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Abstract: Soil salinity is one of the most damaging environmental problems especially in arid and semi-arid 
regions. Remotely sensed data with a significant correlation to ECe were considered for developing the regression 
models. The aim of this study was to develop statistical regression models based on remotely sensed data to predict 
and map spatial variation in soil salinity in Basrah area. Different spectral indices were calculated from original 
bands of Landsat OLI and TIRS satellite images. Statistical correlation between field measurements of Electrical 
Conductivity (ECe) with the salinity indices showed that the Brightness Index (BI_1) had the highest correlation 
with ECe (R2 = 0.95). Ordinary Cokriging geostatistical technique was applied to estimate and identify the spatial 
variability of ECe (the primary variable) with the soil salinity indices (the secondary variables). The results suggest 
that estimation can be significantly improved using Cokriging. Compared with the Ordinary Kriging results using 
only primary data set of ECe, Cokriging improves the estimations greatly by increasing correlation of estimated and 
actual ECe (R2 = 0.668). Soil salinity map generated by the Ordinary Cokriging procedure showed that strongly 
saline soils (>16 dS m-1) with variable spatial distribution were the dominant class over the study area. The results 
of these models allow to interpolate and classify salinity on a more realistic, and continuous scale. 
[Amal Muhammad Saleh. Evaluation of Different Soil Salinity Mapping Using Remote Sensing Indicators and 
Regression Techniques, Basrah, Iraq. J Am Sci 2017;13(10):85-97]. ISSN 1545-1003 (print); ISSN 2375-7264 
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1. Introduction 

Soil salinity is a dynamic process with severe 
consequences for the soil, hydrological, climatic, 
geochemical, agricultural, social, and economic 
aspects. Information on the spatial extent, nature and 
distribution of soil salinity is becoming very essential. 
Thus, timely detection of soil salinity, monitoring and 
assessment of its severity level and extent become 
very important in its beginning at local and regional 
scales. (Allbed and Kumar, 2013). Soil salinity is a 
common form of land degradation in irrigated areas 
located in dry land environments. The physical 
appearance of salinity is strongly influenced by soil 
properties (e.g., moisture, texture, mineral 
composition, and surface roughness) as well as type of 
vegetation cover (e.g., halophyte and nonhalophyte, 
salt-tolerant and nonsalt-tolerant) (Farifteh et al., 
2006). 

Conventionally, soil salinity has been measured 
by collecting in situ soil samples and analyzing those 
samples in the laboratory to determine their solute 
concentrations or electrical conductivity. However, 
these methods are time-consuming and costly since 
dense sampling is required to adequately characterize 
the spatial variability of an area but remote sensing 
data and techniques offer more efficiently and 
economically rapid tools and techniques for 

monitoring and mapping soil salinity (Ghabour and 
Daels, 1993). 

Remote sensing data and techniques have been 
progressively applied to monitor and map soil salinity 
since 1960s when black-and-white and color aerial 
photographs are used to delineate salt-affected soils 
(Dale et al., 1986). Satellite data has a great potential 
for monitoring salinization in both spatial and 
temporal extents. Remote sensing data can be used as 
input into a geographic information system (GIS) for 
further analysis and comparison to other data. Sensors 
with improved resolution are able to recognize more 
details for better results and precision. Using remote 
sensing, soil salinity can be mapped both directly, by 
reflectance from bare soil, or from the salt crust, and 
indirectly from vegetative coverage and health (Abbas 
and Khan, 2007). 

The main objectives of this study are: (i) to 
develop effective combined spectral-based statistical 
regression models using Landsat OLI and TIRS 
satellite images, (ii) to predict and map spatial 
variation in soil salinity in a part of lower 
Mesopotamia of Iraq, Basrah area, using geostatistical 
techniques, integrating a limited data set of soil 
salinity measurements (ECe) as a primary variable 
with Landsat OLI and TIRS satellite image as a 
secondary data source. The result of this methodology 
will be qualified using the cross validation method. 
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2. Material and Methods  
Basra is located on the Shatt-Al-Arab waterway, 

