Study of yeast flora of fruits and their in vitro screening for antagonistic property against *Penicillium digitatum*

Swapan Kr. Ghosh¹, Tumpa Santra² and Amit Chakravarty²

¹ Molecular Mycopathology Lab., P.G. Department of Botany, Ramakrishna Mission, Vivekananda Centenary College, Rahara, Kolkata 700118, India ²Department of Microbiology, Institute of Genetic Engineering., Badu. Kol-128, W.B, India.

it of Microbiology, Institute of Genetic Engineering, Badu. Kol-128, w

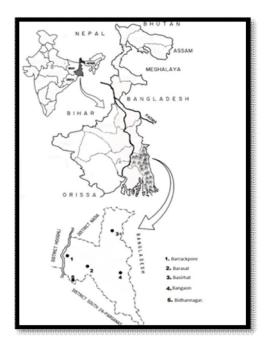
Swapan.krghosh@yahoo.com

Abstract: Hundred fifty (150) samples of different types of fruits (thirty samples of each fruit of Orange, Green grape, Fig, Dried date and Apple) were collected from different markets of (N) 24 Parganas of West Bengal in sterile biodegradable polyethylene bags. These were brought to laboratory and the isolation of different yeasts were done from the washing of the fruit samples by using dilution plating method on MA medium. From these samples 480 yeast colonies were isolated. These isolates of yeasts were identified by conventional morphological, microscopical and biochemical testing methods. These colonies comprise of 13 genera and 20 species of yeasts. Maximum number of four species were found in both Candida and Rhodotorula. The percent of occurrence of each species was calculated. All yeast species isolated were screened by dual culture plate method for their antagonistic property against Penicillium digitatum, causal pathogen of Penicillium rot of Citrus. Out of 20 species of yeasts, 15 species are antagonistic to Penicillium digitatum. Candida guilliermondii gave maximum percent of radial inhibition of growth (75.50 PIRG) followed by Candida famata (70.56 PIRG), Rhodotorula mucilaginosa (68.21 PIRG), and Debaryomyces hansenii (58.00 PIRG). Therefore, these fruits are good habitats of various yeast species and the antagonistic yeasts can be applied as biological control agents against post harvest Penicillium rot disease of Citrus. [Ghosh S K Ghosh, Santra T, Chakravarty A. Study of yeast flora of fruits and their in vitro screening for antagonistic property against *Penicillium digitatum*, J Am Sci 2018;14(7):36-411. ISSN 1545-1003 (print): ISSN 2375-7264 (online), http://www.jofamericanscience.org. 6. doi:10.7537/marsias140718.06.

Key words: Isolation, Yeast, Inhibition, Biocontrol, Disease

1. Introduction

Yeasts are unicellular eukaryotic fungi which are generally multiply quickly by budding or fission. Yeasts are generally distributed into two phyla: a) Ascomycota b) Basidiomycota and in mitosporic group-Deuteromycota. Dimorphic yeasts are also present which become filamentous under certain environmental conditions. Ascomycetous are two types: Budding yeasts (*Saccharomyces cerevisiae*) and fission yeasts (*Schizosaccharomyces pombe*). According to Kurtzman & Fell (1999), there are about 100 genera and 700 species.


Yeast applications are used in many ways -wine and bakery industry, SCP production, carotenoid production, recombinant vaccine production, in understanding of cell cycle and so on. Modern trend is application of yeasts as biocontrol agents against many post harvest diseases of many fruits and vegetables (Droby et al. 2003; Coelho et al. 2007; Pimenta et al.2008; Kurtzman et al. 2012). Unfortunately yeast flora or diversity is highly neglected in India.

The main objectives of this study are to know the diversity of yeast flora of fruit surfaces in 24-Parganas (N), West Bengal and to find out the antagonistic potential of yeast and their application as biocontrol agent against *Penicillium* fruit rot of orange.

