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Abstract: Drosophila melanogaster (D. melanogaster) has been used in biomedical research for over a century. 
Studies have included the study of genetics and inheritance, embryonic development, learning, behavior, ageing, 
drug discovery, and evolution. The reason for its centrality in those diverse fields is the fact that D. melanogaster 
shares many homologous genes with other species, including humans. In fact, Pandey and Nicholas (2011)(13) state 
that “nearly 75% of human disease-causing genes are believed to have a functional homologue in the fly”. This 
resemblance proves that comparison is an essential part of the biomedical field, as the D. melanogaster is still 
considered a great model organism, allowing scientists to study the impact of mutations on the fly, which can also 
form inferences that impact the welfare of humans. Despite the numerous studies done on the fruit fly, surveying the 
available literature has shown several vital pieces of information that are yet to be picked up for future research. The 
fields of study are extremely diverse, and include studies on the dopaminergic neurones, the function of specific 
exons, Alzheimer’s Disease, and pathogenic viruses. This paper aims to shed light on the discoveries and advances 
done in recent research in order to help direct the progress of future studies concerning the D. melanogaster in 
studying viruses, neurodegenerative diseases, and improving existing pharmaceuticals, as these are the fields where 
most of the studies in recent years have been conducted. This guidance is done by compiling and synthesising the 
existing literature, and presenting the recommendations put forth by the aforementioned studies. 
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Comparative Efforts Using Drosophila 
melanogaster 

Drosophila melanogaster’s usage in biomedical 
labs has been traced back by Kohler to 1901 by 
William Castle1. It led to several discoveries that were 
worthy of the Nobel Prize. These discoveries include 
evidence supporting that DNA as the genetic 
material2, proving that X-rays cause mutation by 
physically breaking chromosomes3, and understanding 
how genes direct the development of embryos to 
mature multicellular organisms4.D. melanogasterhas 
also been used to study inheritance, learning, 
behaviour, ageing, and clinical drugs5,6. Evolution of 
population genetics7, proteins8, and DNA sequence 
levels9, has also been heavily studied, which has led to 
a great level of understanding to the process of 
molecular evolution10. In fact, the majority of the 
current knowledge regarding cellular, tissue, and 
regenerative biology comes from studying model 
organisms such as the fruit fly11. 

Several factors have caused D. melanogaster to 
be considered a model organism in biomedical labs. 
The fruit fly shares many homologous genes with 
humans12, and it is believed that around 75% of 
human disease-causing genes have a functional 
homologue in the fly13. These evolutionary conserved 

genetic sequences have been exploited by researchers 
to study the function of several genes14. 

Having relatively simple genetics with reduced 
genetic redundancy, in addition to the ease involved in 
manipulating its genes, D. melanogaster is an 
excellent model in studies pertaining to molecular 
replication, amplification, and cellular consequences 
of human viruses15. This utility is also further 
reinforced once the number of potential progeny from 
each female fly is considered, and the short amount of 
time the eggs require to hatch16,17. Using model 
organisms such as the fruit fly also reduces the ethical 
and practical obstacles faced when conducting 
experiments in human biomedical science. The fruit 
fly’s rapid lifecycle also means that less time would 
be needed to conduct studies, especially when 
compared to the vertebrate models such as mice and 
zebrafish11. 

Difficulties are still present when using D. 
melanogaster as the target of genetic research, and 
these difficulties include the pleiotropic nature of 
genes18, and the fact that the homologous genes in the 
fruit fly do not mimic the phenotypes found in 
humans19. There are also physiological differences 
between D. melanogaster and humans, such as the 
optimal body temperature, and the absence of some 
human genes in the fruit fly’s genome. There also 
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exists some biochemical differences with respect to 
cellular surfaces19, and the presence of 
neurotransmitters20. Even with the existence of these 
differences, studies on the D. melanogaster will 
continue to provide insight with respect to the 
pathophysiology of several diseases21. Moreover, 
these differences can be overcome through the 
modification of the Drosophila’s genome or cellular 
structure22,23. 
Common Methods Using Drosophila melanogaster 