downstream of which is the Arabian Gulf. It is 
geographically situated on latitude 29º07'58.74"-
31º17'15.88'' North and longitude 46º34'19.63"-
48º36'59.06" East (Fig. 1). Basra has a hot desert 
climate (Köppen climate classification BWh), like the 
rest of the surrounding region, though it receives 
slightly more precipitation than inland locations due 
to its location near the coast. During the summer 
months, Basra is consistently one of the hottest cities 
on the planet, with temperatures regularly exceeding 
50 °C (122 °F) in July and August. In winter Basra 
experiences mild weather with average high 
temperatures around 20 °C (68 °F). High humidity-
sometimes exceeding 90% - is common due to the 
proximity to the marshy Arabian Gulf. The rain is 
irregular and falls only during winter, the average 
annual precipitation in Basrah area is about 140 mm, 
and evaporation from 50 to 250/600 mm a month 
(January and July means). The ground water flow in 
Lower Mesopotamia basin is toward southeast i.e. 
toward Arabian Gulf., this water exhibit a seasonal 
and spatial variation according to geological, 
hydrological and environmental impact. The low level 
of Basrah surface and the availability of much surface 
water such as Arabian Gulf, Marshes, Shatt Al-
Basrah, and Shatt Al-Arab River and its tributaries 
causing the high water table level, which increases the 
soil salinity under high evaporation rate (Al-
Marsoumi and Al-Jabbri, 2007). 

 Based on the fieldwork and ground truth data 
performed by Ministry of Water Resources/National 
Center for Water Resources Management, A total 
number of 109 random soil profiles were examined in 
different locations. The exact coordinates of each soil 
profile were precisely defined in the field by a global 
positioning system (GPS). Fig. (2) shows the location 
of the observation sites where soil samples were 
collected from the surface horizon (0–20 cm). 
Electrical conductivity soil salinity measurements 
(ECe) dS m-1 were determined in the soil water 
extract out of the saturated soil paste (Page et al., 
1982). 

Soils were classified as Entisols according to 
Soil Taxonomy (Soil Survey Staff, 2014) (Table 1). In 
the Entisols, only Ochric epipedon existence was 
identified. All soil profiles are still in developing 
phase. Over all the soils are very high CaCO3 
contents, but very low in organic matter. 

The Landsat Operational Land Imager (OLI-8) 
satellite images were used in this study and were 
acquired near the actual soil sampling dates (Table 2). 
The images were georectified to a Universal 
Transverse Mercator (UTM) coordinate system, using 

World Geodetic System (WGS) 1984 datum, 
assigned, to north UTM zone 38-39. Typical 
atmospheric and radiometric corrections and spatial 
resolution enhancement were performed. All the 
remote sensing data processing was performed using 
ERDAS IMAGINE version 9.2 software. 

Soil salinity detection using remote sensing 
techniques developed in numerous studies. In this 
study, we applied different indices for all the Landsat 
images to detect salt mineral in soils based on the 
different responses of salty soils to various spectral 
bands (Table 3). we removed panchromatic, cirrus, 
coastal aerosol, SWIR 1, SWIR 2 infrared, and 
thermal infrared bands. In addition to salinity indices, 
we used the bands B2, B3, B4, and B5 (centered 
respectively at 480, 560, 655, and 865 nm) to analyze 
the performances of Landsat spectral bands in 
detecting and mapping soil salinity. 

Data were analysed statistically. Classical 
descriptors were determined, such as mean, 
maximum, minimum, standard deviation and 
skewness of data distribution. The Shapiro–Wilk 
statistic (W) was computed for ECe data set to test the 
normality of the distributions (Shapiro and Wilk, 
1965). 

Stepwise regression was used to determine the 
variables that best explained most of the variability of 
the dependent variable, which was ECe. All the 
developed regression models were tested, models with 
a high R2 signifying a strongly linear relationship. The 
best performed regression model was chosen and used 
to predict and map the spatial variation in soil salinity. 
All statistical analyses were performed by IBM® 
SPSS® Statistics v.23.0 Software. 

