Geochemistry, diagenesis and mineral associations of laterite deposits along the contact zone of Precambrian basement rocks and Nubia Sandstone between Wadi Dungash and Wadi Shait, South Eastern Desert, Egypt

Ibrahim Abu El-Leil¹, Hatem M. El-Desoky² and Ezzat, A. Shafea³

¹ Geology Department, Faculty of Science, Al-Azhar University, PO Box 11884, Nasr City, Cairo, Egypt ²Geology Department, Faculty of Science, Al-Azhar University, Egypt ³Mineral Resources Authority (Egyptian Geological Survey), Egypt

ezzatshafeh@yahoo.com

Abstract: Concentration of SiO₂, Al₂O₃, F₂O₃, Na₂O and K₂O represent the main restricted factors of laterite occurrence. Distribution of these oxides proved that the investigated laterite had formed in the upland area, predominantly of residual origin, under directly weathering of the parent rock into aluminum and iron by very intense leaching of alkalis and silica. Calculation of CIA, ICV, PIA and CIV indices proved that the investigated laterite had been formed by chemical weathering action of Natash Volcanics and decomposition of mafic minerals, accompanied with increasing of clay minerals, leaching of alkalis and increasing of Al⁺³ and Fe⁺³ contents. Mineral associations revealed that the ferruginous rocks often associated with gold, nickel, copper, pyrite and bismuth. Both mottled and ferruginous rocks are associated with Zincite, cerussite, siderite and corundum, to indices their own relationship with laterite occurrence.

[Ibrahim Abu El-Leil, Hatem M. El-Desoky and Ezzat, A. Shafea. Geochemistry, diagenesis and mineral associations of laterite deposits along the contact zone of Precambrian basement rocks and Nubia Sandstone between Wadi Dungash and Wadi Shait, South Eastern Desert, Egypt. *J Am Sci* 2017;13(8):32-54]. ISSN 1545-1003 (print); ISSN 2375-7264 (online). <u>http://www.jofamericanscience.org</u>. 5. doi:<u>10.7537/marsjas130817.05</u>.

Keywords: laterite, soil, geochemistry, Eastern Desert, Egypt.

1. Introduction

This paper deals mainly with the geochemistry, diagenesis and mineral association of the investigated

laterite and related rocks. According to the prepared geologic map (Fig.1), the investigated laterite deposits comprise the following rock units:

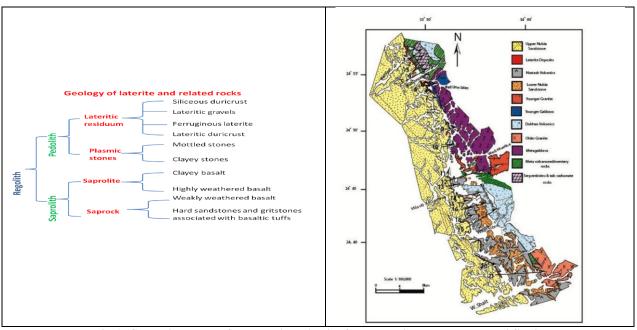


Fig.1. Geological map of the studied district from Wadi Dungash to Wadi Shait

Exactly (67) representative samples had been analyzed for major and trace elements (Tables 1-24).

The analyses had been done in the central laboratories of Egyptian Geological Survey. Actually (13) samples are analyzed for weakly weathered basalt, (12) samples from highly weathered basalt, (7) samples from clayey basalt, (6) samples from clay deposits, (9) samples from mottled rocks, (7) samples from lateritic duricrust, (7) samples from ferruginous rocks, and 6 samples from siliceous duricrust.

2. Geochemistry

2.1. Distribution of major elements

According to data given chemical analysis (Tables 1-24), the investigated SiO₂ shows a quite variation in allover the investigated rock units. The high SiO₂ value is recorded in the siliceous duricrust, that reaches (80. 83%) in average, whereas the lower value is recorded in the ferruginous rocks (26.75% in average). On the other hand, SiO₂ content is varying from (36.03% to 59.13%) in the weakly weathered basalt, from (25.8% to59.26%) in the clayey basalt, from (48.6% to 59.62%) in the clay deposits, from (19.58% to 39.82%) in the mottled rocks, from (41.7% to 53.67%) in the lateritic duricrust from (15.05% to 47.37%) in the siliceous duricrust.

Data given clearly show that the low SiO_2 content is recorded in the mottled and ferruginous rocks while the high content is recorded in the siliceous duricrust, the other types have moderate contents. However, it is clear that SiO_2 concentration depends essentially upon the rock source type. Actually, the lower SiO_2 concentration is mainly concentrated at the western part of the area mainly covered by laterite rocks. On the other hand, the eastern part, of the higher SiO_2 content is covered by Nubia Sandstone and Precambrian basement rocks.

 Al_2O_3 shows a considerable variation in the investigated laterite and related rocks. Actually, the high Al_2O_3 content is recorded in the mottled and ferruginous rocks reaching up to (29% and 21.04%) respectively. However, the low content is recorded in the siliceous duricrust (7.34%) and weakly weathered basalt (10.94%). The moderate content is recorded in the other rock types. However, it is varying from (12.49%) in the highly weathered basalt to (16.19%) in the claystone.

					Tal	ole 1					
					The maj	jor oxide	of sapro	ock			
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	Ca) Na ₂ O	K ₂ O	P ₂ O ₅	L.OI
1-9	50.57	3.76	10.82	15.62	0.42	3.55	7.27	1.75	0.97	1.17	3.69
2-5	44.75	3.71	10.6	14.69	0.67	7.21	9.29	1.56	0.69	0.95	5.32
5-2	46.01	3.91	11.99	16.11	0.24	5.32	9.35	2.69	1.12	1.11	1.86
7-5	40.18	3.34	10.63	14.05	0.79	4.24	14.1	2 1.82	1.2	0.69	9.63
9-6	49.39	2.96	12.15	14.05	0.52	5.11	9.11	1.76	0.78	0.43	3.27
13-8	49.15	4.07	11.62	11.27	0.26	3.88	8.63	4.9	0.24	0.72	4.97
14-6	47.62	3.37	12.63	14.54	0.21	5.64	9.92	2.96	1.2	0.64	0.99
15-3	52.81	4.95	10.99	6.4	0.24	0.57	11.8	5.44	0.31	0.89	5.28
18-6	42.99	2.3	14.28	7.28	0.93	7.38	6.54	6.77	0.38	0.43	10.03
19-5	37.33	3.87	9.46	12.28	1.49	4.03	16.1	9 3.03	0.01	1.32	10.70
20-5	36.03	2.86	8.18	14.53	1.23	4.06	17.1	9 2	0.06	0.33	13.20
21-6	59.12	3.2	11.55	9.55	1.22	1.33	9.55	2.34	0.54	0.3	7.66
21-7	50.26	0.9	7.39	7.27	0	5.66	3.4	2.32	5.64	0	8.81
Aver.	46.63	3.32	10.94	12.12	0.63	4.46	10.1	8 3.02	1.01	0.74	6.57
				÷	Tal	ole 2	•		•		
					The tra	nce eleme	nts of sa	prock			
	Sr		Ga	Ba	Rb]	ſa	Zr	Th	Nb	Hf
1.9	45	76	0	355	117	2	6	167.3	23	31	57

				The frace of	icincints of	saprock			
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf
1-9	457.6	0	355	11.7	2.6	167.3	2.3	31	5.7
2-5	518.1	0	2677.5	19.6	0	247.2	0	31.1	0
5-2	88.3	0	305.7	3.1	0	125.3	0	19.9	0
7-5	322.4	0	95.5	2.3	0	33.4	0	5.5	0
9-6	417.3	0	285	10.1	1.9	129.9	4.3	23.2	5.5
13-8	282.2	0	520.4	4.4	0	267.7	0	35.4	0
14-6	612.3	0	621.1	21.3	0	282.9	0	34.3	0
15-3	652	26	517.4	47.7	0	304	0	36.3	0
18-6	228	0	237.1	8.4	0	553.5	0	98.5	0
19-5	184.7	0	511.4	3.7	0	238.3	0	36.4	0
20-5	191.6	0	1209.6	6.6	0	146.6	0	23.8	0
21-6	105	0	295	8.9	0	1065	0	120	0
21-7	0	0	0	0	0	0	0	0	0
Aver.	312	2	586	11.3	0.3	273	0.5	38.1	0.8

				1	able 5				
				Follow the	e trace elem	ents of sapr	ock		
	Y	Cr	Pb	Ni	V	Zn	Со	Cu	Mo
1-9	17.4	29.5	7.6	2.3	395	311.1	53.2	26.7	2.3
2-5	23.3	55.8	26	20.9	253.7	117.1	56.2	32.7	0
5-2	6.2	103.5	4.1	44	186.5	222.4	122.9	31.7	0
7-5	2	1033.8	3	306.3	112.9	50.5	44.2	9.5	0
9-6	15.6	45.7	10	2.3	365	109.6	35.2	1.5	1.5
13-8	16.3	248.6	6.2	76.3	262.4	172	33.8	93	0
14-6	18.3	189.7	2.2	49.6	246.8	102.3	52	55.8	0
15-3	39	38.3	4.7	32.2	287.2	86	77.1	8.7	0
18-6	44.7	33.6	11.6	42.1	404.8	295.8	79.6	51.4	0
19-5	36.4	28.6	3	9.7	279.7	123	46.3	211.3	0
20-5	12.7	211.3	2.1	68.7	276.9	129.8	81.7	91.4	0
21-6	52	31	15	45	320	124	93	6	0
21-7	0	0	0	0	0	0	0	0	0
Aver.	21	157	7.3	53	260	141	59.6	55.7	0.29

Table 3

Tables 4-6. Show major oxides and elements of the saprolite (Highly weathered basalt) Table 4

		Table 4												
	The major oxide saprolite													
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	L.OI			
1-8	48.99	4.03	12.17	14.87	1.21	3.76	6	1.41	0.46	0.82	5.88			
6-3	47.11	4.93	10.93	13.42	0.93	3.11	8.14	2.95	0.06	1.14	6.88			
6-7	49.75	4.08	11.1	14.57	0.37	3.98	8.48	2.36	1.05	1.23	2.62			
10-8	48.45	2.91	13.45	14.13	0.59	6.26	6.53	2.38	0.67	0.42	3.82			
11-2	43.23	2.9	14.5	21.7	0.2	0.75	4.9	4.4	0.33	0.78	5.5			
12-7	47.49	4.95	11.16	16.09	0.32	7.66	2.54	3.5	0.01	0.4	4.58			
12-8	54.18	3.84	14.34	11.06	0.09	0.99	5.1	6.2	0.77	0.72	1.9			
14-4	43.54	3.8	10.23	15.95	0.12	3.51	6.06	2.69	1.29	0.82	10.92			
14-3	37.6	3.87	10.59	15.13	0.12	3.4	3.01	0.93	0.44	0.52	15.72			
14-2	48.17	4.1	11.28	15.89	0.41	5.4	6.43	2.91	0.22	0.88	4.10			
16-7	44.17	2.82	15.53	11.64	0.59	4.93	9.17	2.47	0.68	0.51	7.19			
17-8	44.34	2.64	14.64	15.36	0.51	3.67	9.98	2.74	0.33	0.49	5.99			
Aver.	46.34	3.7	12.49	14.98	0.45	3.95	6.36	2.91	0.52	0.72	6.25			

