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Abstract: Hyperspectral remote sensing is a promising tool for analysing and evaluating the risk of increasing soil 
salinity especially in arid and semiarid areas. It either occurs naturally or is human-induced. The aim of this paper 
was to introduce an attempt for monitoring and mapping soil salinity using hyperion data in the capital of 
Iraq/Baghdad. The Modified Soil Adjusted Vegetation Index (MSAVI2), Normalized Difference Water Index 
(NDWI), Desertification Soil Index (DSI), and Salinity Index (SI) were chosen as evaluation factors for 
characterizing and mapping soil salinity severity. The extent of salt-affected soils of the study area was divided into 
four classes: Slightly Saline, Saline, Strongly Saline, and Extremely Saline. The results indicated that Support 
Vector Machine (SVM) technique generated soil salinity map with overall classification accuracy of 88.33% 
percent, and with a kappa statistic of 0.8444. Application of this technique showed high accuracy for mapping soil 
salinity severity using various indices generated from hyperspectral remote sensing data. It is concluded that these 
hyperspectral indices can be used to detect soil salinity effectively and the SVM algorithm is an efficient method for 
mapping and assessment soil salinity.  
[Amal Muhammad Saleh. Hyperspectral Remote Sensing in Characterizing Soil Salinity Severity using SVM 
Technique: A Case Study of Iraqi Alluvial Plain. J Am Sci 2017;13(11):47-64]. ISSN 1545-1003 (print); ISSN 
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1. Introduction 

A soil is said to be saline if the electrical 
conductivity of its saturation extract (ECe) is greater 
than 4 dS m−1 (decisiemens per meter). Saline soils 
contain excess soluble salts, generally chlorides and 
sulfates, with some carbonates and bicarbonates, of 
sodium, potassium, calcium, and magnesium. Soil 
salinity is harmful for plants barring the halophytes; it 
causes water stress through osmotic disturbances in 
plant tissue and by toxicity of some salt constituents. 
Some soils are naturally saline. They are formed by 
processes called primary salinization or natural 
salinization. Some soils are made saline by 
mismanagement of soil and crop, particularly 
improper irrigation and drainage, that is, changing the 
hydrologic balance. This is known as secondary 
salinization or human-induced salinization. 
Salinization, both natural and human induced, may 
occur in two climatic settings – arid and semiarid and 
humid regions. In arid and semiarid regions, scarcity 
of water due to low rainfall and high evaporation does 
not allow necessary leaching of salts. Moreover, there 
is a net capillary rise of water which brings salts to the 
surface soil. In humid areas, on the other hand, excess 
irrigation or poor drainage cause the groundwater 
table to rise to the root zone of plants and make the 
soil saline (Khan, 2014). 

Surface reflectance is highly affected by soil’s 
moisture content, salt content, color, and surface 
roughness. High salt concentrations can be identified 

through the existence of characteristic vegetation 
types and growth patterns or by the salt efflorescence 
and crust that are present on bare soils. Researchers 
have developed different salinity indices to detect and 
map soil salinity. Remote sensing data have been used 
extensively to identify and map saline areas, and the 
potential of remote sensing for assessing and mapping 
soil salinity is enormous. Multispectral satellite 
sensors are the preferred method for mapping and 
monitoring soil salinity, largely due to the low cost of 
such imagery and the ability to map extreme surface 
expressions of salinity. However, multispectral data 
have limited capabilities due to their spatial and 
spectral resolution. Hyperspectral imagery, with its 
fine spatial and spectral resolutions, allows soil 
salinity mapping in greater detail and represents 
another alternative (Allbed and Kumar, 2013). 

Use Support Vector Machine to perform 
supervised classification on images using a support 
vector machine (SVM) to identify the class associated 
with each pixel. SVM provides good classification 
results from complex and noisy data. SVM is a 
classification system derived from statistical learning 
theory. It separates the classes with a decision surface 
that maximizes the margin between the classes. The 
surface is often called the optimal hyperplane, and the 
data points closest to the hyperplane are called support 
vectors. The support vectors are the critical elements 
of the training set. The advantages of (SVM) are: (1) 
effective in high dimensional spaces; (2) still effective 
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in cases where number of dimensions is greater than 
the number of samples; (3) uses a subset of training 
points in the decision function (called support 
vectors), so it is also memory efficient (Wu et al., 
2004). 

The present study was undertaken with the 
objective of mapping soil salinity severity of the 
capital of Iraq / Baghdad using SVM technique. 

