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Abstract: The most important factors affecting the air jet weaving machine’s efficiency are warp and weft breaks 
which are strongly connected to the yarn and machine parameters. The objective of this paper is to predict the 
number of weft breaks per million meters using back propagation algorithm in an artificial neural network system. 
Two models are used: first utilizing twelve parameters for the input layer and second applies only the five most 
correlated yarn parameters. The developed algorithm can predict the number of weft breaks per million meters. The 
results gave satisfactory coefficient of correlations (0.955) between the actual and predicted number of weft breaks. 
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1. Introduction 

In weaving, machine stoppages always lead to 
low production rates. Machine stoppages in weaving 
process usually occur as a result of warp breaks, weft 
breaks, mechanical breakdown, electrical faults, 
shortage of spare parts, power cuts, beam changing, 
cleaning, oiling and lubricating[1] . In the case of 
using 100% cotton yarn in air jet machines, warp and 
weft breaks cause machine stoppages during weaving. 
In addition, wrongly adjusted machine parameters and 
weaving conditions lead to yarn breaks during 
weaving [2].The tension of warp and weft yarns leads 
to high warp and weft breaks rate too. In many 
research works, low warp tension of 50cN had a 
significant effect on weft breaks due to the disturbance 
of the smooth passage of weft yarn across the shed. 
Increasing warp tension to 70 cN weft breaks were 
stabilized. Higher tensions (80 cN, 85 cN and 90 cN) 
in the warp did not have an effect on the weft break. 
This is in contrast with the warp breaks that occur 
more when the tension was over 70cN so at this 
tension the warp suffers longitudinal stresses while the 
weft, not as strained as the warp [2]. Low yarn tension 
creates a clinging effect, resulting in yarn breaks for 
both warp and weft [3]. The values of peak tension 
may reach about 30% of the tensile strength of yarn. 
Selection of high quality yarn to weave on high speed 
air jet machines needs to choose high quality yarn to 
weave on high speed air jet machines, it is to increase 
the efficiency and reduced yarn breaks [4]. 

Yarns spun from staple fibers are irregular. As 
very thin place occurs, it may fail under the balloon 
tension in spinning and a spinning break occurs. When 
such a very thin place survives spinning in a weavable 
singles yarn, it causes yarn breaks in weaving. The 
magnitude and frequency of very thin places depend 
on the number of fibers in the yarn crosses section, 

and the variability of fiber diameter [5]. It was 
observed during weaving with maximum weft 
densities that the machine stopped mainly due to weft 
stops. In the majority of machine stoppages, weft yarn 
got entangled with warp yarns especially at the 
selvage regions. The cloth-fell moved backwards with 
increasing weft density and decreased the front shed 
size. However, the cloth-fell position moved 
backwards more at the selvages due to the lower warp 
tension. This decreased shed openness at the selvages 
even more and warp yarns got into the profile of the 
reed before the completion of weft insertion, this was 
observed as the main reason causing weft stops very 
often and limited the maximum weavable weft density 
[6].On air-jet machines, weavability of elastane based 
stretch yarns was investigated where bobbins were 
divided in three categories according to the most 
important production processes for elastane yarn: core 
twist, core spun and air covered. The ‘core twist’ 
yarns didn’t result in specific insertion problems. The 
‘core spun’ yarns had problems due to being blown 
apart under influence of the airflow, causing weft 
stops. The ‘air covered’ yarns resulted in recurring 
fabric defects at the arrival side of the machine 
[7].The textile process involves the interaction of a 
large number of variables. The relations between these 
variables and the product properties could not be 
established conclusively. Artificial Neural Network 
(ANN) represents a promising step in this field where 
different techniques have been suggested to determine 
these relations but with limited success [8]. The 
predictability of the warp breakage rate from a sizing 
yarn quality index using a feed forward back-
propagation network in an artificial neural network 
system was investigated. A good correlation between 
predicted and actual warp breakage rates indicated that 
the warp breakage rates can be predicted by neural 
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networks. A model with a single sigmoid hidden layer 
with four neurons is able to produce better predictions 
than the other models of this particular data set in the 
study [9].An artificial neural network (ANN) model 
was developed to predict the drape coefficient . The 
results prove a significant relationship between the 
ANN inputs and the drape coefficient. The algorithm 
developed can easily predict the drape coefficient of 
fabrics at different diameters [10]. Seam puckering, 
seam flotation and seam efficiency were investigated 
by artificial neural networks and multiple logarithm 
regression methods for modeling seam performance of 
commercial woven fabrics. The results indicated that 
the artificial neural network (ANN) model has better 
performance in comparison with the multiple 
logarithm regression models [11].Applying ANN for 
the problem of the determination of the optimum 
value of LAP for specific materials and production 
conditions helps saving time and material in 
comparison with the traditional try and error methods. 
Five Artificial Neural Network Models were 
developed and showed quite promising results 