				Table	5									
		The trace elements of saprolite												
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf					
1-8	336.1	0	912	10.3	0.7	173.8	2.2	35.1	1.2					
6-3	235.9	0	745	2.8	3.2	175.7	3.8	38.3	4.9					
6-7	469.8	0	325	11.8	2.1	175.1	1.9	32.5	5.7					
10-8	411.8	0	243.5	10.6	1.8	138.6	4.7	23.2	2.6					
11-2	0	0	0	0	0	0	0	0	0					
12-7	0	0	0	0	0	0	0	0	0					
12-8	402.6	0	697.3	8.3	0	268.7	0	31	0					
14-4	110	0	198.8	5.8	0	919.6	0	40.2	0					
14-3	0	0	0	0	0	0	0	0	0					
14-2	367.4	0	582.3	3.8	0	252.1	0	31.6	0					
16-7	516.1	0	777.4	15.2	0	215	0	27	0					
17-8	478.2	0	463.5	7.7	0	201.1	0	25.6	0					
Aver.	277.3	0	412	6.35	0.6	210	1.0	23.7	1.2					

					Table o										
		Follow the trace elements of saprolite													
	Y	Cr	Pb	Ni	V	Zn	Со	Cu	Mo						
1-8	19.5	24.9	5.8	9.6	411	1149.3	152	205.4	1.6						
6-3	17.8	55.2	6.8	2.3	504	78.1	63.9	35.5	1.5						
6-7	18.8	31.2	6.3	2.8	413	67.3	42.7	18.5	1.5						
10-8	15.6	61.1	5	8	375	57.1	46.5	66.2	1.5						
11-2	0	0	0	0	0	0	0	0	0						
12-7	0	0	0	0	0	0	0	0	0						
12-8	11.5	172.2	22	28.1	219.6	48.5	27.9	9.5	0						
14-4	24.6	32	3.3	21.7	321.7	122.9	54.7	36.7	0						
14-3	0	0	0	0	0	0	0	0	0						
14-2	15.4	42.7	1.7	40.9	300.3	165.5	61	21.6	0						
16-7	12.4	175	2.6	31.7	289.9	69.3	66.3	15.7	0						
17-8	0	0	0	0	0	0	0	0	0						
Aver.	11	49.5	4.4	12	236	147	42.9	34	0.5						

Table 6

Tables7-9. Show major oxides and elements of the saprolite (clayey basalt) Table 7

					1 au									
		The Major Oxide of Saprolite												
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	L.OI			
1-7	46.02	3.29	15.74	13.54	0.88	6.1	5.15	2.02	0.35	0.97	5.60			
6-1	52.99	3.16	14.01	15.46	0.07	1.47	2.79	0.8	1.75	0.41	6.68			
12-6	40.25	2.36	15.95	10.04	0.04	2.03	2.93	7.05	0.88	0.82	8.38			
15-2	37.95	3.08	15.6	16.71	0.11	2.12	5.59	5.68	1.57	0.53	10.57			
18-2	59.26	1.61	16.11	5.68	0.03	3.46	1.24	2.2	2.51	0.1	5.91			
18-4	55.01	1.56	14.3	6.66	0.06	3.8	4.63	1.95	2.14	0.2	5.31			
20-4	25.8	2.76	16.5	16	0.08	1.26	1.26	13.55	0.12	0.14	10.7			
Aver.	45.3	2.54	15.45	12.01	0.18	2.89	3.37	4.75	1.33	0.45	7.59			

				Table	8				
				The trace e	lements	of Saprolite			
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf
1-7	331.7	22.1	1067.1	14.1	0	248.5	0	33.6	0
6-1	305.2	0	29.1	38.4	2.8	326.8	7.1	88.1	9.1
12-6	395.5	0	303.2	7	0	1577.4	0	144.9	0
15-2	234.7	0	694.8	5	0	241.9	0	32.1	0
18-2	102	0	205.7	6.6	0	1871.8	0	50.8	0
18-4	116	0	378.4	10.1	0	1200.5	0	91.3	0
20-4	160	0	249.6	11	0	745.8	0	128.9	0
Aver.	235	3.1	418	13	0.4	887	1	81.3	1.3

					Table 9										
		The trace elements of Saprolite													
	Y	Cr	Pb	Ni	V	Zn	Со	Cu	Mo						
1-7	25.3	28.7	3.6	55.3	268	988.6	179.4	190.8	0						
6-1	28.5	63.1	12.6	2.4	304	55.7	36	1.5	1.8						
12-6	98.9	46.6	18.5	81.2	303.4	84.8	72.2	11.6	0						
15-2	21.2	80.6	4.6	16.6	263.3	50.1	16.5	566.4	0						
18-2	29.1	26.2	20.3	34.4	207.7	92.1	49.7	113.3	0						
18-4	54.4	22.5	19	47.9	215.1	106	46.8	21.2	0						
20-4	62.7	117.8	16.1	46.5	513.2	43.8	91.8	9.7	0						
Aver.	45.7	55.07	13.5	40.6	296	203	70.3	130	0.2						

					Tabl	e 10								
		The Major Oxide of claystones												
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	L.OI			
6-4	57.41	2.71	14.3	9.7	0.04	1.89	3.49	0.92	2.04	0.58	6.50			
9-5	56.93	2.54	18.43	13.04	0.04	0.27	1.2	0	1.05	0.23	5.98			
13-5	48.48	1.25	14.36	7.62	0.01	0.62	1.5	7.84	0.11	0.5	8.32			
13-6	48.6	1.21	17.32	4.62	0.01	0.67	1.61	6.56	0.16	0.14	8.76			
18-5	59.62	1.7	16.22	5.63	0.02	3.66	1.2	2.1	2.56	0.3	5.54			
21-4	54.11	2.53	16.55	10.11	0.05	2.75	1.33	2.77	1.33	0.4	6.35			
Aver.	54.19	1.99	16.19	8.45	0.02	1.64	1.72	3.36	1.20	0.35	6.90			

Tables 10-12. Show major oxides and elements of the claystones Table 10

Table 11

				= •••										
		The trace elements of claystones												
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf					
6-4	266.4	0	475	50.2	1.3	381.5	3.4	99.3	7.2					
9-5	521.9	0	845	30.7	1.6	449.4	10.1	84.7	11.1					
13-5	110	0	198.8	5.8	0	919.6	0	40.2	0					
13-6	160	0	205.7	6.6	0	174.5	0	50.8	0					
18-5	105	0	230.7	11.3	0	1872.1	0	93.4	0					
21-4	98	0	308.6	7.7	0	1070.8	0	134	0					
Aver.	210	0	391	18.7	0.4	811	2.2	83.7	3					

Table 12

				Follow the	trace eleme	ents of clayst	ones		
	Y	Cr	Pb	Ni	V	Zn	Co	Cu	Мо
6-4	36.7	49.8	8.7	2.5	255	78.9	29.5	42.8	2.8
9-5	59.6	45.8	10.7	2	250	32.7	32.5	1.5	2.4
13-5	59.6	45.8	10.7	2	250	32.7	32.5	1.5	2.4
13-6	18.8	69.8	26.9	31.5	364.4	19.1	65.5	18.9	0
18-5	52	24.9	21.5	35	222.2	90	52	114.9	0
21-4	44.6	36.6	12.6	57.3	307.2	101.3	107.6	7.3	0
Aver.	45.2	45.4	15.1	21.7	275	59.1	53.2	31.1	1.2

Tables 13-15. Show major oxides and elements of the mottled rocks

					Tabl	e 13							
	The Major Oxide of mottled rocks												
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	L.OI		
2-4	38.86	4.6	21.5	22.36	0.11	1.64	0.99	0.05	0.99	0.21	8.65		
4-6	19.58	3.86	25.52	39.94	0.08	0.73	0.26	0.2	0.01	0.06	9.11		
4-7	21.15	3.71	52.92	37.91	0.09	0.04	0.85	0.14	0.03	0.01	8.78		
4-8	22.9	4.6	29.1	31.22	0.1	0.9	0.59	0.13	0.07	0	9.18		
4-9	21.48	5.32	27.97	30.83	0.09	1.07	0.95	0.8	0.03	0	10.82		
4-10	21.5	6.35	28.09	31.98	0.12	0.86	0.55	0.22	0.01	0	9.34		
7-2	39	4.13	23.55	20.46	0.07	0.54	1.11	0.37	0.54	0.32	9.59		
7-3	37.37	3.2	26.52	20.53	0.06	0.85	0.92	0.12	0.14	0.01	9.63		
8-2	39.82	3.28	25.93	21.5	0.09	0.19	0.44	0.01	0.04	0.1	8.44		
Aver.	29	4.3	29	28.5	0.09	0.75	0.74	0.22	0.2	0.07	9.28		

				Table 14									
	The trace elements of the mottled rocks												
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf				
2-4	451.9	35.9	1031.5	24.3	0	533.9	0	68.4	0				
4-6	503.7	0	595	1.8	3.2	165.2	4.6	30.4	5.9				
4-7	271.4	0	255	2.3	2	153.2	3	29.8	6.2				
4-8	255.6	0	215	2.6	3.5	197.9	4.6	40.9	6.5				
4-9	434.2	0	455	2.2	1.7	237.1	3	48.2	7.4				
4-10	293.7	0	243	2.6	2.3	251.2	5.9	54.6	7.7				
7-2	288.6	34.8	604.9	15.9	0	351.8	0	45.1	0				
7-3	108.2	31.9	499.2	7.6	0	354.8	0	47.6	0				
8-2	528.1	24.1	557.9	20.4	0	256.2	0	31.5	0				
Aver.	348	14	495	8.85	1.4	278	2.3	44	3.7				

Table 15

			Follow	the trace e	lements of th	he mottled r	ocks		
	Y	Cr	Pb	Ni	V	Zn	Со	Cu	Mo
2-4	127.4	59.5	17.6	101.4	343.3	92.5	113.6	5.4	0
4-6	7.8	242.3	15.9	2.5	801	9.7	97.2	1	1.5
4-7	8.5	119.4	14.6	3.1	855	8.7	75.5	1.5	1.5
4-8	8.4	134.2	13.9	2.5	875	16.7	72	1.5	1.5
4-9	9.5	210.8	15.2	2.6	887	18.8	80.1	1.5	1.9
4-10	9.6	70.6	15.4	2.5	1115	25.9	85.6	1.5	1.5
7-2	40.4	51.2	15.5	42.4	465.9	61.5	88.7	5.3	0
7-3	15.3	17	20.6	42	372.2	103.2	105.4	8.8	0
8-2	21.9	77.3	4.2	25.4	266.2	314.5	84.9	44.5	0
Aver.	27.6	109	14.7	45	664	72.3	29.2	7.88	0.8

Tables 16-18. Show major oxides and elements of the lateritic duricrust rocks Table 16