2. Materials and methods Study area

The 24-Parganas (N) district of West Bengal is situated in the tropical zone and extends from latitude22°11′ 6′′ north to 23°15′ 2′′ north and from longitude 88°20'east to 89° 5' east. It is bordered to Nadia by north, to Bangladesh (Kulna Division by north and east), to south 24 -Parganas and Kolkata by south and to Kolkata, Howrah and Hooghly by west. The elevation of the district is 2,134m (7001ft). It lies with in the Ganga- Brahmaputra delta. The river Ganga flows along the entire west border of the district. There are many rivers, such as Ichaamoti, Jamuna and Bidyadhuri. Annual rainfall is 1579mm. The weather remains humid and dry during the most time of the year except the rainy seasons. It remains dry during the winter (mid November to mid February) and humid during Summer. Temperature remains 41° C (maximum) in May and 10° C (minimum) in January. Relative humidity remains between 50% in March and 90% in July (Fig1). (http://famillpedia.wikia.com/wiki/north 24 pargana district#climate; State of Forest Report 2003).

Subdivisions and some study spots:

- 1. Barrackpore
 - a) Naihati
 - b) Halishahar
- 2. Basirhat
 - a) Hasnabad
 - b) Hingalgunj
- 3. Barasat
 - a) Badu
 - b) Nilgunj

4. Bongaon

- a) Duttafulia
- b) Gopalnagar
- 5. Bidhannagar
 - a) Rajarhat
 - b) Mohishbathan

Study samples

The collected materials were fruits of Orange, Green grape, Fig, Dried date and Apple from different traders of five sub-divisions of 24-Parganas (N) (Fig1) of West Bengal, India.

Isolation & Purification of yeasts

Fruit/juice/soil/other samples from different districts of West Bengal, India were collected in separate sterile biodegradable polythene bags and brought in laboratory. Known weight of each sample was washed with known volume of sterilized distilled water by shaking on a rotary shaker. The washings/fruit juices were 10 fold serially diluted and plated on MA medium (MA; malt extract, 2g; Agar, 2g; Distilled water,100ml). The Petri dishes were incubated at 25° C for 3 days. (Beech and Devanport, 1971; Ghosh,2011).

Single cell isolate of each type of yeasts was obtained by streaking loop full of cells on MA medium and transferring well isolated colonies to MA. The isolates were maintained on Malt-Yeast – Glucose- Peptone –Agar medium (Dry malt extract, 3g.; dry yeast, 3g.; Peptone, 5g; D- glucose, 10g; Agar, 20g; Distilled water, 1L) at 28°C with monthly subculturing.

Identification of Yeasts:

Identification of each isolate of yeast up to species level was carried on the basis of standard morphological, and physiological /biochemical tests presented by Barnett et.al (2000); Kurtzman et al. 2012 and Rose & Harisson (1993).

Morphological & Microscopical investigation

The colonies were observed and described on MA and MYGPA medium The isolates were also grown in MA & MYPGA broth for determination of their cultural characteristics (pellicle, sedimentation or ring formation). In certain cases, the isolates were grown on sterile slices of carrot for induction of ascospore formation.

Biochemical investigations

For carbon and nitrogen assimilation, the basal medium of Barnett, et al. (2000) was used. the results were determined after the 3^{th} , 7^{th} , 14^{th} , 21^{th} and 28^{th} day.

The ability of some carbohydrates for anaerobic assimilation (fermentation) was determined by using Durhan glass tubes after 3 weeks. The quantity of the tested carbohydrates was 2%.

For Diazonium blue -B (DBB) test, a ten day old culture on MYPGA was held at 55 0 C for three hours and then flooded with ice –cold DBB reagent. The reagent was prepared by dissolving diazonium blue salt (Sigma) in cold 0.5M-tris –HCL buffer pH 7.0 at 1mg /ml. The reagent was kept ice –cold and used within few minutes of preparation.

Other additional tests such as starch formation, urea hydrolysis, cycloheximide (0.01% or 0.1%), were performed.

