
 Journal of American Science 2015;11(8)           http://www.jofamericanscience.org 

 

12 

Solving of Ordinary differential equations with genetic programming 
 

M.E. Wahed1, Z.A. Abdelslam2, O.M. Eldaken2 

 
1 Department of Computer Sciences, Faculty of computers and information, Faculty of Science, Suez Canal 

2Department of Mathematics, Faculty of Science, Suez Canal University, Suez Canal, Egypt 
osama_m_edaken@yahoo.com 

 
Abstract: In this work, a novel hybrid method for the solutions of ordinary equations is presented here. The method 
creates trial solutions in genetic programming on grammatical evolution. The trial solutions are enhanced 
periodically using a local optimization procedure. 
[M.E. Wahed, Z.A. Abdelslamand O.M. Eldaken Solving of Ordinary differential equations with genetic 
programming. J Am Sci 2015;11(8):12-16]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 3 
 
Keywords: Differential equations, genetic programming and grammatical evolution. 
 
1.Introduction 

A series of problems in many scientific fields can 
be modeled with the use of ordinary differential 
equations such as problems in physics [1–5], 
chemistry [6–8], biology [9, 10], economics [11], etc. 
The technique of genetic. Programming[2], is an 
optimization process based on the evolution of a large 
number of candidate solutions through genetic 
operations such as replication, crossover and mutation 
[12], These methods choose a basis set of functions 
with adjustable parameters and proceed approximating 
the solution by varying these parameters. Our method 
offers closed form solutions, however the variety of 
the basis functions involved is not a priori determined, 
rather is constructed dynamically as the solution 
procedure proceeds and can be of high complexity if 
required. This last feature is the one that distinguishes 
our method from others. We have not dealt with the 
problem of differential equation induction from data. 
The generation is achieved with the help of 
grammatical evolution. We used grammatical 
evolution instead the “classic "tree based genetic 
programming, because grammatical evolution can 
produce programs in an arbitrary language, the genetic 
operations such as crossover and mutation are faster 
and also because it is far more convenient to 
symbolically differentiate mathematical expressions. 
The code production is performed using a mapping 
process governed by a grammar expressed in Backus 
Nauru Form. Grammatical evolution has been applied 
successfully to problems such as symbolic regression 
[3],The rest of this article is organized as follows: in 
Section2 a brief description of the grammatical 
evolution algorithms given followed by analytical 
description of the proposed method. The test functions 
used in the experiments followed by the experimental 
results are outlined. 
 
 
 

2 Method Description 
In this section a brief description of the 

grammatical evolution algorithm is given. The main 
steps of the proposed algorithm are outlined with the 
steps for the fitness evaluation for the cases of ODEs. 
2.1 Grammatical Evolution 

Grammatical evolution is an evolutionary 
technique that can produce code in any programming 
language requiring the grammar of the target language 
in BNF syntax and some proper fitness function. This 
technique has been used with success in many 
scientific fields such as symbolic regression [13], by 
replacing non terminal symbols with the right hand of 
the selected production rule. The selection is 
performed in two steps: 
- We read an element from the chromosome (with 
value V). 
- We select the rule according to the scheme 
Rule = Vmod NR(1)  

Where NR is the number of rules for the specific 
non-terminal symbol. The process of replacing non 
terminal symbols with the right hand of production 
rules is continued until either a full program has been 
generated or the end of chromosome has been reached. 
In the latter case we can reject the entire chromosome 
or we can start over (wrapping event) from the first 
element of the chromosome. If the limit of the 
wrapping events is reached the chromosome is 
rejected by assigning to it a large fitness value, which 
prevents the chromosome to be used in the crossover 
procedure. In the proposed algorithm the limit 
of.wrapping.events was set to2.As an example of the 
mapping procedure of the grammatical evolution 
consider the BNF grammar shown in Fig. 1. The 
number in parent theses denotes these quince number 
of the corresponding production rule to be used in the 
mapping procedure. Consider the chromosome 
x=[9,8,7,6,16,10,17,23,8,14]. The steps of the 
mapping procedure are listed in Table1. The final 
outcome of these steps is the expression 3+sin(x). 



 Journal of American Science 2015;11(8)           http://www.jofamericanscience.org 

 

13 

2.2 Algorithm decription The proposed method is baased on an 
evolutionary algorithm,a stochastic process whose 
basis lies in the biological evolution. 