The variability of soil salinity representing 
horizontal distribution of salts in continuous model 
was mapped. Isotropic semivariogram and cross-
semivariogram functions were calculated to quantify 
and model the spatial variability degree of ECe data 
(Isaaks and Srivastava, 1989). The experimental 
semivariogram for a regionalized variable of Z can be 
defined as follows: 

�(�) =
�

��(�)
�[�(�� + �) − �(��)]

�

�(�)

���

	(�) 

where γ(h) is the experimental semivariogram 
value at distance interval h; �(ℎ) is number of sample 
value pairs within the distance interval ℎ ; �(��) , 
�(�� + ℎ)	is sample values at two points separated by 
the distance interval ℎ. R2 was used to select the exact 
form and best fit of the semivariogram model. The 
spherical model defined in equation (2) provided the 
best fit for the experimental semivariance for original 
and de-trended data of ECe. 
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Figure 1. Location map of the study area. 

 
Table 1. The classification of the soils according to Soil Taxonomy (Soil Survey Staff, 2014) 

Order Suborder Great Group Subgroup 

Entisols 
Fluvents Torrifluvents Typic Torrifluvents 
Pasmments Torripasmments Typic Torripasmments 

Aridisols Salids Haplosalids Typic Haplosalids 
 

Table 2. The dates of field measurements and Landsat 8 acquisitions  

Spacecraft_ID Sensor_ID No. of Bands 
Resolution 
(m) 

Path/ 
Row 

Date_Acquired 
Date of Field 
Measurements  

L
a

n
d

sa
t_

8 

O
L

I_
T

IR
S

 Reflective (8) 30.00 
165/038 2017-03-26 2017-03-10 
165/039 2017-03-26 2017-03-16 

Thermal (2) 30.00 
165/040 2017-03-26 2017-03-20 
166/038 2017-04-02 2017-03-23 

Panchromatic 
(1) 

15.00 
166/039 2017-04-02 2017-03-27 
166/040 2017-04-02 2017-03-30 
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Table 3. The most common salinity indices used in this study  
Salinity indices Equation Reference 

Brightness index-1 �� =	�(�� +	����) (Khan et al., 2005) 

Brightness index-2 �� =	��� 	+	���� (Fourati et al., 2015) 

Salinity index-1 �� =	�(� ∗ �) (Khan et al., 2001) 

Salinity index-2 �� =	�(� ∗ �) (Douaoui, 2006) 

Salinity index-3 �� =	�(�� + ��) (Douaoui, 2006) 

Salinity index-4 �� = 	�(�� + �� +����) (Douaoui, 2006) 

Salinity index-5 �� = �	 ∗ �  The proposed salinity index  
 

Salinity index-6 �� = ��� 	∗ ���� The proposed salinity index 

 
Figure 2. Soil sampling location of the study area. 
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� 	for	� < ℎ ≤ �	(�) 

�(�) = �� + �	for � > �  
where ��	is nugget effect value, �  is the partial 

sill,	(�� + �) is the sill or total semivariance, a is the 
range, and ℎ is the distance (Bai et al., 2010). 

Cross-semivariances were also calculated to 
examine a spatial relationship between two variables 
at the same location. Considering ��  (the primary 
variable) and �� (the secondary variable) the variables 
are said to be co-regionalized or interrelated (Heisel et 
al., 1999). The cross-semivariance is computed 
through the equation (3): 

���(�) =
�

��(�)
�[��(��) − ��(�� + �)][��(��)

�(�)

���

− ��(�� + �)]	(�)	 
where ���(ℎ) is the cross‐semivariance between 

� and � variables for the interval distance class, ℎ	is 
the lag distance, �(ℎ) is the total number of pairs for 
lag interval ℎ, ��(��) and ��(�� + ℎ) are the measured 
values of variable �� , ��(��)  and ��(�� + ℎ)  are the 
measured values of variable �� at points �� and �� + ℎ, 
respectively. The circular and spherical models 
provided the best fit for the cross‐semivariance for 
original data of ECe with salinity indices. The circular 
model defined in the following equation: 

 

(�) = �� + ��� −
�

�
����� �

�

�
� + �� −

��

��
�	 

 
for	� < ℎ ≤ � (4)  

�(�) = �� + �	for	� > � 
 

�(�) = � 
 
To define different classes of spatial dependence 

for the soil variable, the ratio between the nugget 
semivariance and the total semivariance or sill was 
used (Cambardella et al., 1994). If the ratio was ≤ 
25%, the variable was considered to be strongly 
spatially dependent, if the ratio was between 26 and 
75%, the soil variable was considered to be 
moderately spatially dependent; if the ratio was 
greater than 75%, the soil variable was considered 
weakly spatially dependent; if the ratio was 100%, or 
the slope of the semivariogram was close to zero, the 

soil variable was considered non-spatially correlated 
(pure nugget). 