Isolation and purification of pathogen from diseased fruit:

The rotten oranges were collected in sterilized polythene bags and carried to laboratory from different markets. Five gram of rotten fruit was aseptically cut out and smashed and mixed in 50 ml sterile distilled water under Laminar air flow. The solution and diluents were streaked on to PDA Petri dishes containing penicillin (1.6ug /ml) and incubated at 28 °C temperature for 3days. After three days, each colony of the fungus was transferred to PDA slant by inoculating needle and incubated at 28 °C for one week and stored at 4°C in refrigerator (Hee,2003; Dingra & Sinclair, 1985).

Identification of the pathogen:

The pathogen was identified by its growth pattern and microscopical characteristic consulting with published Keys of *Penicillium* (Nagamani, et al., 2006; Domsch, et al,1980).

Screening of yeasts as antagonists against *Penicillium digitatum*: Dual culture assay:

Five mm diameter of mycelial colony from the margin of actively growing colony of *P. digitatum* was placed on one end of Petri plate and that of yeast was incubated simultaneously at opposite ends of a Petri dish containing 25 ml of sterilized PDA medium. The plates containing the paired culture were incubated at $28^0 \pm 1^{\circ}$ C for 9 days in a B.O.D. incubator. The five PDA plates inoculating only with 5mm diameter of mycelial colony from the margin of actively growing colony of *P. digitatum were* incubated at $28^0 \pm 1^{\circ}$ C for 9 days. These were control. The degrees of antagonism were calculated by the formula:

R1- R2

Where, R1=Radial growth of *P. digitatum* in control plate.

R2= Radial growth of *P. digitatum* in dual culture plate interacting with yeast.

PIRG=Per cent of Inhibition of Radial growth of *P.digitatum*.

Each treatemt was carried out 5 replications and plates were arranged in randomized Block Design. **Data analysis:**

The percent of occurrence of each species was determined by total number of yeast colony divided by number of colony of each species and the result is multiplied by hundred.

The Berger –Parker Dominance index (D) was caculated or measured (Harrison, et al.2004) by the formula: D = n/N, where n indicated the No. of individuals in a species and N represented as total No. of individual. The Berger – Parker dominance was calculated in species level. The species with D>0.1 were considered as Dominant, the species with lying between 0.1 & 0.05 were called General and the species with D <0.5 were considered as Rare.

3. Results & Discusion

The data presented in the Table 1 showed that from 150 samples of different natural sources, 480 yeast colonies were isolated. These yeasts were identified by conventional morphological, microscopical and biochemical testing methods. These colonies comprise of 13 genera and 20species of yeasts. Maximum number of species were found in *Candida* (4) and *Rhodotorula* (4) and *Cryptococcus* (2). Out of 20 isolated & identified species, 12 are ascomycetous while 08 are basidiomycetous yeasts (Table1). The data of table 1 indicated the distribution or habitats of isolated & identified yeasts. Some veasts were isolated from restricted fruits' surface and some were isolated from maximum fruits' surface. Twelve species of yeast and eight species of yeast were isolated from green grape and apple respectively. Green grape and apple fruit surfaces were good habitats The, percent of occurrence of Saccharomyces cerevisiae, Candida famata and Rhodotorula mucilaginosa were 10.62, 10.00 and 9.37 respectively. The relative occurrence of these three yeasts were 'Dominant' where as other seven species were 'General' and other ten species were 'Rare' in occurrence by calculating the Berger - Parker dominance index. The least percent of occurrence was recorded in Filobasidium uniguttulatum (Table2). Ghosh and Sammader (1987) isolated different types of yeasts from different sources like palm juice, toddy, molasses, grape and cane juice. Saccharomyces Schizosaccharomyces cerevisiae. pombe, Saccharomyces kluveri, Rhodotorula sp, Candida sp were isolated and identified by them. Identification of veasts up to species level was carried on the basis of physiological/ standard morphological and biochemical tests proposed for each group by Barnett et al (2000) and Kartzman and Fell (1999). Isolation and taxonomic study of yeast strains from Bulgarian dairy products were reported by Savova (2002). They identified Debaryomyces hansenii, Candida famata, Rhodotorula muiilaginosa, Kluveromyces lactis, Kluveromyces maximus etc. Isolation and identification of yeast flora from the soil was reported by Mushtag et al (2004). Ghosh (2011) isolated and identified five genera and seven species of yeast from fruit surface of Svzvgium cumini.