	Tuble 10											
	The Major Oxide of lateritic duricrust rocks											
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	L.OI	
16-3	42.79	2.1	14.8	13.4	0.05	2.08	1.38	1.39	2.54	0.06	3.44	
16-4	53.33	1.72	15.11	6.66	0.04	3.72	1.42	5	2.35	0.05	5.96	
16-5	53.67	1.97	18.73	7.3	0.03	4.35	1.3	2.58	3.29	0.09	5.15	
16-6	49.53	2.44	17.32	12.01	0.05	3.7	1.4	2.11	2.11	0.09	6.42	
17-3	41.7	1.23	18.2	8.76	0.09	3.75	2.14	9.65	2.02	0.3	4.85	
17-5	42.88	1.14	12.6	6.36	0.09	3.32	1.44	13.39	2.46	0.42	6.35	
19-4	48.82	2.66	16.02	12.64	0.15	3.62	4.12	1.39	1.61	0.86	7.66	
Aver.	47.53	1.89	16.11	9.59	0.07	3.50	1.88	5.07	2.34	0.26	5.69	

Table 17

				1401	•								
	The trace elements of lateritic duricrust rocks												
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf				
16-3	0	0	0	0	0	0	0	0	0				
16-4	101	0	378.4	10.1	0	1002.8	0	91.3	0				
16-5	78.5	0	230.7	11.3	0	1049.4	0	93.4	0				
16-6	134	0	237.1	8.4	0	1075.6	0	98.5	0				
17-3	402	0	249.6	11	0	1461.5	0	128.9	0				
17-5	77.8	0	480.1	12.1	0	1745.3	0	153	0				
19-4	290.4	0	457.6	44.3	0	338.9	0	40.9	0				
Aver.	154.8	0	290	13.8	0	953	0	86.5	0				

				-	able 10								
	Follow the trace elements of lateritic duricrust rocks												
	Y	Cr	Pb	Ni	V	Zn	Co	Cu	Mo				
16-3	0	0	0	0	0	0	0	0	0				
16-4	54.4	23.5	20	47.9	236.8	96.7	79.1	38	0				
16-5	52	22.9	16.9	35	289.6	108.6	56.6	31.7	0				
16-6	44.7	29.7	14.1	42.1	312.4	204.9	83.4	11.4	0				
17-3	62.7	24.9	17.8	46.5	202.2	121.1	59	24.4	0				
17-5	64.5	22.8	11.4	32.4	212.9	223.3	74.1	37.9	0				
19-4	31.8	38.4	4.2	23.4	231.5	121.6	56.1	21.1	0				
Aver.	44.3	23.1	12	32.4	212.2	125.1	58.3	23.5	0				

Table 18

Tables 19-.21. Show major oxides and elements of the ferruginous laterite rocks Table 19

					Tabi	e 19						
	The major oxide of ferruginous laterite rocks											
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	L.OI	
1-4	34.77	5.51	13.38	24.81	0.07	0.36	8.42	0.02	0.07	2.2	8.36	
1-5	29.28	3.03	18.81	34.61	0.07	1.74	0.66	0.12	1.1	0.09	10.43	
1-6	47.37	4.11	18.85	19.65	0.04	2.32	2.87	0.49	1.47	0.07	7.36	
3-7	15.05	3.52	18.01	54.67	0.12	0.45	0.36	0.16	0.04	0	6.97	
3-8	22.58	4.37	31.78	30.09	0.07	0.59	0.54	0.09	0.03	0.01	8.96	
3-9	18.82	4.67	24	42	0.11	0.55	0.49	0.09	0.01	0.01	8.18	
9-3	19.43	6.22	22.51	38.19	0.12	0.73	1.1	0.1	0.02	0.2	9.42	
Aver.	26.75	4.49	21.04	34.8	0.08	0.96	2.06	0.15	0.39	0.36	8.52	

Table 20

	The trace elements of ferruginous laterite rocks										
	Sr	Ga	Ba	Rb	Ta	Zr	Th	Nb	Hf		
1-4	266.4	0	103	4.3	1.3	173.5	1.7	40.9	5.8		
1-5	243	32.8	450.9	6	0	349.7	0	44.2	0		
1-6	225.2	0	115.2	30.6	2	157.1	1.7	34.1	5.2		
3-7	208.2	0	289	1.8	1.8	116.8	2.8	23.9	4.4		
3-8	316.6	0	802	1.3	2.9	205.1	2.7	42	7.4		
3-9	285.8	0	387	1.6	1.2	230.5	7.6	45.4	8		
9-3	278.6	0	565	1.8	3.4	167	5.8	36.5	4.4		
Aver.	260	4.68	387	6.77	1.8	200	3.1	38.1	5		

Table 21 The trace elements of ferruginous laterite rocks Y Cr Pb Ni V Zn Co Cu Mo 1-4 44.6 48.5 10.8 2.4 701 49.3 74.1 1.5 1.6 1-5 22.6 72.9 56.3 10.1 493.1 149.2 200.3 5.9 0 28.3 25.3 12.2 34.3 435 1.5 1-6 63.1 103 1.6 7.5 2.2 3-7 24.9 803 7.7 1.5 150.6 104.21.5 2.2 3-8 14.8 107.5 16.7 825 17.1 64.4 1.5 1.5 3-9 10.2 19.7 25.5 2.3 809 17.6 76.6 1.5 1.6 2.5 9-3 17.9 64.6 16.1 1350 26.7 85 1.5 1.9 Aver. 20.8 67.5 16.6 16.9 773 47.2 101 2.1 1.38

					Tabl	e 22							
	The major oxide of siliceous duricrust rocks												
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	L.OI		
3-5	81.28	0.7	7.73	5.67	0.06	0.05	1.44	0.01	1.22	0.16	1.52		
3-6	75.07	1.85	10.36	7.66	0.16	0.01	1.27	0.01	0.76	0.2	2.56		
9-1	91.79	0.43	2.87	1.61	0	0.29	1.48	0.01	0.13	0.1	1.08		
9-2	78.71	1.24	7.02	7.51	0.07	0.24	1.49	0.4	0.37	0.13	2.42		
10-5	80.99	0.93	8.48	3.47	0.02	0.08	0.66	1.45	0.4	0.09	3.04		
10-6	77.14	1.43	7.58	7.14	0.16	0.25	0.96	0.83	0.59	0.16	3.37		
Aver.	80.83	1.09	7.34	5.51	0.07	0.15	1.21	0.45	0.57	0.14	2.33		

Tables 22-24. Show major oxides and elements of the siliceous duricrust rocks

ľ	a	bl	le	23	
I	a	D	le	23	

				Table	: 43							
	The trace elements of siliceous duricrust rocks											
	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf			
3-5	55.1	0	556	36.3	1.4	107.3	3.6	18.3	3			
3-6	135.8	0	502	23.1	2.9	208.4	6.6	32.3	7.2			
9-1	15.8	0	285.5	6.9	2.9	96.2	7.3	12.3	5.4			
9-2	157.6	0	345	10.7	5.5	193	7.5	28.6	5			
10-5	15.8	0	285.5	6.9	2.9	96.2	7.3	12.3	5.4			
10-6	157.6	0	345	10.7	5.5	193	7.5	28.6	5			
Aver.	89.6	0	386	15.7	3.5	149	6.63	22.6	5.1			

				Tabl	e 24									
		The trace elements of siliceous duricrust rocks												
	Y	Cr	Pb	Ni	V	Zn	Co	Cu	Mo					
3-5	15.2	140.2	9.9	2.5	75	10.6	8.2	2.7	1.8					
3-6	18.6	218.3	14	2.2	175	14.9	14.8	1.5	2.2					
9-1	12	65.3	6.9	25.7	57.4	45.7	141.4	9.7	2.4					
9-2	18.5	148.8	13.4	15	106	57.7	18.5	18.9	2.4					
10-5	18.5	102	8	4.2	92	25.2	112.4	66.3	2.4					
10-6	20.9	324.6	10.3	15.8	162	31.8	77.1	21.8	2					
Aver.	17.28	166	10.4	10.9	111	30.9	62	20.1	2.2					

Generally, behavior of Al_2O_3 depends essentially upon SiO₂ content. Actually, it is observed that SiO₂ shows reverse relationship with SiO₂, whereas the mottled and the ferruginous rocks of high Al_2O_3 content obtaining with low SiO₂ content.

Fe₂O₃ represents the main oxide in the formation of lateritic rocks, beside Al₂O₃. The concentration of Fe₂O₃ is quietly coinciding with Al₂O₃ content. However, the mottled and ferruginous rocks of high Al₂O₃ have higher Fe₂O₃ content. Actually, average content reaches (28.5%) in the mottled rocks and (34.8%) in the ferruginous rocks. The lowest content (5.51%) is recorded in the siliceous duricrust, of higher SiO₂ content (80.83%) However, the other rock units have moderate contents, varying from (8.45%) in the claystone to (14.98%) in the highly weathered basalt (Tables 25).

Calculation of $(Al_2O_3+Fe_2O_3)$ content shows that the higher value is connected within the mottled rocks, with the average up to (57.5%), as well as the ferruginous rocks up to (55.84%), (Tables 26). The lowest value that reaches (12.86%) is for the siliceous duricrust rocks. However, the values for other rocks are varying from (26.6%) in the weakly basalt to (27.47%) in the highly weathered basalt (Fig.2).

Al₂O₃/Fe₂O₃ ratios are also calculated (Table 26 & Fig.4) to show Al_2O_3 content relative to Fe_2O_3 . The given results demonstrate that mottled rocks have Al_2O_3 / Fe₂O₃ ratio up to (1.02), whereas it becomes (0.6) in the ferruginous rocks. This means that aluminum content exceeding iron content in the mottled rocks and vice versa for the ferruginous rocks. Moreover, aluminum content exceeds iron in the clayey basalt (1.29), claystone (1.92), lateritic duricrust1.68 and siliceous duricrust (1.33). The oxides SiO₂, Fe₂O₃ and Al₂O₃ are used by different authors to classify the laterite and bauxite deposits. According to SiO₂ - Fe₂O₃ - Al₂O₃ ternary diagram of Dury 1969, the investigated samples are plotted the field of ferruginous siliceous duricrust (Fig.5). However, they are plotted on ferrossialitic field of ternary SiO_2 - Fe_2O_3 - Al_2O_3 diagram of **Dury**, **1969** and **Mac Farlane**, **1983**, (Fig.6).

Both Na₂O and K₂O represent another important factor for concentrations and occurrence of the deposits. Actually, these two oxides show reverse relationship with laterite concentration. However, it is noticed that the lateritic duricrust of higher Na₂O content (5.07%) has lower (Al₂O₃ + Fe₂O₃) content (25.7%). The lowest Na₂O average content (0.15%) is recorded in the ferruginous rocks. In the claystone, it reaches (3.36%). However, it becomes lesser in the siliceous duricrust (0.57%). Moreover, in the highly weathered basalt, it reaches (2.91% and 3.02%) in the weakly weathered basalt (Tables 25 & 26).