Maps of kriged and co‐kriged predictions from 
fitted semivariograms and cross‐semivariograms were 
produced for soil variable using ordinary point kriging 
interpolation using ArcGIS v.10.4.1 and GS+ v.10 
(Gamma Design Software). The accuracy of kriged 
and co‐kriged maps was evaluated using cross 
validation statistical methods by comparing the actual 
and predicted values (Santra et al., 2008). 

  
3. Results  

The main statistical parameters for ECe data are 
given in Table (4). ECe values of the study area vary 
from very strongly saline (>16 dS m-1) to non-saline 
(0-2 dS m-1) (FAO, 1988). The Coefficient of 
Variation (CV) of 33.73% confirms that the variability 
of ECe within the study area was classified as medium 
(15%-75%) based on the CV values according to the 
groupings described by Dahiya et al. (1984). The 
hypothesis that the samples were taken from a random 
function with a normal distribution was tested using 
Shapiro–Wilk statistic (Table 5). Correlation analysis 
between the primary and secondary variables should 
be as high as possible. Therefore, the Pearson 
correlation coefficient was applied on the ECe values 
that were available and remotely sensed data of 
salinity indices to assess their efficiency in predicting 
soil salinity using Simple Linear Regression and 
Multiple Linear Regression techniques (Table 6). 

Remotely sensed data with a significant 
correlation to ECe were considered for developing the 
regression models. The purpose of this analysis is to 
select only the salinity index that have high 
correlation with ECe data. The developed regression 
models and their statistical results are shown in Table 
(7). All the developed regression models were highly 
significant. Among these models, model 1, provided 
the best fit overall. It had the highest R2, signifying a 
strongly linear relationship between BI_1 as an 
independet variable with ECe value as dependent 
variable and indicated that 95% of the variance in the 
ECe values could be explained by this model. 
However, models 6, 8, and 9 were able to predict soil 
salinity spatial variation with values of R2 0.791, 
0.837, 0.846 respectively as they met all the model 
selection criteria. 

 
Table 4. Descriptive statistics of electrical conductivity (ECe).  

Soil property 
Statistical parameter 
Mean Max Min Std.Dev. CV (%) Median Skewness Kurtosis 

ECe (dSm-1) 61.877 115.000 1.300 20.872 33.732 65.598 -0.203 0.107 
Max: maximum; Min: minimum; Std.Dev.: standard deviation; CV: coefficient of variation. 
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Table 5. Normal distribution test for Electrical Conductivity (ECe). 

Variable W [a] Normal Dist. P [b] 
ECe dS m-1 0.988 Not rejected 0.478 
 [a] W = Shapiro–Wilk statistic (Shapiro and Wilk, 1965). 
[b] P = significance level; normal distribution is not rejected at P > 0.05. 

 
 

Table 6. Correlation coefficient between ECe and remotely sensed data. 
Soil property BI_1 BI_2 SI_1 SI_2 SI_3 SI_4 SI_5 SI_6 
ECe 0.988٭٭0.852 ٭٭0.827 ٭٭0.881 ٭٭0.891 ٭٭0.885 ٭٭0.800 ٭٭0.875 ٭٭ 

 **Correlation is significant at the 0.01 level (2-tailed). 
 
 
Semivariogram coefficients for original data of 

ECe with the best‐fitted model are listed in Table (8). 
The R2 value show that Spherical model fit the 
experimental semivariogram data very well. The 
nugget to sill ratio (C0/C0+C) expressed as the nugget 
percentage (Ersahin and Brohi, 2006) was calculated 
for ECe data and used to evaluate the degree of spatial 
dependence. The nugget value from resulting 
experimental semivariogram indicate strong spatial 
dependence. The range of spatial dependence was 
about 730.28 m. The range of the semivariogram 
represents the average distance through which the 
variable semivariance reaches its peak value. 

To assess the accuracy of the Ordinary Kriging 
geostatistical technique, there is a cross validation 
analysis for evaluating effective parameters for 
Kriging. In cross validation analysis a graph can be 
constructed of the estimated vs. actual values of ECe 
data for each sample location in the study area. Each 
point on the graph represents a location in the input 
data set for which an actual and estimated value are 
available. The R2 value is the proportion of variation 
explained by the best-fit line (Fig. 3).  