The “Binary GAL4/UAS Gene Expression 
System” has shown great success in introducing genes 
to the D. melanogaster’s genome. The gene of interest 
is synthesised in a way that would place it under the 
regulation of the “Upstream Activating 
Sequence”(UAS), which is activated by binding to the 
GAL4 transcription factor. A transfected fly would be 
crossed with a fly containing the GAL4 driver, which 
produces progeny containing both properties .This 
method has proven to be quite useful in the 
determination of gene function, which could be over 
5kb in size. Owing to GAL4’s sensitivity to 
temperature, gene expression could be controlled24. 
More transgene copies could also control gene 
expression25, in addition to changing vectors26. 
Viruses and Drosophila melanogaster 

For over a decade, the fruit fly has been 
employed in research regarding the molecular and 
genetic functions of pathogenic viruses, while also 
giving crucial insight into host antiviral immunity27. 
Different methods have been employed to study 
different viruses. The infection of D. melanogaster’s 
cells was used for the Dengue Virus28,29, Influenza A 
Virus30, and Sindbis Virus31. Transgenic lines were 
formed to study the Epstein-Barr Virus32, Human 
Immunodeficiency Virus33,34, Human 
Cytomegalovirus Virus35, Influenza A Virus36, Severe 
Acute Respiratory Syndrome Coronavirus37,38, and 
Simian Vacuolating Virus39. D. melanogaster cell 
cultured were also transfected to study the Hepatits B 
Virus40, and Human Immunodeficiency Virus41. 

Severe Acute Respiratory Syndrome Corona 
Virus 

The SARS-CoV (Severe Acute Respiratory 
Syndrome Corona Virus) was the causative agent 
involved in the pneumonia epidemic in 200342. The 
introduction of its 3a protein to the D. melanogaster 
caused an increase of apoptosis in the developing 
eye43. This phenomenon is believed to be mediated by 
cytochrome c in the mitochondrial pathway, which is 
identical to its effect in human cells44. Effects on other 
cellular processes have also been linked to the 3a 
protein, including calcium ion regulation, 
ubiquitination, and transcription. Pharmaceutical 
intervention to block the ion channel involved in 
transporting the 3a protein has been shown to prevent 

its effects in human cells (in vitro) and the transgenic 
flies (in vivo). Another protein, the M membrane 
protein, has been found to induce eye apoptosis by 
suppressing survival signalling pathways37. 
Identifying ways by which the actions of 3a and M 
membrane proteins can be inhibited could potentially 
lead to the alleviation of symptoms15. 

Human Immunodeficiency Virus 
The HIV (Human Immunodeficiency Virus) 

causes around 1.5 million deaths annually45. Its 
pathogenicity arises from its reverse transcriptase 
activity, which allows its DNA to become 
permanently integrated into the host cell’s DNA46. 
The HIV-Nef membrane-associated protein was 
studied using the D. melanogaster, where it proved to 
cause downregulation of the cell surface receptor of 
CD4 cells through endocytosis22. This study was done 
by transfecting Drosophila Schneider 2 (S2) cells with 
human CD4 protein and the HIV-Nef genes, which 
resulted in their co-expression. The endocytosis was 
found to be mediated by clathrin. The effects on the 
flies include larval wing disc apoptosis, and the 
inhibition of the NG-kB signalling in body cells, 
which corresponds to a decline in T-cell immune 
function in humans47. That is another protein that is 
essential for viral replication. It elicits its action by 
disrupting microtubule polymerisation and 
kinetochore dynamics in the Drosophila33, which 
corresponds to an inhibition in rRNA processes in 
humans, leading to a reduced number of ribosomes in 
the cytoplasm48. The HIV-Rev protein was found to 
regulate expression of the HIV genes, but more 
studies are required on it as its mechanism of action 
remains unknown15. 
Neurodegenerative Diseases and Drosophila 
melanogaster 