 
S: : = <expr˃     (0) 
<expr˃: : = (  <expr˃ <op˃ <expr˃ )        (0) 
│(<expr˃ )                             (1) 
│   <func˃ (<expr˃ )              (2) 
│    <digit˃                             (3) 
│ x                                         (4) 
│ y                                         (5)  
│ z                                         (6) 
<op˃: :   =          +                 (0) 
│       -                                   (1) 
│        *                  (2) 
│        /                   (3) 
<func ˃: : =   sin                    (0) 
│ cos                                      (1) 
│ exp                                      (2) 
│ log                                       (3) 
<digit ˃: :=      0     (0) 
│ 1                         (1) 
│ 2                         (2) 
│ 3                         (3) 
│ 4                         (4) 
│ 5                         (5) 
│ 6                         (6) 
│ 7                         (7) 
│ 8                         (8) 
│ 9                         (9) 

Fig.1 the  grammar of theproposed method 
 

Table 1:  An example of the mapping procedure 
 

string                                            chromosome                                              operation 
 

<expr ˃                                  9, 8, 7,6,16,10,17,23,8,14                               9 mod 7 = 2 
<func˃( < expr˃ )                       8,7,6,16,10,17,23,8,14                               8 mod 4 = 0 
sin(<expr ˃)                                   7,6,16,10,17,23,8,14                                7mod 7 = 0 
sin(< expr˃ <op˃ <expr˃)               6, 16,10,17,23,8,14                               6 mod 7 = 6 
sin(x <op˃ <expr˃ )                            16,10,17,23,8,14                              16 mod 4 = 0 
sin(x) + <expr˃                                       10, 17,23,8,14                              10 mod 7 = 3 
sin(x) + < digit˃                                           17, 23,8,14                              17 mod 10=7 
sin(x) + 3                                                            23,8,14 

 
 
Algorithm along with a penalty function which is 

used in order to represent the boundary or initial 
conditions of the ordinary differential equations, the 
main steps of the algorithm are as follows: 
1. Set the number of chromosomes S, the number of 
maximum generations allowed K, the crossover rate pc, 
the mutation rate pm, a small positive number ε the 
integer parameter G and the integer parameter M. The 
parameter G determines show frequently the local 
search procedure will be applied and the parameter M 

determines inchworm any chromosomes the local 
optimization procedure will be applied. 
2. Set inters = 0 
3. Initialize.the chromosomes.Each chromosomes will 
be 
4. Calculate the fitness for every chromosome 
5. Apply the genetic operations of crossover and 
mutation to the population 
2.3. Fitness evaluation  
We express the ODEs in the following for 



 Journal of American Science 2015;11(8)           http://www.jofamericanscience.org 

 

14 

 1 1( , , , ........., , ) 0n nf x y y y y ,  [ , ]x a b                   (2) 

where
ny  denotes the  n-order derivative of y  let the boundary or initial conditions be given by: 

( 1 ) ( 1 ) ( )( , , ,. . . . . . . . . . . . . . . . . , , ) 0n n
x ti

i x y y y y






i=1,..., n    (3) 

where
i

t  is either a or b: The steps for the fitness evaluation of any given chromosome g are: 

1. Choose T equidistant points in [a; b] denoted by
0 1 2

[ , , , ...., ]
T

x x x x  

2. For every chromosome i 

(a) Construct the corresponding model ( )
i

g x  expressed in the grammar described earlier 

(b) Calculate the  quantity 
1

(0) ( )

0

( ) ( ( , ( ), ..... ( )
T

n

i j i j i j
j

E g f x g x g x




                                 (4) 

(c) Calculate an associated penalty P(
i

g ) as shown below. 

(d) Calculate the fitness value of the chromosome as: 

( ) ( )
i i i

E g P g    (5) 

The penalty function P depends on the boundary conditions and it has 
the form: 

2 (1) ( 1)

1

( ) ( , , , ....., ) (6)
n

n

i k i i i
k

P g x g g g  



   

where  is a positive number 
3 Experiments 
ODE1: 

2dy x y

dx x


  

with (1) 3y   and  [1, 3]x  the analytical solution is 

2
( )y x x

x
 

 
ODE2: 

22 1
dy

x y x x
dx

   
 

with

1
(1)

2
y 

 and  [1, 3]x  the analytical solution 

2

2

1 1 1 1
( )

4 3 2 12
y x x x

x
   

 
ODE3: 

1 cos( )

sin( )

dy y x

dx x




 

with

3
(1)

sin(1)
y 

  and  [1, 3]x   the analytical solution is 

2
( )

sin( )

x
y x

x




 
 
3.2 Experimental Results The method was performed 30 times, using 

different seeds for the random number generator each 



 Journal of American Science 2015;11(8)           http://www.jofamericanscience.org 

 

15 

time, on every ordinary differential equation described 
previously and averages were taken. In Table 2 the 
numerical values for the parameters of the algorithm 
are listed. The local optimization procedure used in the 
experiments was a BFGS variant due to Powell [14]. In 
Table 3 compare between the results from the 
application the exact solution,the error calculated at 

range  [1, 3]x . 