Cross‐semivariograms coefficients of original 
ECe data with remotely sensed data are shown in 
Table (9). Cross‐semivariograms were calculated to 
explore and determine spatial interrelations 
co‐regionalized models between ECe and soil salinity 
indices. Among different experimental 
cross‐semivariogram models tested, Circular, and 
spherical models were best fitted to the experimental 
values of ECe with salinity indices. Spatial 
dependence expressed in percentage (Cambardella et 
al.,1994). Spatial dependence expressed in percentage 
(Cambardella et al.,1994). A low ratio (< 25%) means 
that a large part of the variance is introduced spatially, 

implying a strong spatial dependence of the variable. 
Table (9) shows that all models have relatively low 
nugget effects suggesting that spatial 
interrelationships are strong between ECe variable and 
soil salinity indices considered in this study. 

The sampling interval can be determined based 
on the combination of ECe with BI_1. The cross-
variogram between the primary and secondary data 
sets is modeled (here a low nugget effect) with a fitted 
range of 468.487m indicating that the intensive 
sampling scheme used resolved most of the spatial 
variation. The cross-variogram between ECe and SI_3 
data sets shows a Circular model with a fitted range of 
299.026m and a low nugget effect indicating a spatial 
smoothing among adjacent sampling points (Vieira 
and Gonzalez, 2003). Cross‐semivariogram between 
ECe and SI_5 data sets is modeled with a fitted range 
of 343.010m, while cross‐semivariogram between 
ECe and SI_6 data sets is modeled with a fitted range 
of 743.924m indicating that the contribution of the 
secondary information to the cokriging estimate 
depended not only on the correlation between primary 
and secondary variables but also on their patterns of 
spatial continuity (Goovaerts, 1999). 

To assess the accuracy of the Ordinary 
Cokriging geostatistical technique, there is a cross 
validation analysis for evaluating effective parameters 
for Cokriging. In cross-validation analysis a graph can 
be constructed of the estimated vs. actual values of 
ECe data for each sample location in the study area 
(Fig. 4., 5., 6.). The R2 values show that models fit the 
experimental cross‐semivariance data exceptionally 
well in all cases used in this study. Generally, cross-
variograms largely confirmed the findings of the 
simple correlation analysis, showing more spatial 
correlation between ECe and remotely sensed data.  
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Table 7. Developed regression models to predict ECe based on remotely sensed data.  
Model Variable Constant Regression Coefficient Standard Error R2 

1 BI_1 -10.783 39.617 10.168 0.945٭٭ 
2 SI_1 -20.573 80.110 12.587 0.640٭٭ 
3 SI_5 27.344 32.359 11.779 0.684٭٭ 

4 
BI_2 
SI_2 

-19.332 
19.684 
42.640 

 ٭٭ 0.819 8.957

5 
SI_3 
SI_4 

-19.413 
31.231 
16.123 

 ٭٭0.824 8.829

6 
BI_2 
SI_6 

0.188 
26.271 
10.618 

 ٭٭0.791 9.638

7 
BI_2 
SI_3 
SI_4 

-19.976 
12.956 
26.143 
9.194 

 ٭٭0.836 8.582

8 

SI_2 
SI_3 
SI_4 
SI_5 

-33.150 

33.422 
18.897 
20.048 
-11.632 

 ٭٭0.837 8.587

9 

BI_2 
SI_2 
SI_3 
SI_4 
SI_5  

-33.537 

11.994 
27.868 
17.240 
14.317 
-11.772 

 ٭٭0.846 8.380

 .Correlation is significant at the 0.01 level (2- tailed) ٭٭
 

Table 8. Coefficients of the experimental semivariogram model of Electrical Conductivity (ECe). 

Soil 
property 

Model 
Nugget, 
C0 

Sill, C0 
+ C 

Nugget/Sill ratio, 
C0/C0+C % 

Spatial 
dependence 
level 

Range, a 
(m) 

Model 
R2 

Cross 
validation R2 

ECe  
(dS m-1) 

Spherical 0.005 1.579 0.316 Strong 730.280 0.953 0.458 

 

 
Figure 3. Scatter plots of estimated vs. actual ECe using the experimental semivariogram model.  
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Table 9. Coefficients of the experimental cross‐semivariogram models for combination of Electrical Conductivity 
(ECe) with remotely sensed data. 