Neurodegenerative diseases (NDs) is a term that 
describes a diverse group of diseases that are 
characterised by a progressive worsening of neural 
functions including loss of sensation, motor control, 
memory, and cognitive impairment. Manipulating 
multicellular organisms that possess a nervous system 
can help provide insights on the cellular and molecular 
mechanisms of these diseases, which could result in 
methods to delay, or cure the symptoms caused by 
NDs19,49,50. This manipulation is possible because the 
genes involved in NDs are evolutionary conserved in 
higher eukaryotes19. One of the key aspects of NDs is 
their association with mitochondrial dysfunction 
which causes an accumulation of reactive oxygen 
species (ROS)51-53. Mitochondrial respiratory 
complexes I and III produce ROS as a byproduct of 
their reactions, so defects in these complexes can 
result in an excess of ROS19. Another biochemical 
explanation involves misregulation of dopamine 
(DA)54. Since DA synthesis and secretion mechanism 
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pathways, in addition to receptors and transporters, 
have been conserved between flies and humans, D. 
melanogaster serves as a suitable model organism to 
study the abnormalities seen in NDs55. It should be 
noted, however, that DA metabolism pathways are 
different21. The genes essential for melanin synthesis 
in the insect cuticle, which is derived from DA’s 
precursor tyrosine in both mammals and insects56, also 
regulate DA synthesis in mammalian and insect 
brains57,58. 

Parkinson’s Disease 
Parkinson’s disease is a ND that has been studied 

extensively in D. melanogaster59-62. It was previously 
proven that increased DA levels cause the “removal of 
memories” or “forgetting” in flies63. This removal of 
memories is similar to dementia, which is 
characteristic to Parkinson’s disease in humans; the 
correlation between these two observations can lead to 
an improvement to existing therapies21. It was also 
proven that introducing MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine), a chemical that inhibits 
mitochondrial complex I, results in Parkinsonism64, 
which is homologous to the effect of using the 
insecticide rotenone and the herbicide paraquat on 
insects65. 

Alzheimer’s Disease 
Alzheimer’s disease is another ND where D. 

melanogaster was found to be useful66. The first 
indication that the disease had a genetic component 
was due to the observation that first degree relatives 
are more likely to develop the disease67,68. Certain 
proteins have been identified which have been 
attributed as the cause for early-onset Alzheimer’s 
Disease, and these include Amyloid Precursor Protein 
(APP), Presenilin 1, and Presenilin 269. The disease is 
characterised by beta amyloid plaques and tau proteins 
in the hippocampus70. When these proteins were 
overexpressed in the D. melanogaster’s retina, the 
result was flies with tough and smaller eyes66,71. While 
APP in humans has App1 as a homolog in flies, the 
product of its cleavage was not evolutionary 
conserved72. However, the product of App1 cleavage 
in flies produced Aβ42, which is the main constituent 
of the amyloid plaque in D. melanogaster73, and has 
been attributed to cause a reduced lifespan in flies, in 
addition to brain and photoreceptor degeneration, and 
impaired locomotion74,75. Other proteins that were 
connected to Alzheimer’s disease in humans are 
Apolipoproteins D (ApoD)76 and E (ApoE)77. ApoD 
has Glial Lazarillo (GLaz) as a fly homolog, while 
ApoE does not seem to have one. A mutation causing 
reduced GLaz expression produced flies with reduced 
resistance to oxidative stress and starvation, in 
addition to impaired fat storage and a shortened male 
fly lifespan78. An overexpression of GLaz (and human 
ApoD) produced flies with an increased resistance to 

hyperoxia and starvation, in addition to extended 
lifespans79-81. This overexpression led to the 
conclusion that they have protective roles in stressful 
conditions, and their reduced expression results in a 
faster rate of neurodegeneration78,81. 