All yeast species isolated were screened by dual culture plate method for their antagonistic property against *Penicillium digitatum*, causal pathogen of *Penicillium* rot of *Citrus*. The data presented in the table 3 showed that out of 38 species of yeasts, 15 species are antagonistic to *Penicillium digitatum*.

Candida guillarmondii gave maximum percent of radial inhibition (75.50 PIRG) followed by (70.56 Candida famata PIRG, Rhodotorula mucilaginosa (68.21 PIRG) Pichia membranifaciens (67.21 PIRG), Debarvomyces hansensii (58.00 PIRG), Saccharomyces cerevisae (47.23 PIRG) and R. minua (37.44 PIRG) (Table 2). Kluveromyces lactis and Zvgosaccharomyces lentus gave minimum inhibition (03.41and 6.00 PIRG respectively). Potential use of yeasts as biocontrol agents of soil born fungal plant pathogens and as plant growth promoters were recent investigated by EL-

S.No.	Yeast sps	Phylum/ Group (Stage)	Sources/Samples	
1	Aureobasidium pollulens	Ascomycota (Anamorph)	Apple, green grapes.	
2	Bensingtonia phyllada	Basidiomycota (Anamorph)	Green grapes,	
3	Candida famata	Ascomycota (Anamorph)	Apple, green grapes date fruits,	
4	C. guillarmondii	Ascomycota (Anamorph)	Apple, fig fruit, Orange	
5	C. spherical	Ascomycota (Anamorph)	Apple, green grapes	
6	C krusei	Ascomycota (Anamorph)	Apple, fig	
7	Cryptococcus albidus	Basidiomycota (Anamorph)	Apple	
8	Cryptococcus victoriae	Basidiomycota (Anamorph)	Fig	
9	Debaryomyces hansensii	Ascomycota (Telomorph)	Fig	
10	Filobasidium uniguttulatum	Basidiomycota (Telomorph)	Green grape	
11	Kloeckera apiculata	Ascomycota (Anamorph)	Green grape	
12	Kluveromyces lactis	Ascomycota (Telomorph)	Apple, orange	
13	P. membranifaciencs	Ascomycota (Telomorph)	Apple, orange	
14	Rhodotorula. minua	Basidiomycota (Anamorph)	Date fruit & fig	
15	R. mucilaginosa	Basidiomycota (Anamorph)	Green grapes, orange	
16	R.rubra	Basidiomycota (Anamorph	Apple, green grapes	
17	R.toruloides	Basidiomycota (Anamorph)	Apple, green grapes,	
18	Saccharomyces cerevisae	Ascomycota (Telomorph)	Apple, green grapes date fruits	
19	Saccharomycodes ludwigii	Ascomycota (Telomorph)	Green grapes	
20	Zygosaccharomyces lentus	Ascomycota (Telomorph)	Green grapes.	

Table 2. Isolated and identified yeasts, their number of colony and their percent of occurrence, Berger – Parker dominance index and Relative dominance

S.No.	Yeast sps	Number of colony	Occurrence (%)	Berger- Parker	Relative
				dominance index (D)	dominance
1	Aureobasidium pollulens	17	03.54	0.0354	R
2	Bensingtonia phyllada	10	02,09	0.0209	R
3	Candida famata	48	10.00	0.1000	D
4	C guillarmondii	28	05.71	0.0571	G
5	C. spherical	13	02.70	0.0270	R
6	C krusei	15	03.10	0.0310	R
7	Crytococcus albidus	15	03.10	0.0310	R
8	Crytococcus victoriae	15	03.10	0.0310	R
9	Debaryomyces hansensii	31	06.04	0.0604	G
10	Filobasidium uniguttulatum	08	01.60	0.0160	R
11	Kloeckera apiculata	25	05.20	0.5200	G
12	Kluveromyces lactis	14	02.90	0.0290	R
13	P. membranifaciencs	30	06.02	0.0602	G
14	Rhodotorula mucilaginosa	45	09.37	0.0937	D
15	R.toruloides	26	05.4	0.0540	G
16	R. minua	25	05.20	0.0520	G
17	R.rubra	32	06.74	0.0674	G
18	Saccharomyces cerevisae	51	10.62	0.1062	D
19	Saccharomycodes ludwigii	13	02.70	0.0270	R
20	Zygosaccharomyces lentus	19	03.70	0.0370	R
	Total	480			