Combination of 
ECe with BI_SI  

Model 
Nugget, 
C0 

Sill, 
C0 + 
C 

Nugget/Sill ratio, 
C0/C0+C % 

Spatial 
dependence 
level 

Range, 
a (m) 

Model 
R2 

Cross 
validation 
R2 

ECe x BI_1 Circular 0.0030 0.362 0.829 Strong 468.487 0.954 0.668 
ECe x BI_2 Spherical 0.0044 0.246 1.788 Strong 402.880 0.961 0.619 
ECe x SI_1 Circular 0.0004 0.258 0.155 Strong 452.823 0.955 0.557 
ECe x SI_2 Circular 0.0003 0.113 0.265 Strong 700.949 0.973 0.613 
ECe x SI_3 Circular 0.0040 0.289 1.384 Strong 299.026 0.958 0.633 
ECe x SI_4 Circular 0.0025 1.767 0.141 Strong 969.301 0.963 0.610 
ECe x SI_5 Circular 0.0024 0.203 1.182 Strong 343.010 0.973 0.601 
ECe x SI_6 Circular 0.0033 1.019 0.324 Strong 743.924 0.969 0.610 

 

 
 
 

 
Figure 4. Scatter plots of estimated vs. actual ECe using the experimental cross‐semivariogram models for 
combination of remotely sensed data BI_1, BI_2. 
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Figure 5. Scatter plots of estimated vs. actual ECe using the experimental cross semivariogram models for 
combination of remotely sensed data SI_1, SI_2, SI_3. 
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Figure 6. Scatter plots of estimated vs. actual ECe using the experimental cross‐semivariogram models for 
combination of remotely sensed data SI_4, SI_5, SI_6. 
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Figure 7. Interpolate- Ordinary Cokriging map of ECe (dS m-1) 
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Spatial prediction map produced by the Ordinary 

Cokriging procedure using the cross-semivariogram 
coefficients in Table 9 for the combination of ECe 
with BI_1 (Fig. 7). The selected model in this study 
showed superiority in the prediction power (R2 = 
0.668) of soil salinity over the study area. 

The spatial distribution of ECe showed large 
surface areas with very strongly saline soil (67.045-
96.558 dS m-1) in Al-Zubair and Fao areas follows the 
pedological variation among desert soils. The spatial 
patterns of variation in ECe was associated directly to 
high evaporation, climate, low rainfall history, and 
local topography. 

The spatial prediction map shows also spatial 
distribution of ECe with lower values (27.515-67.045 
dS m-1) in alluvial soils (Al-Midaina, Al-Qurna, Shatt 
Al-Arab, and Abu Al-Khaseeb areas) compared to 
desert soils. The lower salinity levels may occur due 
to farming practices and different irrigation 
management. 

Similarly, spatial distribution of ECe in transition 
reign between alluvial and desert soils (Basrah) is 
shown in Fig. (7). The a rising of water table and salt 
accumulation at the surface combined with a high 
evaporation rate are one of the most likely factors that 
have resulted in the spatial variation in soil salinity 
over this area. 
 
 
4. Discussion 

Factors causing soil salinity include 
inappropriate and excessive irrigation without an 
adequate drainage system, irrigation water quality, a 
rising water table, climate, rainfall history, local 
topography, and farming practices. This study 
demonstrates that combining ECe with BI_1 into a 
regression model offers a potentially quick method to 
map and model the spatial variation of ECe in the 
study area. The spatial distribution map drawn based 
on Ordinary Cokriging explain clearly the spatial 
variability of the primary variable ECe with the 
secondary variable BI_1 due to the highest correlation 
(R2 = 0.668). The method of Ordinary Cokriging 
significantly improved the accuracy of interpolated 
Cokriged EC map as compared to Ordinary Kriging.  
At the end of the whole procedure, we recommend 
using independently measured, multivariate secondary 
information in estimating spatial variability of soil 
salinity mapping which can be used to implement or 
support effective soil reclamation programs that 
minimize or prevent future increases in soil salinity. 
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