Amyotrophic Lateral Sclerosis 
Amyotrophic Lateral Sclerosis (ALS), also 

known as Lou Gehrig’s Disease, is used to describe a 
condition in which the upper (cortical) and lower 
(spinal cord) motor neurones degenerate progressively 
causing muscular dysfunction, and eventually 
paralysis82. Most of the cases have no positive family 
history or a genetic cause82. Several mutations have 
been attributed to the pathogenesis of ALS19, which 
includes Copper/Zinc Superoxide Dismutase (Cu/Zn 
SOD)83. The expression of human SOD1 in D. 
melanogaster resulted in an extended lifespan when 
compared to normal flies84, which is potentially 
attributed to an augmented ROS metabolism and 
resistance to oxidative stress85. 

Vesicle-Associated Membrane Protein 
(VAMP)/Synaptobrevin-Associated Membrane 
Protein B (VAPB/ASL8) is another protein complex 
that was associated with ALS77. Flies with mutations 
in VAPB display filamentous and enlarged 
mitochondria in muscle cells86, which has been 
attributed to a reduced mitochondrial ability to 
properly buffer calcium ions87, leading to spikes in 
calcium ions and spontaneous muscular contractions, 
akin to those observed in ALS patients88,89. This 
mutation also corresponds to a decreased level of 
Bone-Morphogenic Proteins (BMP) in humans, which 
has a homolog named Gbb in flies90. A reduced level 
of Gbb in flies leads to less pMAD (a signalling 
pathway) in the presynaptic terminal91, which in turn 
leads to a loss of neuromuscular junction 
maintenance92. This loss of maintenance is similar to 
the observations made in SOD mice and ALS 
patients93,94. The end result is synaptic retraction and 
loss of motor neurons in sporadic ALS95, SOD96, and 
ALS897 patients. Research focusing on the role of 
BMP and its external administration to ALS patients 
may be beneficial19. 

Polyglutamine Diseases 
Polyglutamine (PolyQ) Diseases is a collective 

name given to a total of nine diseases caused by 
“CAG” repeats in the translated regions of unrelated 
genes19. The overexpression of the PolyQ expanded 
proteins in the retina of D. melanogaster resulted in 
rough, depigmented eyes. This phenotype allowed the 
genes to be exhaustively reviewed in flies98. One 
important PolyQ disease is Huntington Disease, which 
is caused by the expansion of a CAG triplet in the 
“huntington protein” (HTT). The introduction of this 
protein into the fruit fly resulted in a pathology. In 
order to determine the most pathogenic portion of 
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HTT, its exons were separated and introduced into 
flies to produce transgenic flies. In general, the 
formation of huntingon aggregates resulted in a 
progressive loss of motor function in flies99. The 
aggregates seem to elicit their action by impairing 
calcium ion buffering and excitotoxicity, which could 
be the main cause of neurodegeneration100. The results 
also proved that exon 1 of the HTT peptide was 
relatively the most toxic and pathogenic. Future 
research can be directed at finding methods to reduce 
its toxicity, and by extension its pathogenicity99. It 
was also found that reducing oxidative stress on D. 
melanogaster has no impact on polyQ diseases101 
while enhancing levels of NADPH through the 
overexpression of the HSP27 gene102,103 increased the 
flies’ lifespan, which could be due to the role of 
NADPH in reducing toxicity induced by polyQ 
diseases104. 
Drugs and Drosophila melanogaster 