 
2. Material and Methods 

 

 
Figure 1. Location map of the study area. 
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Figure 2. Brief methodology adopted in the study. 
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Figure 3. Hyperion data of the study area. 
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Baghdad is the capital of the Republic of Iraq, 
The city is located on a vast plain bisected by the 
River Tigris. The Tigris splits Baghdad in half, with 
the eastern half being called 'Risafa' and the Western 
half known as 'Karkh'. The land on which the city is 
built is almost entirely flat and low-lying, being of 
alluvial origin due to the periodic large floods which 
have occurred on the river. It is geographically 
situated on latitude 33º 18' 46.0980'' North and 
longitude 44º 21' 41.3568'' East (Fig. 1). 

Baghdad has a subtropical desert climate 
(Köppen climate classification BWh) and is one of the 
hottest cities in the world. In the summer from June to 
August, the average maximum temperature is as high 
as 44 °C (111 °F) accompanied by blazing sunshine. 
Rainfall has in fact been recorded on fewer than half a 
dozen occasions at this time of year and has never 
exceeded 1 millimetre (0.04 in). The humidity is 
typically very low (under 10%) due to Baghdad's 
distance from the marshy southern Iraq and the coasts 
of Persian Gulf, and dust storms from the deserts to 
the west are a normal occurrence during the summer. 
Winters boast mild days and chilly nights, the average 
January low is 3.8 °C (38.8 °F) but lows below 
freezing only occur a couple of times per year. Annual 
rainfall, almost entirely confined to the period from 
November to March, averages around 150 mm (5.91 
in), but has been as high as 338 mm (13.31 in) 
(Brugge, 2014). The brief methodology adopted for 
our study is shown in Fig. (2). 

Hyperion data were acquired over Baghdad city 
on 7-April, 2005 at 07:23:41 UTC (Fig. 3). The EO-1 
satellite is in a sun-synchronous orbit at 705 km 
altitude. Hyperion images 256 pixels with a nominal 
size of 30 m on the ground over a 7.65 km swath 
(Table 1). Hyperion data is acquired in pushbroom 
mode with two spectrometers. One operates in the 
VNIR range (70 bands between 356-1058 nm with an 
average FWHM of 10.90 nm) and the other in the 
SWIR range (172 bands between 852- 2577 nm, with 
an average FWHM of 10.14 nm). Of the 242 Level 
L1R bands, 44 are set to zero by software during 
Level L1R processing (bands 1-7, 58-76, 225-242). 

Post-Level L1R data processing of the acquired 
Hyperion scene contains correction for striping pixels, 
FLAASH atmospheric correction, and Geometric 
Correction. Hyperion data includes digital number to 
radiance transformation, radiance to reflectance 
conversion as described in this section. 

The first 12 VNIR bands and many SWIR bands 
of Hyperion are influenced by striping. Using the 
ENVI 5.1 remote sensing software package, the 

abnormal pixels’ DN values are replaced with the 
average DN values of the immediate left and right 
neighboring pixels, assuming that nearby pixels have 
the highest spatial autocorrelation with a center pixel 
(Goodenough et al., 2003). The abnormal pixel 
detection algorithm performed well for most bands, 
except for intensively striped ones. 

The nature of remote sensing requires that solar 
radiation pass through the atmosphere before it is 
collected by the instrument. Because of this, remotely 
sensed images include information about the 
atmosphere and the earth’s surface. For those 
interested in quantitative analysis of surface 
reflectance, removing the influence of the atmosphere 
is a critical pre-processing step. To compensate for 
atmospheric effects, properties such as the amount of 
water vapor, distribution of aerosols, and scene 
visibility must be known. Atmospheric and 
radiometric corrections were performed using the 
ENVI 5.1 remote sensing software package using 
FLAASH atmospheric correction modeling tool that 
corrects wavelengths in the visible through near-
infrared and shortwave infrared regions, up to 3µm 
(ENVI, 2009) (Fig. 4). The various parameters used in 
FLAASH atmospheric correction are given in Table 
(2). 

 
 

Table 1. Summary of Hyperion Sensor (EO-1) 
characteristics.  