	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5
Saprock (L.W. Basalt)	46.63	3.32	10.94	12.12	0.63	4.46	10.18	3.02	1.01	0.74
Saprolite (H.W. Basalt)	46.34	3.7	12.49	14.98	0.45	3.95	6.36	2.91	0.52	0.72
Saprolite (C. Basalt)	45.3	2.54	15.45	12.01	0.18	2.89	3.37	4.75	1.33	0.45
Claystone	54.19	1.99	16.19	8.45	0.02	1.64	1.72	3.36	1.20	0.35
Mottled rocks	29	4.3	29	28.5	0.09	0.75	0.74	0.22	0.2	0.07
Lateritic duricrust	47.53	1.89	16.11	9.59	0.07	3.50	1.88	5.07	2.34	0.26
Ferruginous laterite	26.75	4.49	21.04	34.8	0.08	0.96	2.06	0.15	0.39	0.36
Siliceous duricrust	80.83	1.09	7.34	5.51	0.07	0.15	1.21	0.45	0.57	0.14

Table 26. The relation of Al₂O₃ & Fe₂O₃ along the weathered cross sections

	Al ₂ O ₃ +Fe ₂ O ₃	Fe ₂ O ₃ /Al ₂ O ₃	Al ₂ O ₃ /Fe ₂ O ₃
Saprock (L. W. Basalt)	23.06	1.10	0.90
Saprolith (H. W. Basalt)	27.47	1.12	0.83
Saprolith (Clayey Basalt)	27.46	0.77	1.28
Pedolith (Clay Deposits)	24.64	0.52	1.91
Mottled Zone	57.5	0.98	1.02
Lateritic Duricrust	25.7	0.59	1.68
Ferrug. Zone	55.84	1.65	0.60
Siliceous Duricrust	12.85	0.75	1.33

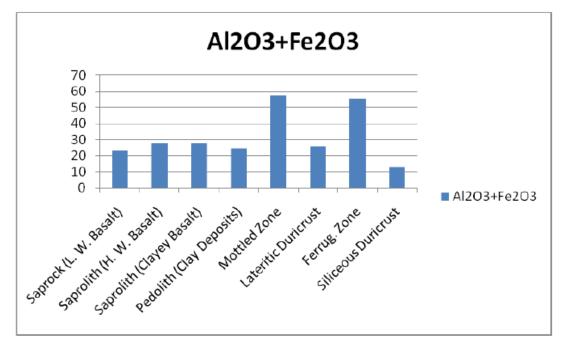


Fig.2. Showing histogram of the calculation Al₂O₃+Fe₂O₃ for different regolith cross-sections.

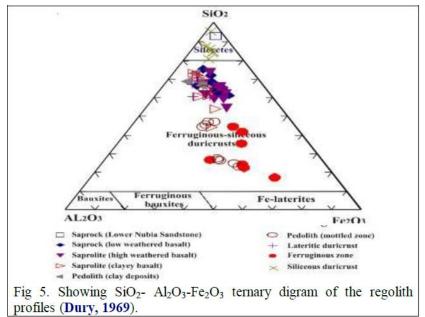
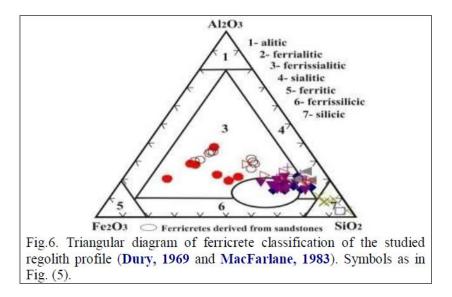




Fig.3. Showing histogram of the calculation Fe₂O₃/ Al₂O₃ for different regolith cross-sections.

Showing histogram of the calculation Al₂O₃/Fe₂O₃ for different regolith cross sections.

 K_2O more or less behaviors like Na₂O relative to SiO₂, Al₂O₃ and Fe₂O₃. However, the higher content (3.34%) is recorded within the lateritic duricrust and the lowest 0.2% in the mottled rocks. Moreover, K_2O is varying from 0.57% in the siliceous duricrust and 1.33% in the clayey basalt.

However, the Precambrian basement rocks and siliceous duricrust rocks mainly cover the area of higher concentration. Mottled and ferruginous rocks (Tables 27 & 28) mainly cover the lowest concentrated with K_2O and Na2O. These two oxides (K_2O and Na_2O) are coinciding well with SiO₂, which they show a reverse relationship with Fe₂O₃ and Al₂O₃.

The optimum relationship between the five oxides (SiO₂, Al₂O₃, Fe₂O₃, Na₂O and K₂O) represents the main restricted factors during occurrence and development of the lateritic rocks. The insitue resilicification of the based saprolith zone (weakly and highly weathered basalt) is caused by large amount of the silica free decomposing, by processes of weathering and may be responsible for SiO₂ fixation in the top most zone, leading to clay mineral formation (**Valeton, 1972**) Furthermore, a direct relationship between SiO₂ distribution and intensity of weathering action is also observed, whereas during early stages of diagenesis enrichment of silica is reciprocal of that aluminum.

In the laterite deposits on igneous rocks, silica is highest in the lowest and uppermost zones, (Valeton, 1972). This behavior is well observed on the most of the examined cross-sections. An increasing of the weathering action following by increasing spread of SiO₂, removed and increasing relative enrichment of alumina and iron govern the early stages of diagenesis. There is absolute enrichment by iron impregnation of the upper iron crust in many parts of the saprolith. The common primary iron mineral is hematite.

Chemical mineralogical reaction that took place during weathering of rocks into saprolith and pedolith are: **a**) Kaolinitization of alumino-silicate minerals, **b**) Hematization of Fe-bearing minerals, **c**) Formation of hydroxide minerals from kaolinite or directly from feldspar through in congruent dissolution, **d**) Congruent dissolution of kaolinite minerals, **e**) Dissolution of quartz.

Moreover, distribution of these five oxides (SiO₂, Al₂O₃, Fe₂O₃, Na₂O and K₂O) proved that the investigated lateritic rocks had been formed in the upland areas that are predominantly residual in origin formed under free leaching conditions (**Grubb**, **1973 and Hutchison**, **1983**). However, the minerals of the parent, rock are directly weathered into alumina and iron hydroxide minerals by very intense leaching of the alkali and silica (**Hutchison**, **1983**). The high content of TiO₂ is recorded in the ferruginous and

mottled rocks with an average up to 4.49% and 4.3% respectively. Like Al and Fe, Ti may become enriched relatively or absolutely by migration and precipitation from solution (**Migdisow**, **1960**).

The high content of TiO₂ values is governed by the amount of Ti available in the source rocks and by the degree of mobilization. There are a largely parallel trend of increasing Al and Ti values in the investigated lateritic rocks. On the other hand, TiO2 content recorded in the siliceous duricrust is (1.09%) with slightly increasing in the claystone (1.49%). However, in clayey basalt it reaches (2.54%), with slightly increasing in highly weathered basalt (3.7%), and weakly weathered basalt (3.32%). The gradual increasing of TiO₂ content from the weakly weathered basalt (3.32%) to highly weathered basalt (3.7%) followed by mottled rocks (4.31%), strongly suggest that the high concentration of the lateritic rocks with TiO₂ rather than the source basalt rocks during the different stage of weathering.

MnO high content is recorded in the weakly weathered basalt (source rock) that reaches (0.63%). However, in other varieties, it decreases. Both lateritic duricrust and siliceous duricrust have same average content (0.07%), with slightly increasing in the ferruginous rocks (0.08%) and mottled rocks, (0.09), the lowest content is obtained within claystone (0.02).

Accordingly, the behavior of MnO was accompanied by strong removal during the different stages of laterite formation.

MgO and CaO average contents show gradual decreasing from the weakly weathered basalt (source rock) to highly weathered basalt and claystone. However, MgO average, content reaches (4.46%) in the weakly basalt and (2.89%) in the claystone. On the other hand, CaO reaches (10.8%) in the weakly weathered basalt, (6.36%) in the highly weathered basalt and (3.37%) in the claystone. The lowest content of MgO is recorded in the siliceous duricrust (0.15%), whereas for CaO is recorded in the mottled rocks (0.74%). Both show an increasing from the mottled rocks to the ferruginous rocks.

Actually, MgO has value up to (0.75%) in the mottled rocks and (0.96%) in the ferruginous rocks, where CaO has value up to (0.74%) in the mottled rocks and (2.06%) in the ferruginous rocks.

Behavior of TiO₂ distribution exhibits as MgO & CaO, However, a noticeable decreasing is observed from weakly weathered basalt to highly weathered basalt and clay basalt (0.72%, 0.41% & 0.35% respectively). On the other hand, the lowest content is obtained in the mottled rocks (0.071%), however it decreases, reaches (0.36%) in the ferruginous rock, and it becomes lesser in the siliceous duricrust (0.14%) and lateritic duricrust (0.26%).

2.2. Distribution of trace elements

To show behavior and distribution of the measured trace elements, their concentration in each of the examined 8 subunits must be clearly discussed, in addition to the relationship between the source rocks and the obtained developed laterite. On the other hand, increasing and decreasing of trace element contents must be shown during decomposition of the source rock and development of laterite deposits during different stages of weathering processes. So, it is worthy to classify the examined trace elements into the following three groups:

a- Trace elements with highly connected with the basic rocks. These are Sr, Ba, V, Co, Cu, Cr and Ni.

b- Trace elements highly connected with the acidic rocks. There are Pb, Zn, Rb, Zr, Nb, Y, Mo, Nb, and Ta.

c- Radioactive elements, these are: Ga, Th, and Hf.

a- Behavior of trace elements with highly connected with the basic rocks.

Sr content in the most of the examined rock units is relatively high. However, it ranges from (89.6ppm) in the siliceous duricrust to (348ppm) in the mottled rocks. In the other hand, in the ferruginous rocks, it reaches (260ppm) and (154.8ppm) in the lateritic duricrust. Moreover, Sr content is gradually decreasing from the weakly weathered basalt (source rock), (312ppm), to claystone (210ppm). Moreover, it becomes (277.3ppm) in the highly weathered basalt and (235ppm) in the clayey basalt (Tables 27 & 28). Generally Sr concentration shows slight increasing in the different developed rocks (Laterite and related rocks), relative to the source rock (weakly weathered basalt).

Ba high content (586ppm) is recorded in the weakly weathered basalt, and low content (290ppm) in the lateritic duricrust. On the other hand, Ba content show slight decreasing in the mottled (495ppm) and ferruginous rocks (387ppm) than that of the source rock (586ppm) to indicate removing of Ba during the development of laterite deposits. The lower content is recorded in the lateritic duricrust (90ppm), while it reaches (418ppm) in the clayey basalt and (391ppm) in the clay deposits (Tables 29 & 30).

A strong enrichment of V content in the ferruginous rocks (773ppm) and mottled rocks (664ppm) may show generally stronger enriched than the source, weakly weathered basalt (160ppm) and highly weathered basalt (236ppm). Decreasing of V content from clayey basalt (296ppm) and claystone deposits (275ppm) as well as from lateritic duricrust (212ppm) to siliceous duricrust (111ppm) may reflect

highly enrichment of V content during laterite formation, accompanying by slightly decreasing during formation of clay minerals (Tables 29 & 30).