predicting the optimum value of LAP for given 
material and production parameters. A comparison 
between the performance of Neural Network and the 
conventional data analysis techniques (the multiple 
regression analysis) was conducted. It was concluded 
that the Artificial Neural Networks were much more 
efficient than conventional statistical techniques 
[12].An artificial neural network model was used in 
order to predict the bursting strength of the knitted 
fabrics including elastomeric yarns with nine neurons 
in single hidden layer and proved to be promising by 
the low prediction errors. Three parameters easily 
available from the manufacturers before the 
production were considered: basic yarn count, 
elastomeric yarn count and elastomeric yarn ratio used 
as input parameters [13]. 
 
2. Material And Methods 

Experimental measurements were done on air jet 
weaving machine in a mill environment using 9 
different yarns as a weft with various properties 
shown in (Table 1). 

 
Table 1.Yarns properties 

Yarn 
code 

Count 
[Ne] 

Twist 
factor 

Tenacity 
[cN/ tex] 

Hairiness 
Index [H] 

Thin 
places 

Thick 
places 

Neps 
[CVm] 
% 

Yarn 
Diameter 
[mm] 

Diameter 
shape 

1 60/1 3.93 16.4 4.02 8 53 89 13.89 0.137 0.88 
2 60/1 3.93 25.5 3.04 23 33 62 13.28 0.132 0.85 
3 40/1 4 16.2 5.4 7 53 182 13.64 0.177 0.86 
4 20/1 3.4 17 9.32 2 161 138 14.89 0.319 0.80 
5 80/1 4 12.7 3.98 32 269 354 16.33 0.123 0.86 
6 20/1 4.2 19 6.76 11 173 116 15.07 0.275 0.84 
7 20/1 4.2 20.4 5.46 0 120 117 13.66 0.255 0.87 
8 30/1 4 20.2 5.71 1 106 23 14.09 0.249 0.75 
9 36/1 4 20 4.95 2 144 77 14.67 0.218 0.79 

 
It was used air jet weaving machine, its type 

(Picanol PAT-A-N1991- AIR JET), cams shedding 
mechanism, 635 picks per min, number of healdess 
equal 4 harness to weave plain fabric structure, 330 
machine width and 160 fabric width. 

Weft yarns were processed with different 
pressures of main and sub nozzles (3, 3.5, 4, 4.5, 
and5 bar) on the air jet machine with total number of 

samples 155. Coordination between main and sub 
nozzles' pressures was selected in order to give an 
acceptable degree of weavability, a straight and well 
tensioned weft yarns and a minimum number of 
defects in the fabric. 
2.1 Measurement of weft breaks 

The following (Equation. 1) is used to calculate 
the weft breaks per million meters. 
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3. Neural Network Design 

Analysis of the causes of weft breakages on the 
air jet machine: 

The weft breakages on the air jet machine are 
due to: 

1-machine parameters: machine speed, machine 
width, main nozzle pressure, sub nozzle pressure, 
machine width, reed design, and weft insertion time. 

2- Yarn physical properties: yarn structure, yarn 
morphology, yarn air drag coefficient, yarn diameter, 
yarn cross section shape, diameter variability along 
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the weft length in the shed (thin places, thick places 
and neps). 

3- Yarn mechanical properties: yarn strength, 
yarn elongation, yarn modulus of elasticity. 

