚! ×10!! 𝐶 𝑉𝑚 
 
For other polarized ceramics, the electromechanical 
coupling factor 𝑘!!!  are calculated and presented in 
Table 3.  
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Table 3. The electromechanical coupling factors of a 
few polarized ceramics.   

Material 𝑘!!!  
PZT-4 0.35 

PZT-5A 0.31 
PZT-6B 0.09 
PZT-5H 0.36 
PZT-7A 0.33 
PZT-8 0.28 
BaTiO3 0.19 

 
It is clear that PZT-5H has the most electromechanical 
coupling factor. Therefore, among these materials, 
PZT-5H is more common in comparison with other 
polarized ceramics.  
Graphically, 𝑊! , 𝑊!  and their difference are 
represented by areas in the Fig. 2. This figure 
confirms that a stiffer plate has less mechanical work, 
in other words, in short circuit case, the mechanical 
work done to the plate is more than open circuit case 
(𝑊! > 𝑊!).  

 
Fig. 2. Work done to the ceramic plate per unit 

volume along different paths [10]. 
 

6. Finite Element Method  
In this section, a finite element model of the 

ceramic plate will be studied. The geometrical 
configuration of the piezoceramic plate is shown in 
Fig. 3. 

 
Fig. 3. The geometrical configuration of the ceramic 

plate.  
 

The loaded and boundary conditions configuration of 
the piezoceramic plate is shown in Fig. 4.  

 

 
Fig. 4. The loaded and boundary conditions 

configuration of the ceramic plate.  
 

The dimension of the ceramic plate is assumed to be 
10𝑐𝑚×10𝑐𝑚×1𝑚𝑚. The uniform normal traction is 
assumed to be 1 N/m2. It will be noted that in 
ABAQUS software, the unbounded piezoelectric 
elements have not been defined. Therefore, the 
bounded piezoceramic plate is modeled, so that, the 
thickness ratio to other dimensions is very 
insignificant. Also, four edges of the plate have been 
modeled clamped.  
A typical finite element model of the ceramic plate is 
shown in Fig. 5. It should be noted that ceramic plate 
consists of eight-node 3D linear brick piezoelectric 
elements (C3D8E) [12]. The finite element mesh 
consists of 400 elements for piezoceramic plate.   

 
Fig. 5. Typical finite element model of the ceramic 

plate.  
 

Fig. 6 shows the deformation of the piezoceramic 
plate under uniform normal traction obtained by finite 
element analysis.  
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Fig. 6. Deformation of the ceramic plate by finite 

element analysis.  

 
 

Two cases of short circuit (S.C) and open circuit 
(O.C) as the electrical boundary conditions were 
investigated and an exact solution was presented for 
each case. It was shown that the results obtained by 
the finite element analysis matches very well with the 
exact solutions for each boundary condition. The 
results obtained by the exact solution and finite 
element analysis for short circuit are presented in 
tables 4 and 5 respectively:  

 
 

Table 4. The results obtained by exact solution for short circuit case. 
Material 𝑆!!(𝑚 𝑚) 𝑇!! = 𝑇!!(𝑁 𝑚!) 𝐷!(𝐶 𝑚!) 
PZT-4 8.70×10!!" 6.44×10!! 1.31×10!!" 

PZT-5A 9×10!!" 6.79×10!! 1.42×10!!" 
PZT-6B 6.13×10!!" 5.16×10!! 0.44×10!!" 
PZT-5H 8.55×10!!" 7.17×10!! 1.99×10!!" 
PZT-7A 7.63×10!!" 6.20×10!! 0.72×10!!" 
PZT-8 8.13×10!!" 5.78×10!! 1.07×10!!" 
BaTiO3 6.85×10!!" 4.53×10!! 1.20×10!!" 

 
 

Table 5. The results obtained by finite element analysis for short circuit case.  
Material 𝑆!!(𝑚 𝑚) 𝑇!! = 𝑇!!(𝑁 𝑚!) 𝐷!(𝐶 𝑚!) 
PZT-4 8.436×10!!" 6.333×10!! 1.33×10!!" 

PZT-5A 8.993×10!!" 6.653×10!! 1.482×10!!" 
PZT-6B 5.877×10!!" 5.078×10!! 0.424×10!!" 
PZT-5H 8.746×10!!" 7.011×10!! 2.114×10!!" 
PZT-7A 7.527×10!!" 6.072×10!! 0.736×10!!" 
PZT-8 7.869×10!!" 5.673×10!! 1.08×10!!" 
BaTiO3 6.420×10!!" 4.481×10!! 1.166×10!!" 

 
 
It is clear that in short circuit case, PZT-5A has the most strain value and PZT-5H has the most stress and electric 
flux density value for both exact solution and finite element method. The results obtained by the exact solution and 
finite element analysis for open circuit are presented in tables 6 and 7 respectively:  
 

 
Table 6. The results obtained by exact solution for open circuit case. 

Material 𝑆!!(𝑚 𝑚) 𝑇!! = 𝑇!!(𝑁 𝑚!) 𝐸!(𝑉 𝑚) 
PZT-4 6.44×10!!" 3.87×10!! −1.73×10!! 

PZT-5A 6.87×10!!" 4.38×10!! −1.48×10!! 
PZT-6B 5.62×10!!" 4.63×10!! −1.17×10!! 
PZT-5H 6.29×10!!" 4.55×10!! −1.12×10!! 
PZT-7A 5.74×10!!" 4.12×10!! −2.62×10!! 
PZT-8 6.35×10!!" 3.86×10!! −1.63×10!! 
BaTiO3 5.76×10!!" 3.43×10!! −0.90×10!! 
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Table 7. The results obtained by finite element analysis for open circuit case.  
Material 𝑆!!(𝑚 𝑚) 𝑇!! = 𝑇!!(𝑁 𝑚!) 𝐸!(𝑉 𝑚) 
PZT-4 6.615×10!!" 3.917×10!! −1.638×10!! 

PZT-5A 7.293×10!!" 4.388×10!! −1.434×10!! 
PZT-6B 6.030×10!!" 4.564×10!! −1.123×10!! 
PZT-5H 6.766×10!!" 4.499×10!! −1.099×10!! 
PZT-7A 6.094×10!!" 4.077×10!! −2.516×10!! 
PZT-8 6.656×10!!" 3.887×10!! −1.565×10!! 
BaTiO3 5.963×10!!" 3.446×10!! −0.858×10!! 

 
It is clear that in open circuit case, PZT-5A has the 
most strain value, PZT-6B has the most stress value 
and PZT-7A has the most electric field intensity value 
for both exact solution and finite element method.  
 
7. Conclusions  

The piezoelectric finite element capability 
recently made available in commercial FEA packages 
allows both static and dynamic analysis of fully 
coupled piezoelectric and structural responses. This 
paper reviewed the capability of the piezoelectric 
element provided by commercialized FEA codes, and 
discussed a simple case of static finite element 
analysis involving piezoelectric and structural 
coupling.  

Two cases of short circuit and open circuit as 
the electrical boundary conditions were investigated 
and an exact solution was presented for each case. It 
was shown that the results obtained by the finite 
element analysis matches very well with the exact 
solutions for each boundary condition.  

It was shown that in short circuit case, PZT-
5A has the most strain value and PZT-5H has the most 
stress and electric flux density value for both exact 
solution and finite element method. Also, it was 
concluded that in open circuit case, PZT-5A has the 
most strain value, PZT-6B has the most stress value 
and PZT-7A has the most electric field intensity value 
for both exact solution and finite element method.  
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