Co content shows some differences as compared with V content, the highly value is recorded in the ferruginous rocks (101ppm) while the lower value (29.2ppm) in the mottled rocks. However, it shows random distribution in the other rock unit. It is noticed that the value decreases from the weakly weathered basalt (59.6ppm) to the highly weathered basalt (42.9ppm) and then increases in the clayey basalt (70.3ppm), (Tables 29 & 30).

Contents of Cu in the mottled rocks (7.88ppm) and the ferruginous rocks (23ppm) are lesser than the weakly weathered basalt (55.7ppm). The high content is found in the claystone deposits. However, the lateritic duricrust has approximately the same value of the ferruginous rocks, probably suggests the strong removal of Cu during laterite formation. According to the cross sections which plotted in the geologic map (Fig.1) and (Tables 29 & 30), the northern and southern parts of considerable laterite deposits, appear with low Cu content. The slight decreasing of Cu content in the mottled rocks and ferruginous rocks, than that in the weakly basalt, may reflect the slow removing of Cu during laterite formation.

Cr content gradually increases from the weakly weathered basalt (15.7ppm) to highly weathered basalt (49.5ppm) and clayey basalt (55,07pp). On the other hand, Cr is relatively of high value (109ppm), in the mottled rocks, and moderate value (67.5ppm) in the ferruginous rocks, but it reaches the maximum (166ppm) in the siliceous duricrust. The noticeable increasing of Cr content in the different laterite rocks units and related rock units, strongly suggests parallel concentration of Cr during formation of laterite deposits coinciding well within that has been shown of Al & Fe distribution.

Ni exhibits such as other trace elements, which occurs in obtained rock units with content lesser than in the weakly weathered basalt (source rock). However it reaches (53ppm) in the weakly weathered basalt, (12ppm) in the highly weathered basalt, (40.6ppm) in the clayey basalt and (21.7ppm) in the claystone. The content shows an increasing (45ppm) in the mottled rocks, and sudden decreasing (16.9ppm) in the ferruginous rocks, the minimum value is recorded in the siliceous duricrust (10.9ppm), while in the lateritic duricrust, it reaches (32.4ppm), (Tables 29 & 30). The distribution and concentration of Ni content may give an evidence for the irregular removing of Ni during the formation of laterite deposits.

	Sr	Ga	Ba	Rb	Та	Zr	Th	Nb	Hf		
Saprock (Low Weathered Basalt)	312	2	586	11.3	0.3	273	0.5	38.1	0.8		
Saprolite (Highly Weathered Basalt)	277.3	0	412	6.35	0.6	210	1.0	23.7	1.2		
Saprolite (Clayey Basalt)	235	3.1	418	13	0.4	887	1	81.3	1.3		
Claystone	210	0	391	18.7	0.4	811	2.2	83.7	3		
Mottled rocks	348	14	495	8.85	1.4	278	2.3	44	3.7		
Lateritic duricrust	154.8	0	290	13.8	0	953	0	86.5	0		
Ferruginous laterite	260	4.68	387	6.77	1.8	200	3.1	38.1	5		
Siliceous duricrust	89.6	0	386	15.7	3.5	149	6.63	22.6	5.1		

Tables 29-30. Show the average trace elements contents of the different regolith profile units. Table 29

Table 30										
	Y	Cr	Pb	Ni	i V	Zn	C) Ci	u Mo	
Saprock (Low Weathered Basalt)	21	157	7.3	53	260	141	59.6	55.7	0.29	
Saprolite (Highly Weathered Basalt)	11	49.5	4.4	12	236	147	42.9	34	0.5	
Saprolite (Clayey Basalt)	45.7	55.07	13.5	40.6	296	203	70.3	130	0.2	
Claystone	45.2	45.4	15.1	21.7	275	59.1	53.2	31.1	1.2	
Mottled rocks	27.6	109	14.7	45	664	72.3	29.2	7.88	0.8	
Lateritic duricrust	44.3	23.1	12	32.4	212.2	125.1	58.3	23.5	0	
Ferruginous laterite	20.8	67.5	16.6	16.9	773	47.2	101	2.1	1.38	
Siliceous duricrust	17.28	166	10.4	10.9	111	30.9	62	20.1	2.2	

b- Behavior of trace elements highly connected

with the acidic rocks. Pb content does not exceed (17.7ppm) in the mottled rocks, however the lower value is related to the highly weathered basalt (4.4ppm). However, in the ferruginous rocks it reaches (16.6) and (10.4ppm) in the siliceous duricrust (Tables 29 & 30). Actually, less content and random distribution of Pb content strongly suggest that Pb content cannot be considered as an effective element during laterite formation.

Rb cannot be considered as an effective element in the formation of lateritic deposits. It occurs with limited concentration that does not exceed (18.7ppm) in the claystone deposits, whereas it reaches (8.85ppm) in the mottled rocks and (6.77ppm) in the ferruginous rocks (Tables 29 & 30). This uneffective role in the formation of laterite is obtained by lower concentration of Rb content in the examined rocks.

Zn shows a gradual increasing from the weakly weathered basalt (141ppm) to clayey basalt (203ppm) passing by the highly weathered basalt (147ppm). However, it suddenly decreases in the claystone deposits (59.1ppm), followed by slight increasing in the mottled rocks (77.3ppm) and lateritic duricrust (125.1ppm) and then it decreases again in the ferruginous rocks (47.2ppm) and siliceous duricrust (30.9ppm), (Tables 29 & 30), that may reflect the irregular distribution of Zn concentration within the different rock units of lateritic deposits and related rocks.

Zr occurs with variable high content in most of the examined rock units. The maximum value

(958ppm) is related to the lateritic duricrust. Both clayey basalt and claystone deposits have also relative high concentration (887ppm & 811ppm). In the mottled rocks, it reaches (278ppm) and (200ppm) in the ferruginous rocks, but it decreases to reaches (149ppm) in the siliceous duricrust (Tables 29 & 30). The given behavior of Zr concentration presumably suggests Zr preferability during the formation and development of clay mineralization, whereas the removal of Zr content has been adapted during the development of lateritic duricrust.

Mo content is ranging from (0.2 ppm) in clayey basalt to (2.2 ppm) in the siliceous duricrust. However it reaches (0.8 ppm) in the mottled rocks and (1.38 ppm) in the ferruginous rocks (Tables 29 & 30). Moreover, it is not represented in the lateritic duricrust, due to given an additional idea about MO deficiency during laterite formation.

Nb is represented by lowest value in the highly weathered basalt (1.2 ppm). However, it gradually increases from the weakly weathered basalt (38.1ppm) to the clayey basalt (81.3 ppm) and claystone deposits (83.9 ppm), then it decreases to reach (4.4 ppm) in the mottled rocks, followed by another increasing to reach (96.5ppm) in the lateritic duricrust. On the other hand, it reaches (38.1ppm) in the ferruginous rocks and (22.6 ppm) in the siliceous duricrust (Tables 29 & 30). The irregular distribution of Nb may reflect variation of the weathering action affected on the source rock during laterite formation.

Ta content is represented by low content in the most of the examined rock units. The maximum value

(3.5 ppm) is recorded in the siliceous duricrust. Moreover, it ranges from (0.3ppm) in the ferruginous rocks and (1.4ppm) in the mottled rocks (Tables 29 & 30).

Y shows a variable distribution, varying from (1.3 ppm) in the clayey basalt to (45.7ppm) in the claystone deposits. However, it is varying from (20.8ppm) in the ferruginous rocks to (27.6 ppm) in the mottled rocks, with slight increasing (45.7ppm) in the claystone deposits (Tables 29 & 30).

Generally speaking, the little concentration of rare elements (Nb, Ta, Y) beside Mo as well as their irregular distribution with noticeable values may show the unaffected factors during laterite formation.

c- Radioactive elements.

The radioactive elements are represented by Ga, Th an Hf. The elements are obtained as the rare elements, with neglected values, varying from nothing to (10ppm), so that they can be considered as unaffected element within the lateritic rocks (Tables 29 & 30).

3- Diagenesis

The diagenesis of the laterite and related rocks, are discussed by calculation of some parameters. Moreover, the palaeowethering affected on the source rock (protolith), weathered basalt and lateritic rocks (regolith) are discussed. On the other hand, the associated minerals are shown from EDX charts of scanning electron microscope (SEM).

The following chemical ratios and indices are used to show the diagenesis of the investigated rocks:

1- Al₂O₃ /TiO₂ ratio:

The value of Al_2O_3/TiO_2 ratio depends essentially upon the rock types (**Wronkiewicz and Condie, 1989**), however for the felsic rocks is generally >10 and can be >100 for the mafic and ultra mafic rocks is <20 and rarely <50 (**Byerly, 1999**). Al_2O_3/TiO_2 ratio is used as a primary indicator to infer the origin of the source (protolith) rock type. However, Al_2O_3/TiO_2 ratio is ranging from 3 to 8 for the mafic igneous rocks, from 8 to 21 for intermediate igneous rocks, from 21 to 70 for felsic igneous rocks (**Hayashi, et.al., 1997**).

In the examined 21 cross-sections, Al_2O_3/TiO_2 suggests basic igneous rocks as beginning probable source rocks, for the weathered regolith rocks (laterite and related rock), whereas Al_2O_3/TiO_2 reaches (6.44.) However, in the saprolith rocks (weakly and highly weathered basalt and clayey basalt) it reaches (4.49), while it reaches (6.60) for the pedolith rocks (Plasmic clay, mottled zone and lateritic residuum). The given results my give an evidence for removal the mafic minerals at the upper most of the laterite section during progress of the weather action.

2- K₂O/Na₂O ratio

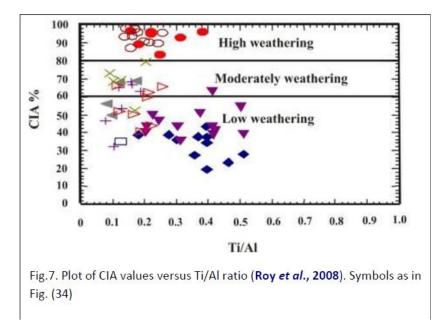
On the other hand, the high K_2O/Na_2O ratio favors the occurrence of illite, while the low ratio means that these sediments have originated from basic or intermediate igneous rocks (**Garrels and Christ**, **1965**, Weaver, **1967**).

 K_2O/Na_2O ratio shows a variable variation in the different rock types. In the saprock, it varies from (0.27) in the weakly weathered basalt to (0.36) in the highly weathered basalt, followed by (0.71) in the clayey basalt, however in the pedolith it varies to (0.65) in the clay deposits, however, it increases to (3.02) in the mottled rocks, and it increases to reach (2.36) in the ferruginous rock, while it becomes (1.24) in the lateritic duricrust and more increases to (51.27) in siliceous duricrust. The irregular variation of K₂O/Na₂O ratio probably reflects the variation of leaching alkalis during formation of the laterite deposits.