A plethora of studies exist which prove that the 
D. melanogaster is a practical model for studying 
drugs. It has been used in the discovery process5,6, in 
addition to screening for potential drugs104. After 
identifying the pathogenesis of certain disease-causing 
mutations, drugs can be fed to the flies in order to 
determine ways to inhibit the mutant phenotype15. 
Studies have proven that drugs affecting the 
metabolism of dopamine have an effect on flies13,48,49. 
Several have studied the effects of Reserpine, a human 
antipsychotic drug, and its mechanism of inhibiting 
dopamine signallingin vivo105-107. Focus was placed on 
dopamine is because it is involved in the reward-
signal pathway in human brains, which has been 
associated to several addictions21. In fact, drugs for 
Parkinson’s disease that focus on increasing the levels 
of L-Dopa in the brain have been noted to cause an 
increase in hedonistic behaviour55. Whilethe insect 
analog is octopamine108, the suppression of dopamine 
levels in D. melanogaster led to a reduction of the 
locomotion impairment elicited through the intake of 
ethanol, nicotine, or cocaine105. This proved the 
continued viability of the D. melanogaster as a model 
organism in studying drugs.109. 

D. melanogaster cell cultures can also be used to 
produce drugs, specifically human monoclonal 
antibodies110. While bacteria and fungi are the normal 
candidates111, bacteria has the drawback of not being 
able to produce correctly-folded glycosylated 
antibodies112, and yeast was only successful in 
producing them in minimal amounts113. With the 
prediction of an increased demand for monoclonal 
antibodies, more efficient methods of production are 
required114,115. Drosophila Schneider (S2) cell lines 
have proven to be a lot more productive, in addition to 
being more stable and consistent in their growth 
profile, protein production, and are still functional 

after months of storage110,116-118. They can grow in 
Serum Free Media, and the cost of raw materials and 
consumables involved is almost seven times less 
expensive that the commonly used methods119,120. By 
using Wave Bioreactors to culture transfected S2 cells, 
the concentration of the produced human monoclonal 
antibodies was 28 times higher than when other 
organisms were used110. 
Miscellaneous Studies Performed on Drosophila 
melanogaster 

D. melanogaster has been used to study cocaine 
tolerance and withdrawal research18,121,122, identify 
exact functions of human proteins123, uncover 
essential factors for successful fertilisation and zygote 
formation in humans124, and recognise the role of 
certain neurotransmitters in aggression125 and sexual 
orientation126. Studies on Down’s syndrome127and 
Alzheimer’s disease128 have been related to the 
misexpression of the gene DSCR1, which is 
homologous to the sarah (sra) gene in flies. The role 
of DSCR1 in humans remains unclear129, while the 
role of sra in D. melanogaster females is associated 
with reduced receptivity to males130. 
 
Conclusion 

With comparison being its key aspect, many 
advances have been done based on D. melanogaster to 
improve human life and regenerative medicine15. It is 
expected that it will continue to be crucial in the 
future26. By synthesising the most recent information 
in one literature review, this paper attempts to guide 
future studies. This guidance will hopefully result in a 
better understanding of current diseases, and the 
discovery of ways by which the quality of human life 
could be improved. Certain limitations exist in this 
approach, including the difficulties involved in 
accessing the most recent and unpublished papers, in 
addition to overlooking older works. 

In order to add to current knowledge, several 
areas of research still exist. Further studies to 
determine the functions of each exon in the D. 
melanogaster’s genome are needed131. Areas of study 
include identifying the role of dopamine in human 
sleep disorders such as hypersonmia, REM (Rapid 
Eye Movement) sleep behaviour disorder, and restless 
legs syndrome21. 

With respect to Alzheimer’s disease, there is still 
a lack of knowledge regarding the effects of Aβ42 and 
tau toxicity in the D. melanogaster19. After isolating 
the most toxic exon involved in the HTT peptide of 
Huntington’s disease, more studies should focus on 
ways that can reduce its pathogenicity99. Determining 
the role BMP plays and its external administration to 
patients with Amyotrophic Lateral Sclerosis (ALS) 
may be crucial for the development of future 
therapies19. More data is required to exploit the 
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resistance to ROS-related oxidative stress observed in 
flies with the expression of the human SOD1 gene19. 

Additionally, more viruses can be studied using the D. 
melanogaster, and these include the Human 
Papillomavirus (HPV), Hepatitis C Virus (HCV), and 
the Yellow Fever Virus15. 
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