The above analysis shows the complexity of the 
relation between wefts breaks rate and yarn 
properties, in spite of the low value of the tension on 
the weft yarn during insertion but yarn breaks occurs. 
This may be due to the effect of air streams 
interaction with the yarn during insertion along the 
machine width. The interpretation of the weft 
breaking rate for each yarn before weaving will help 
the weaver to choose the machine settings. In this 
work the prediction of the weft breaking rate has 
been made using ANN system. Two models are used: 
the first one using twelve parameters for the input 
layer and the second model using only the five most 
correlated yarn parameters as elements for the input 
layer. 
3.1 Architecture 

The number of hidden layers and the number of 
neurons in these layers determine the size of the 
network. Most practical applications use a network 
with three layers (an input layer, an output layer and 
a hidden layer). The number of input neurons 
normally corresponds to the number of input 
variables of the process to be modeled.A variety of 
training algorithms have been developed. The most 
widely used is the back propagation algorithm which 
is used to determine the weights. Back-propagation is 
given in (Equation . 2). 

)2(1 kkkk gyy   
 
Where yk - a vector of current weights and 

biases, gk- the current gradient, and φk - the learning 
rate. 

A fast training algorithm using standard 
numerical optimization techniques was adopted: the 
Levenberg–Marquardt algorithm shown in (Equation. 
3). 
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 The primary application of the Levenberg–
Marquardt algorithm is in the least squares curve 
fitting problem: given a set of m empirical datum 
pairs of independent and dependent variables, (xi, yi), 
optimize the parameters β of the model curve f(x,β) 
so that the sum of the squares of the deviations would 
be minimized. 

For this research, a total of 155 samples of 
different weft yarns were taken, of which 109 
samples (70%) were used for training, 23 samples 
(30%) for validation, and 23 samples (30%) for 
testing of the neural network. There are 12 input 
parameters (yarn count, twist factor, yarn tenacity, 
hairiness index, thin places, thick places, neps, 
Cvm%, yarn diameter, shape of yarn diameter, main 
nozzle pressure, and sub nozzle pressure) and one 
output (weft breaks/106m). The number of hidden 
neurons is a very significant factor in the neural 
networks system. In this research, it was found that 
the value of hidden neurons of 20 is the best value. It 
gives a minimum mean square error (MSE) and a 
maximum efficiency of the model, a high coefficient 
of correlation. 

Two different architectures of artificial neural 
networks model were used: first ANN shown in (Fig. 
1) using all possible affecting parameters into 
consideration, second one, using only the most 
correlated factors affecting on the weft breaks rate 
into consideration and is shown in (Fig. 2). 

 

 
Fig. 1. First artificial neural network model (I). 
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Fig. 2. Second artificial neural network model (II). 

 
4. Results and Discussions 

In order to evaluate the neural network models, 
a comparison between the actual and the predicted 
values of weft breaks was conducted. The error 
between the network output and the actual output was 
calculated by the mean square error (MSE). The 
mean square error (MSE) can be calculated as in 
(Equation 4). 

  


n

i ii xy
N

mse
1
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Where N _ number of objects, yi _ the neural 
network predicted values, and xi _ the actual output 
values. 

The performance of training algorithm for the 
first artificial neural network model (I) with a number 
of neurons in the hidden layer of 20 is illustrated in 
[Fig. 3]. Mean square error (MSE) decreased 
gradually and the training stopped at 14 epochs. The 
(MSE) were nearly the same for the training, 
validation, and test until the 4th epoch. 

 

 
Fig. 3. Performance of the first ANN model (I). 

 

 
Fig. 4. Relation between actual and predicted weft 
breaks by ANN model (I). 

To test the neural network model (I) 23 samples 
were used and the relation between actual weft breaks 
and predicted weft breaks is illustrated in [Fig. 4]. It 
was noticed that there was an acceptable correlation 
between actual weft breaks and predicted weft breaks 
calculated by the neural networks trained. The 
correlation coefficient obtained (R= 0.955) gives a 
consistent quality of the forecast given by the training 
algorithm. 

The correlation coefficient “R” between 
different yarns properties and the values of actual 
weft breaks was calculated and it was found that the 
most significant parameters affecting the weft breaks 
are yarn count, thin places, Neps, diameter, and yarn 
diameter shape with R values = 0.857, 0.75, 0.56, -
0.77, and 0.63 respectively. Therefore, a new ANN 
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model (II), shown in [Fig. 2], was prepared with the 
most significant parameters as input parameters for 

the ANN to predict the weft breaks. 