3- K₂O/Al₂O₃ ratio

 K_2O/Al_2O_3 ratio for saprolith rocks (weakly weathered basalt, clayey basalt and highly weathered basalt) is varying from zero to (0.15) with average (0.03). For the pedolith rocks (clay, mottled, lateritic duricrust, ferruginous rocks and siliceous duricrust) it is ranging from zero to (0.17) with average (0.08).the given similar value of saprolith and pedolith rocks, quietly reflects unique origin for the developed source rocks (Natash volcanics).

4- Chemical index of the alteration (CIA)


This index is proposed by Nesbitt and Young, (1982) as $Al_2O_3/(Al_2O_3+CaO+Na_2O+K_2O)*100$. The index has been established as a general indicate of the degree of the chemical weathering in any provenance region (Nesbitt and Young, (1982). High values (96 -100) indicate the intensive chemical weathering in the source area, whereas the low values (50 or less) indicate unweathered source area. The CIA can be considered as most important factor for the studied laterite and related rocks. The values of the index gradually increase from weakly weathered basalt (33.18) to highly weathered basalt (46.36) and clayey basalt (53.8), clay deposits (65.26), ferruginous rocks (88.36) and mottled rocks (91.17). Then it decreases in lateritic duricrust (56.36) and siliceous duricrust (68.37). The varies of CIA values reflect the degree of the chemical weathering and the proportionately under humid conditions, with leaching alkalis (Na⁺¹, K⁺¹) and Ca^{+2} with concentration of Al $^{+3}$ and Fe $^{+3}$.

The calculated CIA values precisely show the degree of the chemical weathering that ranges from slightly weathering action along saprock (weakly weathered basalt) that had been increased upward along regolith (highly weathered basalt, clayey basalt). On the other hand, the mottled and ferruginous rocks had been affected by the higher chemical weathering accompanied often by increasing of the iron and

aluminum content. However, the lateritic duricrust was affected by slightly chemical weathering action (56.36) which still has some pisolitic and nodular basalt (Tables 31-38).

The plots of CIA against Ti/Al (**Roy et al., 2008**) show different degrees of the chemical weathering

affected on the investigated laterite and related rocks, varying from low to moderately weathering for saprolith rocks to highly weathering action for pedolith rocks (Fig.7).

5- Index of compositional variations (ICV)

ICV index is proposed by **Cox et al (1995)** as ICV = $(Fe_2O_3 + K_2O + Na_2O + CaO + MgO + MnO + TiO_2)$ / TiO₂, whereas the high value of ICV is recorded in the lateritic duricrust that varies from 9.76 to 24.73 with an average 14.36, the low value is recorded in the mottled rocks, that ranges from 6.59 to 11.67 with an average 6.35. The noticeable variation of ICV values quietly reflects the variation of chemical composition of the investigated rock units during different stages of weathering actions (Tables 31-38).

6- Plagioclase index of alteration (PIA)

Tuble 51. Show some enemieur purumeters of the suprock (weakly weathered busins)													
Parameters	1-9	2-5	5-2	7-5	9-6	13-8	14-6	15-3	18-6	19-5	20-5	21-6	Av.
SiO ₂ / Al ₂ O ₃	4.67	4.22	3.84	3.78	4.07	4.23	3.77	4.81	3.01	3.95	4.40	5.12	3.33
K ₂ O/Na ₂ O	0.55	0.44	0.41	0.65	0.44	0.04	0.40	0.05	0.05	0.00	0.03	0.23	0.27
K ₂ O/Al ₂ O ₃	0.08	0.06	0.09	0.11	0.06	0.02	0.09	0.02	0.02	0.00	0.00	0.04	0.04
K2O/MgO	0.27	0.09	0.21	0.28	0.15	0.06	0.21	0.54	0.05	0.00	0.01	0.40	0.18
TiO ₂ /Al ₂ O ₃	0.34	0.35	0.32	0.31	0.24	0.35	0.26	0.45	0.16	0.40	0.34	0.27	0.31
Al ₂ O ₃ /TiO ₂	2.87	2.85	3.06	3.18	4.10	2.85	3.74	2.22	6.20	2.44	2.86	3.60	3.33
MgO/ Al ₂ O ₃	0.32	0.68	0.44	0.39	0.42	0.33	0.44	0.05	0.51	0.42	0.49	0.11	0.38
CIW	67.87	57.97	58.97	43.79	56.28	51.07	54.02	43.45	54.59	38.96	31.13	51.47	50.79
CIW`	86.07	87.17	81.67	85.38	87.34	70.33	81.01	66.88	67.83	75.74	80.35	83.15	79.41
ICV	8.86	10.19	9.90	11.84	11.58	8.16	11.22	6	13.73	10.56	14.66	8.66	10.44
PIA	65.79	65.32	56.58	40.87	54.64	50.55	51.54	42.74	53.92	38.93	30.98	50.27	50.17
CIA	42.98	37.14	37.49	27.28	38.65	34.26	35.76	27.70	38.91	23.21	19.47	35.38	33.18
Mn*	0.35	0.58	0.10	0.68	0.49	0.29	0.08	0.50	1.03	1.01	0.85	1.03	0.58
W*	-0.28	-0.53	-0.68	-0.93	-0.69	-1.08	-0.90	-1.38	-1.29	-1.25	-1.25	-0.94	-0.93

Table 31. Show some chemical parameters of the saprock (Weakly weathered basalts)

PIA is proposed by Nesbitt and Young, (1982) as PIA= {(Al_2O_3 - K_2O) / ((Al_2O_3 - K_2O) + CaO* +

 Na_2O x 100. Whereas, it is used to determine the chemical weathering action, upon the regolith section.

The calculated PIA values show gradual increasing from the saprolith rock types to pedolith rock types. It ranges from (30.98 to 65.79) in weakly weathered basalt, from (56.34 to 82.14) in highly weathered basalt, (53.31-84.64) in clayey basal, from (64.99 to 97.56) in clay deposits, from (94.10 to 98.99) in mottled rock, from (43.02 to 84.49) in lateritic duricrust, from (84.75 to 98.15) in ferruginous rocks and from (70.31 to 90.59) in siliceous duricrust. Actually, the maximum values of PIA as CIA are recorded in the mottled and ferruginous rocks indicating that they represent the more acting rocks by weathering action (Tables 31-38).

7- Chemical Index of weathering (CIW)

CIW was proposed by **Nesbitt and Young**, (**1982**) as CIW = $\{Al_2O_3 / (Al_2O_3 + CaO^* + Na_2O)\} x$ 100. It represents another factor for detecting the chemical weathering subjected upon the investigated rocks, however it gradually increase from saprolith rock type (70) to pedolith rock types (90), whereas in the ferruginous and mottled rocks it reaches (98) to show high degree of weathering accompanied by leaching of alkalis and removing of silica with increasing of iron and aluminum.

1	Fable 32	2. Show	some o	chemica	l paran	neters o	of the sa	prolite	(High v	weather	ed basa	lts)

Parameters	1-8	6-3	6-7	10-8	11-2	12-7	12-8	14-4	14-3	14-2	16-7	17-8	Average
SiO ₂ / Al ₂ O ₃	4.03	4.31	4.48	3.60	2.98	4.26	3.78	4.26	3.55	4.27	2.84	3.03	3.78
K ₂ O/Na ₂ O	0.32	0.02	2.21	0.28	0.07	0.00	0.12	0.47	0.47	0.07	0.27	0.12	0.36
K_2O/Al_2O_3	0.03	0.00	0.09	0.04	0.02	0.00	0.05	0.12	0.04	0.01	0.04	0.02	0.03
K2O/MgO	0.12	0.01	0.26	0.10	0.44	0.00	0.77	0.36	0.12	0.04	0.13	0.08	0.20
TiO ₂ / Al ₂ O ₃	0.33	0.45	0.36	0.21	0.2	0.44	0.26	0.37	0.36	0.36	0.18	0.18	0.30
Al ₂ O ₃ /TiO ₂	3.01	2.21	2.72	4.62	5	2.25	3.73	2.69	2.73	2.75	5.50	5.54	3.56
MgO/ Al ₂ O ₃	0.30	0.28	0.35	0.46	0.05	0.68	0.06	0.34	0.32	0.47	0.31	0.25	0.32
CIW	72.23	59.98	62.21	64.16	38.39	70.33	61.70	62.96	82.75	63.77	60.97	57.90	63.11
CIW	89.61	78.74	82.46	84.96	76.71	76.12	69.81	79.17	91.92	79.49	86.27	84.23	81.62
ICV	7.87	6.80	8.55	11.50	12.13	7.08	7.30	8.79	6.95	8.62	11.45	13.34	9.19
PIA	71.46	59.85	59.85	62.98	67.89	70.31	60.39	59.77	82.14	63.32	59.90	56.34	64.51
CIA	50.83	39.14	38.81	46.43	49.75	54.19	43.55	40.73	62.93	43.56	43.39	40.12	46.11
Mn*	0.84	0.77	0.33	0.55	-0.10	0.22	-0.15	-0.19	-0.17	0.34	0.63	0.45	0.29
W*	0.30	-0.28	-0.53	-0.63	-0.45	-0.12	-0.75	-0.50	0.40	-0.52	-0.82	-0.90	-0.4

Table 33. Show some chemical parameters of the saprolite (clayey basalts)

parameters	1-7	6-1	12-6	15-2	18-2	18-4	20-4	Average
SiO ₂ / Al ₂ O ₃	2.92	3.78	2.52	2.43	3.68	3.85	1.56	2.96
K ₂ O/Na ₂ O	0.17	2.18	0.12	0.27	1.14	1.09	0.00	0.71
K ₂ O/Al ₂ O ₃	0.02	0.12	0.05	0.10	0.15	0.14	0.00	0.08
K2O/MgO	0.05	1.19	0.43	0.74	0.72	0.56	0.09	0.54
TiO ₂ / Al ₂ O ₃	0.20	0.22	0.19	0.19	0.09	0.10	0.16	0.16
Al ₂ O ₃ /TiO ₂	4.78	4.43	6.75	5.06	10	9.16	5.97	6.59
MgO/ Al ₂ O ₃	0.38	0.10	0.12	0.13	0.21	0.26	0.07	0.18
CIW	77.99	86.30	68.75	62.14	83.83	70.74	53.49	71.89
CIW	88.62	94.59	69.34	73.30	87.98	88	54.90	79.53
ICV	9.52	8.06	10.73	11.31	10.39	13.33	12.69	10.86
PIA	79.63	84.64	67.52	59.61	81.40	67.28	53.31	70.48
CIA	59.42	65.71	50.04	43.88	65.83	51.48	40.36	53.81
Mn*	0.74	-0.41	-0.46	-0.25	-0.34	-0.11	-0.37	-0.17
W*	0.37	0.51	0.25	-0.82	-0.04	-0.66	-0.59	-0.59

parameters	6-4	9-5	13-5	13-6	18-5	21-4	Average
SiO ₂ / Al ₂ O ₃	4.01	3.09	3.38	2.81	3.68	3.27	3.37
K ₂ O/Na ₂ O	2.21	0	0.01	0.02	1.21	0.48	0.65
K ₂ O/Al ₂ O ₃	0.14	0.05	0.00	0.00	0.15	0.08	0.07
K2O/MgO	1.07	3.88	0.17	0.23	0.69	0.48	1.08
TiO ₂ / Al ₂ O ₃	0.18	0.13	0.08	0.06	0.10	0.15	0.11
Al ₂ O ₃ /TiO ₂	5.27	7.25	11.48	14.31	9.54	6.54	9.06
MgO/ Al ₂ O ₃	0.13	0.01	0.04	0.03	0.22	0.16	0.09
CIW	85.23	97.70	65.17	69.21	87.58	85.67	81.76
CIW	93.95	100	64.68	72.52	88.53	85.66	84.22
ICV	7.67	7.14	15.16	12.26	9.92	8.24	10.06
PIA	83.19	97.56	64.99	69.01	85.58	84.61	80.82
CIA	62.21	86.92	49.67	56.08	67.81	68.92	65.26
Mn*	-0.45	-0.58	-0.95	-0.73	-0.51	-0.37	-0.59
W*	0.29			-0.76	0.66		0.06