Parameters Hyperspectral - EO-1 

EO-1 launched 21 November 2000 

Altitude 705 km 

Swath Width 7.5 km 

Spatial Resolution 30 m 

Spectral Resolution 10 nm 

Radiometric resolution 12 bits 

Spectral Coverage Continuous 

Pan Band Resolution N/A 

Spectral channels 220 unique channels 

VNIR range 70 channels, 356-1058 nm 

SWIR range 172 channels, 852-2577 nm 

No. of columns 3400 

No. of lines 256 

Instantaneous field of 
view (IFOV) 

42.4 microradian 

 [Source: Liao et al., 2000]  
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Figure 4. Spectral Curve: (a) before FLAASH, (b) after FLAASH. 

 
Table 2. Parameters used in FLAASH atmospheric correction.  

Parameter Atmospheric Correction 

Scene Center Location Lat 33.19, Lon 44.32  
Sensor Altitude 705 km 
Ground Elevation 0.034 km 
Pixel Size 30 m 
Flight Date 07.04.2005 
Flight Time 07h 23m 41sec 
Atmospheric Model Mid-Latitude Summer 
Water Retrieval No 
Water Column Multiplier 1.00 
Aerosol Model Rural 
Aerosol Retrieval 2-Band (K-T) 
Initial visibility 40 km 
Spectral polishing Yes 
Width (No. of bands) 9 
Wavelength Recalibration No 
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Figure 5. Geometric corrected image of the study area. 
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Figure 6. Image of the study area with soil sampling points. 
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Table 3. Chemical-Physio characteristics of the study area.  

No. of Samples ECe dSm-1 Classification Texture 

45 < 4 Slightly Saline Loam 
47 4 - 8 Saline Silt Loam 
45 8 - 16 Strongly Saline Clay Loam 
43 > 16 Extremely Saline Silt Loam 

 
Table 4. Vegetation and soil indices used in this study. 

Spectral Indices Equation Reference 

Modified Soil Adjusted 
Vegetation Index 

MSAVI2 	=

	�2 ∗ ������ + 1 −

	�(2 ∗ ������ + 1)� − 8 ∗	(������ −	������)	�/2 

 Qi et al. (1994)  

Normalized Difference 
Water Index 

NDWI = (R864nm – R1245nm)/(R864nm + R1245nm) Gao (1996) 

Desertification Soil Index DSI = (R1648nm – R498nm)/(R1648nm – R2203nm + 0.2) Wu et al. (2010) 

Salinity Index SI = �����.���� ∗ 	����.���� Khan et al. (2001) 

 
The geometric correction was carried out in 

relation to the 1:50000 topographic map covering the 
study area using a polynomial approach. The 
correction accuracy was determined by calculating the 
residual errors between the value obtained by the 
application of the function and the actual value (Fig. 
5). 

Hyperion data consists of number of continuous 
spectral bands, each pixel of which stored the energy 
as a digital number (DN). The digital numbers were 
stored as 16-bit signed integer. The following equation 
was used on individual band to convert DN into 
Radiance values. Each band of VNIR (1 to70) and 
SWIR (71 to 242) was divided by its scale factor i.e 
40 and 80 respectively (Thenkabail et al., 2004a). 

����

��
,
����

��
 

To convert the radiance into reflectance, 
following formula was used on individual band and 
was stacked in further processing steps 
(ThenkabailPS,2004b): 

�� = 
����

�	

��������	��
  

Where: 
�� = Unitless planetary reflectance. 
�� = Spectral radiance at the sensor's aperture. 
�� = Earth-Sun distance in Astronomical units. 
�����	 = Mean solar exoatmospheric 

irradiances. 
�� = Solar zenith angle in degrees.  
Earth-sun distance was calculated using 

following equation: 
� = � − �.����� ∗ ���(�. ���� ∗ (������	���−
�))  

A total number of 180 random soil samples at 
depths of 0-30 cm were collected by Ministry of 
Water Resources/National Center for Water Resources 
in April and March-2005, hence the dataset was 
possible to evaluate the soil salinity conditions. Each 
sampling site was georeferenced and located on the 
ground by the use of a GPS into UTM projection 
(Zone 38 North, WGS 84) (Fig. 6). The standard 
procedure of determining soil extract salinity in terms 
of Electrical Conductivity (EC) was followed 
according to Shaw (1994) under laboratory condition 
(Table 3).  

Table (4) summarize vegetation and soil indices 
that have been proposed and used for soil salinity 
monitoring and mapping in this study. 

Salt affected soils are usually characterized by 
poorly vegetated developed areas and such state of 
stressed vegetation could be an indirect indicator to 
predict and map soil salinity. Among the vegetation 
indices, A Modified Soil Adjusted Vegetation Index 
(MSAVI2) was used in current study. 