 
 

 
Fig. 5. Performance of the second ANN model (II). 

 
 

 
Fig. 6. Relation between actual and predicted weft 
breaks by ANN model (II). 

 
 
The performance of the second artificial neural 

network model (II) is shown in [Fig. 5] with hidden 
neurons 20 in the hidden layer. The mean square 
errors were found constant from the first epoch to the 
8th epoch. In the neural network model (II), the 
predicted weft breaks is compared with the actual 
weft breaks in [Fig. 6]. It can be observed that 
significant effects ensued with neural network model 
(II) with coefficient of correlation R= 0.8899. 
 
4. Conclusion 

In this paper, an artificial neural network based 
on a back propagation algorithm was developed and 
optimized to predict weft breaks' rates for different 
yarns properties. The results obtained from ANN can 
be used to predict weft breaks. The coefficient of 

correlation between the actual and predicted values 
was found to be 0.955. It was proven that the yarn 
properties, which mostly affect the rates of weft 
breaks, are yarn count, thin places, neps, yarn 
diameter, and yarn diameter shape. Thus, it can be 
presumed that the neural network can predict weft 
breaks' rate efficiently. 
 
References 
1. Masudur R, Md Ruhul A. Efficiency Analysis in 

Rapier Loom. Inter J of Basic and Applied Sci: 
Bangladesh: June 2011;11, No 3: p. 44-50. 

2. Nkiwane L, Marashe S. Loom Speed and 
Tension to Reduce Warp and Weft Breaks in 
Air Jet Weaving. National University of Science 
and Technology: Zimbabwe: 2012. p. 1-8. 

3. Severine G, Can K, Karthik S, Kaustubh B, 
Balu J. Replacing stop motions with sensors, 
with the ultimate goal of measuring warp 
tension online. Micromachine Based Fabric 
Formation Systems: NTC Annual Report. 
NCSU. USA. November 2001: p. 1-9. 

4. El-Messiry M, Mito A. Dynamical analysis of 
weft yarn tension on air jet weaving machine. 
ITJ: October 1994: p. 14-17. 

5. James L. End Breaks in the Spinning and 
Weaving of Weavable Singles Yarns: Part 2: 
End Breaks in Weaving. TRJ: June 2005; 75:p. 
512-517. 

6. Yildiray T, Recep E. The effect of loom settings 
on weavability limits on air-jet weaving 
machines, TRJ: Nov. 2011; 82(2): p.172–182. 

7. Simon De M, Lieva Van L, Paul K. Study of the 
weavability of elastane based stretch yarns on 



 Journal of American Science 2016;12(5)           http://www.jofamericanscience.org 

 

51 

air-jet looms. Autex Res. J: June 2009; 9 No2: 
p. 54-60. 

8. El-Messiry M, Abd-Ellatif S, Artificial neural 
networks for solving textile problems: review, 
Autex 2010 World Textile Conference. Vilnius: 
June 2010:p.21-23. 

9. Guifen Y, Jiansheng G, Yongyuan Z. Predicting 
the Warp Breakage Rate in Weaving by Neural 
Network Techniques. TRJ: 2005; 75(3):p. 274–
278. 

10. Ghit A, Hamdi Th, Fayala F. Prediction of drape 
coefficient by artificial neural network, Autex 
Res J:September 2015. 

11. Chi L, Sau Fun Ng. Predicting Seam 
Performance of Commercial Woven Fabrics 
Using Multiple Logarithm Regression and 
Artificial Neural Networks. TRJ: 2009; 79(18): 
p.1649–1657. 

12. Abd-Ellatif S. Optimizing sliver quality using 
Artificial Neural Networks in ring spinning. 
AEJ: 2013; 52: p.637-642. 

13. Bahadir M C, Bahadir S K, Kalaoglu F. An 
Artificial Neural Network Model for Prediction 
of Bursting Strength of Knitted Fabrics. 
International Conference on Machine Learning 
and Computer Science (IMLCS'2012): Phuket 
(Thailand): August 2012:p. 11-12.  

 
 
 
4/9/2016 