Tarabily and Sivasiyhamparam (2006). Wide variety of yeasts have been used extensively for biological control of post harvest diseases of fruits & vegetables (Punja, 1997). The yeast *Torulapsis candida* (*Candida famata*) effectively controls *Penicillium digitatum* infection on *Citrus* fruits (Arras et al, 1999). *Candida saitoana & C. oleophila* control post harvest diseases of apple & *Citrus* fruits (El-Ghaouth et al. 2000). Ghosh *et al* (2013) reported that *Candida famata* gave maximum percent of radial

inhibition (70.24 PIRG) followed by Pichia membranifaciens (68.21 PIRG), Rhodotorula mucilaginosa (60.56 PIRG), Debarvomvces hansensii (55.40 PIRG), against P. digitatum. The yeast elicited production of phytoalexins, scopoletin and scoparine and did not produce toxic substances against the pathogens Penicillium digitatum and Botrytis cinerea. It suggested that the yeast may reduce fungal infection by activating host's defense mechanisms (Arras & Arru, 1999). Fifteen antagonistic yeasts showed inhibitory activity against P. expensum based on nutrition and space competition (Coelho, 2007). The expression of an antifungal peptide (cecropin- A based peptide) in Saccharomyces cerevisae, inhibited the germination of Colletotrichum coccodes (causal organism of tomato fruit decay) was reported (Jones & Prusky,2005). Capdeville et al (2007) worked on the interaction between C. magnus and C. gloeosporioides on papaya fruits under electron microscope and reported that the yeast colonized wound surface of fruits much faster than the pathogen, overcompeting the latter for space and nutrition. Moreover, C. magnus produced a flocculent matrix, which affected hypal integrity of the pathogen. *Rhodotorula* sp produces rhodotorulic acid which inhibits the growth of the pathogen. In this experiment the mechanism of inhibition of growth of P. digitatum may be due to antifungal substances secreted by veasts.

This work including the diversity of yeast flora in fruit surfaces in 24-Parganas of West Bengal and screening of antagonistic yeasts against *P. digitatum* is new in its kind in India.

4. Conclusion

Therefore, these fruits (Orange, apple, green grapes, date fruits, and fig) of 24 –Parganas.

(N), West Bengal are good habitats of various yeast species including antagonistic yeasts and the antagonistic species specially *C guillarmondii* can be applied as biological control agents against post harvest *Penicillium* rot disease of *Citrus*.

Acknowledgement

The first author is very grateful to the Principal, R.K.M.V.C.College, Rahara, providing Lab. facilities and UGC, New Delhi for providing financial support.

Corresponding Author:

Dr Swapan Kr Ghosh Molecular Mycopathology Lab PG Department of Botany Ramakishna Centenary College Rahara, Kolkata700118, India E-mail:<u>swapan.krghosh@yahoo.com</u>