The Normalized Difference Water Index 
(NDWI) is a satellite-derived index from the Near-
Infrared (NIR) and Short Wave Infrared (SWIR) 
reflectance which makes it sensitive to changes in 
liquid water content and in spongy mesophyll of 
vegetation canopies (Gao, 1996). 

Desertification through soil salinization as a 
process of land degradation is active in arid and semi-
arid environment. Concerning the data required for 
estimating the Environmental Sensitivity to 
desertification, the Desertification Soil Index (DSI) 
was computed. The reflective difference between 



 Journal of American Science 2017;13(11)           http://www.jofamericanscience.org 

 

56 

1648 nm and 498 nm can highlight the desertification 
soil (Wu et al., 2010). 

The assessment of soil salinity was worked using 
Soil Salinity Index (SI). This index was obtained 
depending on the factors related to the parent material 
(PM), the electrical conductivity of soils (EC), 
drainage (D) and to the field slope (S). The data 
recorded in the red spectral band were used in the 
analysis to check an idea to use just spectral satellite 
data in this band for salt-affected area delineation 
(Khan et al., 2001). 

Support Vector Machine a classification system 
derived from statistical learning theory. It separates 
the classes with a decision surface that maximizes the 
margin between the classes. The surface is often 
called the optimal hyperplane, and the data points 
closest to the hyperplane are called support vectors. 
The support vectors are the critical elements of the 
training set. SVM includes a penalty parameter that 
allows a certain degree of misclassification, which is 
particularly important for non-separable training sets. 
The ENVI SVM classifier provides four types of 
kernels: linear, polynomial, radial basis function 
(RBF), and sigmoid. The default is the radial basis 
function kernel, which works well in most cases. 

RBF ����, ��� = ����−���� − ���
�
� , �	 > 0 

Where: 

����,��� is called kernel function; ��  and, �� are 
training vectors. 

� is the gamma term in the kernel function. 
SVM examines all of the rule image values to 

determine those that exceed the reclassification 
probability threshold. The class information and 
probability information associated with these pixels 
are stored for later application to the result image. The 
examination process continues at the next higher-
resolution pyramid level, except that SVM performs 
classification only for pixels that are not marked as 
classified at the lower-level resolution. The process 
repeats until it reaches the full-resolution layer (Hsu et 
al., 2007). 

 
3. Results  

Soil salinity index as a remotely sensed indicator, 
typically depends on the vegetation growing 
conditions which are helpful for mapping spatially the 
distribution of soil salinity (Tilley et al., 2007). 
According to Carter (1993) cell structure damage and 
chlorophyll reduction could be reliably measured 
using reduced near infrared reflectance (NIR) and 
increased visible reflectance (VIS) among several 
plant species in response to stress. The resulting 
MSAVI2 values in the classified image are either 

positive, negative or zero. A positive MSAVI2 value 
indicates that there is an increase in the vegetation, 
while a negative value indicates a decrease in 
vegetation. A zero value indicates no change in 
vegetation. As halophytic vegetation grows naturally 
in saline soils, therefore, it has been used as an 
indirect indicator to predict and map soil salinity 
(Allbed and Kumar 2013). Fig. (7) showed MSAVI2 
values for the whole study area with a maximum value 
of 0.404 and a minimum value of 0.886 indicating the 
influence of salinity on vegetation.  

The Normalized Difference Water Index was 
proposed for remote sensing of vegetation liquid water 
from space. Absorption by vegetation liquid water 
near 860 µm was negligible. Weak liquid absorption 
at 1240 Iµm was present (Gao, 1996). Spatial 
distribution of NDWI index was mapped (Fig. 8) with 
a maximum value of 0.710 and a minimum value of 
1.324 indicating that salinity increases with lower 
NDWI values which explained due to salt 
accumulation in soils. Under salinity stress conditions, 
there is no enough available water in soils for proper 
vegetation growth (Yang et al., 2011). 

The Desertification Soil Index for assessing and 
mapping of desertification was adopted for 
investigating the active desertification processes in 
this study area depending upon the soils, climate, 
vegetation and soil management. Wu, et al. (2010) 
reported that in DSI imagery, the deretification soil 
has the highest DSI value (bright), the bare land, wild 
grass ground and cultivated land have relatively high 
values (middle) while the vegetation and water bodies 
had low values (dark). Fig. (9) shows the spatial 
distribution of DSI index in the study area indicating 
that the high sensitive areas for desertification may be 
due to the poor vegetation cover, and human factors. 
The low sensitivity for desertification is due to the 
good vegetation cover and soil quality. 