Table 34. Show some chemical parameters of the clay deposits

Table 35. Show some chemical parameters of the mottled zone

Parameters	2-4	4-6	4-7	4-8	4-9	4-10	7-2	7-3	8-2	Average
SiO ₂ /Al ₂ O ₃	1.81	0.77	0.40	0.79	0.77	0.77	1.66	1.41	1.54	1.10
K ₂ O/Na ₂ O	19.8	0.05	0.21	0.53	0.03	0.03	1.45	1.16	4	3.02
K ₂ O/ Al ₂ O ₃	0.04	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
K2O/MgO	0.60	0.01	0.75	0.07	0.02	0.02	1	0.16	0.21	0.31
Al ₂ O ₃ /TiO ₂	4.67	6.61	14.26	6.32	5.25	5.25	5.70	8.28	7.90	7.13
TiO ₂ /Al ₂ O ₃	0.21	0.15	0.07	0.15	0.19	0.19	0.17	0.12	0.12	0.15
MgO/Al ₂ O ₃	0.07	0.02	0.00	0.03	0.03	0.03	0.02	0.03	0.00	0.02
CIW	98.44	98.99	98.22	97.58	94.11	94.11	98.27	96.34	99.55	97.27
CIW	99.76	99.22	99.73	99.55	97.21	97.21	98.45	99.54	99.96	98.95
ICV	6.68	11.67	11.52	8.17	7.34	7.34	6.59	8.06	7.78	8.35
PIA	98.36	98.99	98.22	97.57	94.10	94.10	98.23	96.32	99.55	97.27
CIA	89.75	97.44	76.73	95.25	90.09	90.09	90.58	92.99	97.66	91.17
Mn*	-0.37	-0.76	-0.69	-0.56	-0.60	-0.60	-0.53	-0.60	-0.44	-0.57
W*	2.75	2.28	2.08	2.09	1.03	1.03	2.66	1.80	3.91	2.18

Table 36. Show some chemical parameters of the lateritic duricrust.

Parameters	16-2	16-4	16-5	16-6	17-3	17-5	19-4	Average
SiO ₂ / Al ₂ O ₃	2.89	3.53	2.87	2.86	2.29	3.4	3.05	2.98
K ₂ O/Na ₂ O	1.82	0.47	1.27	1	0.20	0.18	1.15	0.87
K ₂ O/ Al ₂ O ₃	0.17	0.15	0.17	0.12	0.11	0.19	0.10	0.14
K2O/MgO	1.22	0.63	0.75	0.57	0.53	0.74	0.44	0.69
Al ₂ O ₃ /TiO ₂	7.04	8.78	9.50	7.09	14.79	11.05	6.02	9.18
TiO ₂ /Al ₂ O ₃	0.14	0.11	0.10	0.14	0.06	0.09	0.16	0.11
MgO/ Al ₂ O ₃	0.14	0.24	0.23	0.21	0.20	0.26	0.22	0.21
CIW	85.20	70.72	83.95	84.36	62.78	48.40	85.83	74.46
CIW	91.41	75.13	87.89	89.14	65.35	48.48	92.01	78.48
ICV	10.92	12.15	10.65	9.76	22.47	24.73	9.84	14.36
PIA	82.67	67.11	81.17	82.57	59.99	43.02	84.49	71.57
CIA	66.63	53.30	65.27	68.15	46.14	32.38	62.85	56.38
Mn*	-0.49	-0.29	-0.45	-0.45	-0.05	0.08	0.00	-0.23
W*	0.23	-0.55	0.03	0.13	-0.78	0.37	0.26	-0.04

Table 57. Show some chemical parameters of the ferrugmous zone.								
Parameters	1-4	1-5	1-6	3-7	3-8	3-9	9-3	Average
SiO ₂ /Al ₂ O ₃	2.60	1.56	2.51	0.84	0.71	0.78	0.86	1.40
K ₂ O/Na ₂ O	3.5	9.16	3	0.25	0.33	0.11	0.2	2.36
K ₂ O/ Al ₂ O ₃	0.00	0.05	0.07	0.00	0.00	0.00	0.00	0.01
K2O/MgO	0.19	0.63	0.63	0.08	0.05	0.01	0.02	0.23
Al ₂ O ₃ /TiO ₂	2.42	6.20	4.58	5.11	7.27	5.13	3.61	4.90
TiO ₂ /Al ₂ O ₃	0.41	0.16	0.21	0.19	0.13	0.19	0.27	0.22
MgO/ Al ₂ O ₃	0.02	0.09	0.12	0.02	0.01	0.02	0.03	0.04
CIW	92.36	97.51	85.77	97.19	98.15	97.77	97.68	95.20
CIW	99.85	99.36	97.46	99.11	99.71	99.62	99.55	99.23
ICV	7.12	13.64	7.53	16.85	8.18	10.26	7.47	10.15
PIA	92.32	97.36	84.75	97.18	98.15	97.77	97.68	95.03
CIA	56.84	88.78	71.66	94.93	96.54	95.89	92.94	85.36
Mn*	-0.61	-0.76	-0.76	-0.72	-0.70	-0.65	-0.57	-0.57
W*	2.88	2.59	1.08	2.10	2.33	2.35	2.35	2.24

Table 37. Show some chemical parameters of the ferruginous zone.

Table 38. Show some chemical parameters of the siliceous duricrust

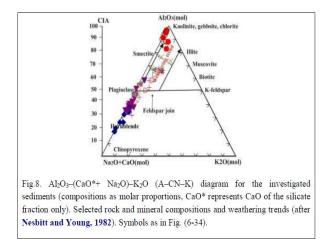
Parameters	3-5	3-6	4-5	9-1	9-2	10-5	10-6	Average
SiO ₂ /Al ₂ O ₃	10.51	7.25	10.81	31.98	11.21	9.55	10.18	13.07
K ₂ O/Na ₂ O	122	76	146	13	0.92	0.27	0.71	51.27
K ₂ O/ Al ₂ O ₃	0.157	0.07	0.18	0.045	0.05	0.04	0.07	0.08
K2O/MgO	24.4	76	146	0.44	1.54	5	2.36	36.53
Al ₂ O ₃ /TiO ₂	11.04	5.6	11.04	6.67	5.66	9.11	5.30	7.77
TiO ₂ /Al ₂ O ₃	0.09	0.17	0.08	0.14	0.17	0.11	0.18	0.13
MgO/ Al ₂ O ₃	0.006	0.00	0.00	0.10	0.03	0.00	0.03	0.02
CIW	89.40	94.41	92.23	71.27	82.82	82.41	85.78	85.47
CIW	99.87	99.90	99.87	99.65	94.60	85.39	90.13	95.63
ICV	13.07	6.33	9.41	9.18	9.12	7.53	7.94	8.94
PIA	87.65	93.99	90.59	70.31	82.03	81.69	84.76	84.43
CIA	68.37	79.50	73.15	52.37	67	69.03	69.23	68.37
Mn*	-0.04	0.25	-0.54		-0.10	-0.30	0.28	-0.07
W*	2.11	2.62	2.62	0.10	0.45	0.18	0.56	1.23

8- Al2O3 - (CaO+Na2O) - K2O (A-CN-K)

(A_CN_K) ternary molecular proportion diagram of **Nesbitt and Young (1982)** is used for the investigated rocks. The plotted samples quietly show an increasing of weathering action from saprolith rocks (source rocks) to pedolith rocks (mottled and ferruginous rocks). According to this diagram, most of saprolith samples are lying along clinopyroxene, hornblende and feldspar trend to indicate that they are related to basic igneous rocks (Natash volcanics). However, the advantage stage of the weathering (later stage) had been accompanied by development of lateritic rocks (mottled and ferruginous rocks) that are lying along plagioclase – smectite – kaolinite – gibbsite- chlorite trend (Fig.8).

Actually, the obtained lateritic rocks had been formed by action of the chemical weathering along Wadi Natash volcanics, by decomposition of the mafic minerals and increasing of kaolinitic minerals (clay) followed by leaching of alkalis and increasing of Al^{+3} and Fe⁺³ (lateritic deposits).

9- Mn* value


The calculating of Mn* value is Mn*= log [(Mn sample/Mn shales)/ (Fe sample/Fe shales)]. The values used for Mn shales and Fe shales are $600*10^{-6}$ and $4650*10^{-6}$ respectively (**Wedepohl, 1978**).

Most of saprolith samples show significant positive Mn* values (average 0.7) to suggest that they had been formed under oxic condition or nearly suboxic, where all pedolith samples had been formed under reducing condition.

10- Mineral associations

This part deals mainly with the associated minerals with the clay, mottled and ferruginous rocks, derived from the adjacent Precambrian and Phanerozoic rocks. Identification of these associated minerals are given from EDX chemical analyses using scanning electron microscope (SEM), whereas (51) chart are shown (15 for clay deposits, 16 for mottled rocks and 20 for ferruginous rocks).

Actually 22 minerals have been identified from the given charts (Figs.9-24).

According to the observed chemical composition. The identified minerals either metallic or non-metallic are related to the adjacent surrounding rocks.

The examined minerals (22 minerals) are classified into the following groups:

A- Minerals associated only within ferruginous rocks. These are gold (Fig.9) taenite (Ni & Fe), (Fig.10), azurite, Cu_3 (Co_3)₂OH₂ (Fig.11), pyrite (Fig.12), bismuth (Fig. 13) and apatite (Fig. 14).

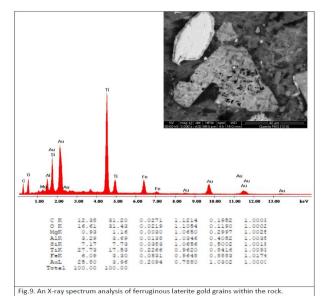
B- Minerals associated only within mottled rocks. These are ankarite and calcite (Fig.15).