In Fig.2, The application of the final solution in range 
[1:3] is plotted against the true solution 

2
( )y x x

x
 

 
At generation 22 the fitness value was 

4200 and the intermediate solution was: 

�(�) = − sin(7) sin�cos�cos�sin(7) e���(�)���� sin�2x ln(2)�� +
�

��� (1)
 

 
In Fig.3, The application of the final solution in range 
[1:3] is plotted against the true solution 

2

2

1 1 1 1
( )

4 3 2 12
y x x x

x
     

At generation 35 the fitness value was 6140 and the 
intermediate solution 
was: 

 �(�) =
34(�(ln(�) + sin(ln(3))) + 1)

81 ln(�) + 54sin (ln (3))
 

In Fig.4, The application of the final solution in range 
[1:3] is plotted against the true solution

2
( )

sin( )

x
y x

x


  

At generation 20 the fitness value was 4750 and the 
intermediate solution 
was: 

�(�) =
124

�
�

�� sin(2)

��
+ sin(�)� − 113 

 
Table 2: the numerical values for the parameters of the 
method 

Name Value 
S 500 
K 2000 
Pc 0.9 
Pm 0.05 
ε 10-6 
λ 100 
G 20 
M 20 
T 100 
B 10 

 

 
Table3: Experimental results 

Problem Exact G.P. Error 
ODE1    
X=1 3 2.8976 0.1324 

X=1.5 2.8667 2.9317 -0.065 
X=2 3 3.1032 -0.1032 

X=2.5 3.3 3.3429 -0.0429 
X=3 3.6667 3.5219 0.1448 

ODE2    
X=1 0.5 0.4689 0.0311 

X=1.5 0.5995 0.7302 -0.1307 
X=2 0.8542 1.0336 -0.1794 

X=2.5 1.2425 1.3684 -0.1259 
X=3 1.7593 1.7282 0.0311 

ODE3    
X=1 3.5652 6.6 -3.0348 

X=1.5 3.5088 3.794 -0.2852 
X=2 4.3988 4.42 -0.0212 

X=2.5 7.5191 12.056 -4.6572 
X=3 35.431 30.16 5.271 

 



 Journal of American Science 2015;11(8)           http://www.jofamericanscience.org 

 

16 

 
Fig. 2: G.P. and Exact solutions for ODE 1 

 

 
Fig. 3:G.P. and Exact solutions for ODE 2 

 

 
Fig. 4:G.P. and Exact solutions for ODE 3 

 
4 Conclusions 

In this Section, we represent the obtained 
Genetic programming results for the ODEs problems, 
and comparison between Genetic programming 

method and exact solution and calculate the error 
between it. Fig. 2, Fig. 3, Fig. 4 and table 3 show that 
the values of error better in the case of functions 
which have small values. In the future we will try to 
improve this way when the values are big. Although 
the error is relatively large in some regions, the 
advantage of this method for numerical methods is 
finding a function which give approximate solution 
for ODEs, and can be handled with this function and 
study its behavior so this is better in some boundary 
value problems from numerical methods. 
 
References 
1. Its A.R., A.G. Izergin, V.E. Korepin,N.A. Slavnov, 

Differential equations for quantum. correlation functions, 
International Journal of Modern Physics B4 (1990):1003–
1037. 

2. Kotikov A.V., Differential equations method: the calculation 
of vertex-type Feynman diagrams, Physics Letters 
B259(1991):314–322. 

3. Gang H., H. Kaifen, Controlling chaos in systems described 
by partial differential equations, Phys. Rev. Lett. 
71(1993):3794–3797. 

4. Budd C.J., A. Iserles, Geometric integration: numerical 
solution of differential equations on manifolds, philosophical 
transactions: mathematical, Physical and Engineering 
Sciences: Mathematical 357(1999):945–956. 

5. Peng Y.Z., Exact solutions for some nonlinear partial 
differential equations, Physics Letters A314(2003):401–408. 

6. Verwer J. G., J. G. Blom, M. vanLoon, E. J. Spee, A 
comparison of stiff ODE solvers for atmospheric chemistry 
problems, Atmospheric Environment 30(1996):49–58. 

7. Behlke J., O. Ristau, A new approximate whole boundary 
solution of the Lamm differential equation for the analysis of 
sedimentation velocity experiments, Biophysical Chemistry 
95(2002):59–68. 

8. Salzner U., P. Otto, J. Ladik, Numerical solution of a partial 
differential equation system describing chemical kinetics and 
diffusion in a cell with the aid of compartmentalization, 
Journal of Computational Chemistry 11(1990):194–204. 

9. Koza J. R., Genetic Programming: On the Programming of 
Computer by Means of Natural Selection. MIT Press: 
Cambridge, MA, 1992. 

10. O’Neill M. and C. Ryan, Grammatical Evolution: 
Evolutionary Automatic Programming in an Arbitrary 
Language, volume 4 of Genetic programming. Kluwer 
Academic Publishers, 2003. 

11. Collins J. J. and C. Ryan, “Automatic generation of robot 
behaviors using grammatical evolution,” in Proc. of AROB 
2000, the Fifth International Symposium on Artificial Life 
and Robotics. 

12. Goldberg D. E., Genetic algorithms in search, Optimization 
and Machine Learning, Addison Wesley, 1989. 

13. O’Neill M., C. Ryan, Grammatical Evolution: Evolutionary 
Automatic Programming in an Arbitrary Language, Genetic 
Programming, vol.4, Kluwer Academic Publishers, 
Dordrecht, 2003. 

14. Powell M. J. D., A tolerant algorithm for linearly constrained 
optimization calculations, Mathematical Programming 
45(1989):547–566.  

 
6/21/2015 