The study area consisted to be the area of 
extreme temperature ranges. Excess irrigation regimes 
in poor drain soils lead to waterlogging problems and 
salts accusation (Elhag, 2016). Singh and Sirohi 
(1994) noted that a crusted saline soil surface is 
generally smoother than a non-saline surface and 
exhibits high reflectance in the visible and NIR bands. 
Despite the effects of salt features on the soil surface 
on the spectral reflectance, they have been considered 
good direct indicators of soil salinity. ( Fernandez-
Buces et al., 2006). Estimated values of Soil Salinity 
Index was used to map and classify soil salinity in the 
whole study area indicating that the vegetation as well 
as waterlogged areas are having the least values for 
salinity index (Fig 10). 
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Figure 7. MSAVI2 map of the study area. 
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Figure 8. NDWI map of the study area. 
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Figure 9. DSI map of the study area. 
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Figure 10. SI map of the study area. 
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Figure 11. Multiple band image. 
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Figure 12. Soil salinity severity map of the study area. 
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Table 5. Accuracy assessment of soil salinity severity classification using SVM. 

Class Name 
Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Slightly Saline 45 45 40 88.89% 88.89% 
Saline 47 48 42 89.36% 87.50% 
Strongly Saline 45 44 39 86.67% 88.64% 
Extremely Saline 43 43 38 88.37% 88.37% 
 Overall Classification Accuracy = 88.33%  
Overall Kappa Statistics = 0.8444 

 
The four hyperspectral indices were combined 

with new multiple band image in ENVI software and 
used for classification using SVM (Fig. 11, 12). The 
study area was classified into four salinity severity 
classes i.e., slightly saline, saline, strongly saline, 
extremely saline. The region of interests (ROIs) was 
selected based on the data generated by 180 soil 
sampling. Classification probability threshold value 
set the probability that is required for the classifier to 
classify a pixel. Pixels where all rule probabilities are 
less than this threshold are unclassified. Here the 
value is set as 0, thus classifying all the pixels into one 
or the other class. 

The major reasons for increasing soil salinity 
problems in the study area are intensive irrigation, 
rising groundwater table and consequent soil 
salinization are long-term problems for the central and 
southern Iraq. The genesis of soil salinity in the study 
area is attributed to the salt content of the irrigation 
water and salt contents of groundwater. Large scale 
salt accumulation is the result of low rainfall and high 
evapotranspiration caused by the arid climate. 
Insufficient and inappropriate drainage facilities for 
the disposal of saline drainage water generated by 
irrigated agriculture. Moreover Iraqi soils are rich in 
the naturally occurring parent materials such as 
limestone, sandstones (Qureshi and Falahi, 2015). 

To evaluate the performance of SVM 
classification, a stratified random sampling method 
was used for accuracy assessment (Congalton, 1991). 
Table (5) summarizes the accuracy assessment of 
various salinity classes using SVM classification. The 
overall classification accuracy obtained was 88.33% 
with a kappa statistic of 0.8444. we found high 
accuracies for all salinity classes. The overall result 
showed that the SVMs are based on the principle 
called Structural Risk Minimization (SRM) 
maximizing the margin between a separating 
hyperplane and data points closest to the hyperplane 
(Huang et al., 2002). 

 
4. Discussions  

Soil salinity, either naturally occurring or 
human-induced, is a serious global environmental 
problem, especially in arid and semi-arid regions. Soil 

salinity was assessed with hyperspectral remote 
sensing so as to explore its potential application in this 
study area. The hyperspectral indices MSAVI2, 
NDWI, DSI, and SI were used as appraisal factors for 
assessing and mapping soil salinity. The results 
showed that these spectral indices are effective in 
distinguishing between various categories of salt 
affected soils. These indices when used for mapping 
of soil salinity severity using SVM method yielded 
maps of considerable accuracy with an overall 
accuracy of 88.33%. The validation of the accuracy 
assessment shows that soil salinity severity class maps 
are reliable and correlate significantly with actual 
field circumstances throughout the study area. 
Monitoring and temporal soil salinity investigation are 
the keystone exercise required for adequate natural 
resources management plans in the near future.  
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