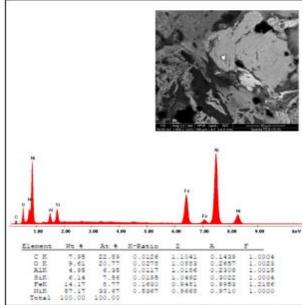
C- Minerals associated only within clay deposits, these are celesite (Fig.16) and anhydrite (Fig.17).

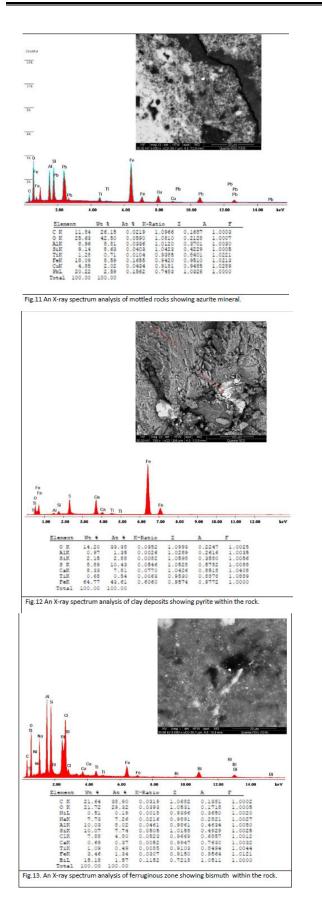
D- Minerals associated within mottled and ferruginous rocks. These are zincite (Fig. 18), cerussite (PbCO3) (Fig.19), siderite (Fig.16), hematite, (Figs.20) and corundum (Fig.14).

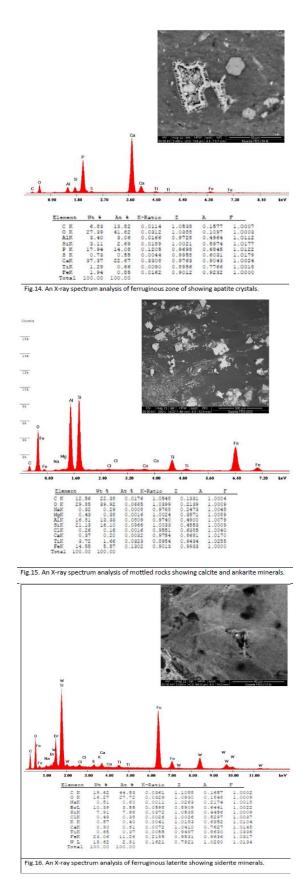
E- Minerals associated within clay and ferruginous rock. These are halite (Fig. 15) and wolframite (Fig. 21).

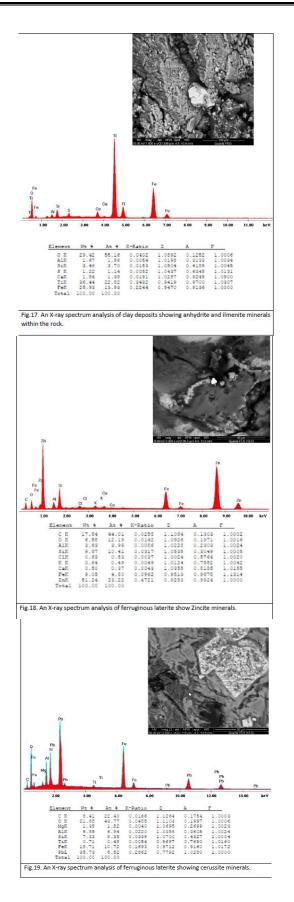
F- Minerals associated within all of them these are: ilmenite (Figs.17 & 22), zircon (Fig.23), barite (Fig.24), sylvite (Figs. 16, 21, & 22), and spinel (Figs. 15, 20, 21 & 22).

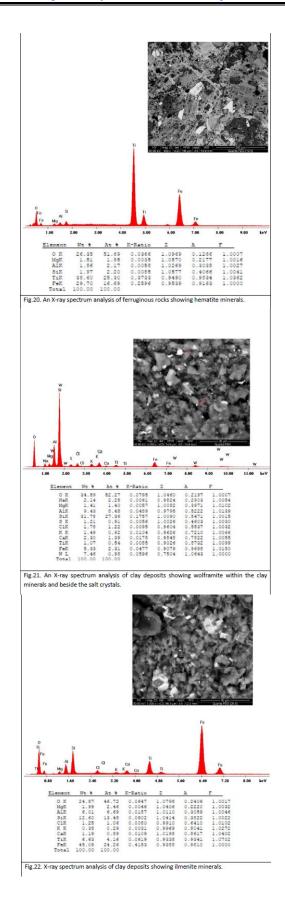

From above mentioned mineral associations, the following can be summarized:

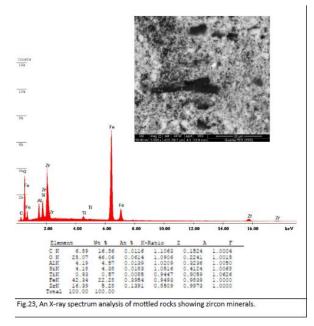

1-The ferruginous rocks are characterized by association of some important metals such as gold, nickel (taenite, Ni-Fe), cupper (azurite, $(Cu_3)_2OH_2$), pyrite (FeS₂) and bismuth (Bi). Actually, occurring of these metals, particulars gold need more detailed field works to evaluate them.

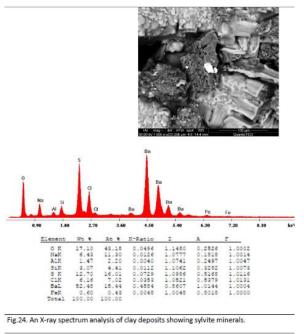

2- The clay deposits are associated with celesite and anhydrite, as well as mottled rocks associated with ankarite and calcite of sedimentary origin, probably give an idea about their removing at the upper parts of the mainly ferruginous composition.


3- The associated minerals within both mottled and ferruginous rocks, such as zincite (ZnO), cerussite (PbCo₃), siderite (FeCo3) and corundum, probably reflect their quite own relationship with the laterite development.


4- The associated minerals within all of these rocks such as ilmenite, zircon, barite, sylvite and spinel may reflect that these minerals have been still preserved during different stages of the chemical weathering.







Conclusion

Study of the geochemical behavior of the major oxides indicated that SiO_2 , Al_2O_3 , F_2O_3 , Na_2O_3 and K_2O represent the main restricted factor laterite occurrence and development. A direct relationship between SiO_2 distribution and intensity of weathering action is observed.

During the early stage of diagenesis, enrichment of silica is reciprocal with these oxides. Chemical, mineralogical relation took place during weathering of saprolith and pedolith according to the following steps: **a**) Kaolinitization of alumino-silicate minerals, **b**) Hematization of Fe-bearing minerals, **c**) Formation of hydroxide minerals from kaolinite or directly from feldspar through in congruent dissolution, **d**) Congruent dissolution of kaolinite minerals, **e**) Dissolution of quartz.

Generally the distribution of these five oxides $(SiO_2, Al_2O_3, F_2O_3, Na_2O_3 \text{ and } K_2O)$ proved that the investigated laterite deposits had been done in the upland area, predominantly of residual origin, under free leaching conditions. Actually, the minerals of the iron oxides by very intense leaching of alkalis and silica. Moreover, distribution of the trace elements, proved the investigated laterite have been related to basic rocks.

Calculation of chemical index of alteration (CIA), index of compositional variation (ICV), plagioclase index of alteration (PIA) and chemical index of weathering action (CIW), reflected the degree of chemical weathering, proportionally under humid conditions, whereas the mottled and ferruginous rocks represent the more acting rocks. Usually the high degree of chemical weathering action, are accompanied by leaching of alkalis and removing of silica. Actually the investigated laterite deposits had been formed by chemical weathering action of Natash volcanics and decomposition of the mafic minerals, accompanied by increasing kaolin and increasing of Al⁺³ and Fe⁺³ minerals.

Identification of the associated minerals of the laterite deposits, from EDX charts from EDX charts of scanning electron showing the following features.

1-The ferruginous rocks are characterized by association of some important metals such as gold, nickel (taenite, Ni-Fe), cupper (azurite, (Cu₃ (Co₃)₂OH₂), pyrite (FeS₂) and bismuth (Bi). Actually, occurring of these metals, particulars gold need more detailed field works to evaluate them.

2- The clay deposits are associated with celesite and anhydrite, as well as mottled rocks associated with ankarite and calcite of sedimentary origin, about their removing at the upper parts of the mainly ferruginous composition.

3- Both the rocks, such as zincite (ZnO), cerussite (PbCo₃), siderite (FeCo₃) and corundum Al^2O^3 , to reflect their own relationship with laterite development.

4- Most all rock units of laterite deposits and related rocks are associated ilmenite, zircon, barite, sylvite and spinel indicating that may have been still preserved during different stages of the chemical weathering.

References

- Byerly, G.R., 1999. Komatiites of the Mendon Formation: late-stage ultramafic volcanism in the Barberton Greenstone Belt. Geol. Soc. Am. Spec. 329, p189–211.
- 2. Cox, P.A., 1995. The elements on Earth. Inorganic chemistry in the environment. Oxford University press, Inc., New York.
- Dury, G.H., 1969. Perspectives on geomorphic processes. Washington: Association of American Geographers, 1969. 56.
- 4. Garrels, R.M., Christ, C.L., 1965. Solution, minerals and equilibria, Harper and Row Pub., New York, p450.
- 5. Grubb, P. I., 1973: High level and low level bauxitization: a criterion for classification, Mineral Sci. Eng. Vol.5, 219-231pp.
- Hayashi K, Fujisawa H, Holland H, Ohmoto H (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61(19):4115–4137.
- 7. Hutchison, C.S.1983. Economic deposits and their tectonic setting. The Macmillan press LTD, London and Basingstake, 365p.
- 8. MacFarlane, M.J., 1983. Laterites. In: Goudie, A.S., Pye, K. (eds.). Chemical Sediments and Geomorphology: precipitates and residua in the near-surface environment. London: Academic Press, p. 7-58.

- 9. Migsisow, A. a., 1960. On the other titanium aluminum ratio in sedimentary rocks, geochemistry 2:178-184).
- Nesbitt, H.W., G.M. Young., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 299, p715-717.
- Roy PD, Caballero M, Lozano R, Smykatz-Kloss W (2008). Geochemistry of Late Quaternary sediments from Tecocomulco lake, central Mexico: implication to chemical weathering and provenance. Chemie der Erde-Geochemistry 68:383–393.
- Valeton, I., 1972. Bauxites, Elsevier publishing company, Amesterdam, London, Newyork. 225p, Hutchiso, C. S. 1983: Economic deposits and their tectonic setting. The Macmillan press LTD. London and Basings toke, 365p.
- 13. Weaver, C.E., 1967. Potassium, illite and the ocean. Geochim. Cosmochim. Acta., 31 p281-296.
- Wedepohl, K.H., 1978. Manganese: Abundance in Common Sediments and Sedimentary Rocks [M]. pp.1–17. Handbook of Geochemistry: Springer Berlin.
- **15.** Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic: Geochimica et Cosmochimica Acta, 54(2), p343-354.

8/23/2017