References

- 1. Arras G, Dessi R, Sanna P, Arru S. (1999). Inhibitory activity of yeasts isolated from fruits against *Penicillium digitatum. Acta. Horticulturae* 48(5): 37-45.
- 2. Arras G, Arru S. (1999). Integrated control of post harvest *Citrus* decay and induction of phytoalexins by *Debaromyces hansenii*. *Adv. Hort. Sci.* 13: 76-81.
- 3. Barnet J A, Payne RW, Yarrow D. (2000). Yeasts characteristics and identification, 3 rd ed. Cambridge University Press.
- 4. Beech F W, Davenport R R. (1971). *Methods in Microbiology* 4:153-182.
- 5. Coelho AR, Celli MG, Ono EYS, Wosiacki G. Hoffman FL, Pagocca FC, Hirooka EY (2007). *Braz. Arch. Biol. Techol.* 50(4): 1-11.
- 6. Capdeville GD, Souza (Jr.) MTS, Santos JRP, Miranda SP, Caetano AR, Falcao R. Gomes ACMM.2007. Scanning electron microscopy of the interaction between *Cryptococcus magnus* and *Colletotrichum gloeosporioides* on papaya fruit. Pesp. Agropec. Bras., 42(11):1537-1544.
- 7. Dhingra OD, Sinclair JB (1986). Basic plant pathology Methods, CRC Press, Inc.
- Domsch K, Gams W, Anderson T H (1980). Compendium of soil Fungi Vol. –I & II, Academic Press, London.
- 9. Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Gold-Schmidt E E, Porat R. (2002). Induction off resistance to *Penicillium digitatum in the grapefruit by yeast biocontrol agent Candida oleophila. Phytopathol.* 92:393-399.
- Droby S, E. Chalutz E, Wilson EL, Wisniewski M. (1989). Characterization of the biocontrol activity of *Debaryomyces hansenii* in the control of *Penicillium digitatum* grapefruit. *Can. J. Microbiol*.35: 794-800.
- 11. Droby S, Wisniewski M, El-Ghauoth A, Wilson C. 2003. Biological control of post harvest diseases of fruits and vegetables: Current achievements and future challenges. *Acta Hort*. 628:703-713.
- 12. EL- Tarabily KA, Sivasiyhamparam K. (2006). Potential of yeasts as biocontrol agents of soil borne fungal plant pathogens and as plant growth promoters. *Mycoscience* 47: 25-35.
- 13. Ghosh SK, Samaddar KR. (1991). Characterization and biomass production potential of yeast flora of some Natural sources of Kalyani. J. Mycopathol. Res. 29 (2): 111-117.
- 14. Ghosh SK.2011. Study of yeast flora from Fruit of *Syzyzium cunini*. *Agri. Bio. J N. America* 2(8):1166-1170.

- 15. Harrison I, Laverty M., Sterling E. 2004. Species Diversity, version 1.3 (http://enx.org/content /m12174/1.3).
- He D, X-Dong Z, Heng Y, Yin M, Sun P, Zhang HY. (2003). *Bot. Bull. Head. Sin.* (2003) 44: 211-216.
- 17. Savova I, Nikolova M.2002. Isolation and taxonomic study of yeast strains from Bulgarian dairy products. *J Cul. Collection* 3:59-65.
- 18. Jones R W, Prusky D.2005. Expression of an antifungal peptide in *Saccharomyces*: a new approach for biological control of the post harvest disease caused by *Colletotrichum coccodes.-. Phytopathol* 92(1): 33-37.
- 19. Kurtzman CP, Fell JW (1999). The yeasts a taxonomic study, North Holland, Amsterdam, 1055p.
- Kurtzman CP, Fell JW, Boekhout, T. (2012). The yeasts – a taxonomic study,5th Ed. North Holland, Amsterdam.
- 7/25/2018

- Mustaq M S, Nahar MH, Hashmi (2004). Isolation and identification of yeast flora from soil of Karachi, Pakistan. *Pak. J. Bot.* 36(1): 173-180.
- 22. Nagamani A, Kunwar I, Manoharachary C. (2006). *Hand book of Soil Fungi*. I.K. International, New Delhi, pp 477.
- 23. Pimenta RS, Silva FL, Silva JFM, Morais P B, Rosa DCA, Correa Jr A.2008. Biological control of *Penicillium italicum*, *P. digitatum* and *P. expensum* by the predacious yeast *Saccharomyces schoenii* on oranges. *Braz. J. Microbiol.* 39(1):1-10.
- 24. Punja ZK. (1997). Comparative efficacy of bacteria, fungi and yeasts as biological control agents for disease of vegetable crops. *Can J Plant Pathol.* 19:315-323.
- 25. Ross A, Harrisson JS (1987-1993). The Yeast Vol. 1-5 Academic Press, London.