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1.Introduction 

The integral inequalities involving functions 
of one and more than one independent variables 
which provide explicit bounds on unknown functions 
play a fundamental role in the development of the 
theory of differential equations. 
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Lemma1.2: (Bellman,1943).Let )(tx  and )(tf be 

real-valued nonnegative continuous functions defined 

on ),0[ I and 
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x is a constant.If the inequality  
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Lemma1.3: (Lipovan,2000). 
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Many of the results of Gronwall-Bellman can be cited 
in [1-11].  
 
2.Main results:  
In this section, some new retarded integral 
inequalities of Gronwall-Bellman type are 

introduced. Throughout this paper, denotes the set 

of real numbers, ),0[ I , ),0( 
 , 

),1[1  . ),( IIC
 denotes the set of all 

nonnegative real-valued continuous functions from 

I into I and ),(1 IIC denotes the set of all 

nonnegative real-valued continuously differentiable 

functions from I  into I .  

 

Theorem 2.1: Let ),()( and )(),( 
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holds for all It  where 

10 ,20  ,00  qpx , are constants. Then Itdssksfxtx
t

 
     ,))(()()(

)(

0

1
10




 (2.2)  

where

q

p

t s
pq

t

dsdfqpsgqxdssfpptk




































  

1)(

0 0

)2)(1(
0

)(

0

1 )()1)(2(exp)()1()()2(exp)(



 , (2.3) 

 

for all It  . 

Proof: Let )(tM be defined as a function by the 

right-hand side of (2.1). Then 

)()( tMtx  , or )())(())(( tMtMtx    
It     (2.4) 

 Differentiating )(tM with respect to t  and using 

(2.4) implies that 

 
)())(()(

)(
tLtft

dt

tdM p 
 (2.5). 

and ,)0()0( have  we thus

,)()()()(      where

)2(
0

)2(

)(

0

)2(

pp

t

qp

xML

dssMsgtMtL







 


 

)()( tLtM  , It   (2.6) 

Differentiating )(tL  with respect to t  and using 

(2.5) and (2.6) leads to 
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Since 0)( tL , then the inequality(2.7) can be 

rewritten as 
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By substituting )()( )1( tLtz q , (2.9) 
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The inequality (2.11) implies the estimation for 

)(tz by using (2.10) as 
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It  . By using (2.9),the above inequality takes 
the form 

 
)()( 1 tktLp 

     (2.12) 

where )(1 tk  is defined as in (2.3).By substituting 

(2.12) in (2.5) we observe that 
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By integrating both sides of inequality (2.13) from 

0 to )(t and using (2.6) yields 
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Using (2.14) in (2.4), we get the inequality (2.2). 
 

Remark: If we put 1 ,  0)(  ptg , ),(0 tax 
 

1q  and tt )(  in Theorem2.1 then it reduces 

to Lemma1.1. 
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Proof: Let )(tM be defined as a function by the 

right-hand side of (2.15). Then 
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 Differentiating )(tM
 with respect to t  and using 

(2.18) implies that 
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Differentiating )(tL  with respect to t  
and using 

(2.19) and (2.20) leads to 
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Using (2.24) in (2.18), we get the inequality (2.16). 
 
Theorem 2.3: Let 
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Proof: Let )(tM  
be defined as a function by the 

right-hand side of (2.25). Then 
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By substituting (2.31) in (2.29) and using the fact that 

0)0( xM   and by integrating both sides of 

resulting inequality from 0 to )(t and using (2.27) 

also we get the required inequality (2.26). 
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for all It  . 
Proof: The proof of Theorem 2.4 is the same as the 
proof of Theorem 2.1 with suitable modifications. 
Theorem 2.5:  
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for all It  . 

Proof: Since )(tn is positive, monotonic 

nondecreasing function then inequality (2.35) can be 
written as 
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It  . By using (2.43),the above inequality takes 
the form 
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where )(4 tk  is defined as in (2.37). By substituting 
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Proof: The proof of Theorem2.6 is the same as the 
proof of Theorem2.5 with suitable modifications. 
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3.Application: In this section we present an 
application of the inequality given in Theorem 2.3 to 
illustrate the usefulness of our results. 
 
Consider the retarded integral equation 
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Now an suitable application of the inequality given in 
Theorem 2.3 with modifications to the above 
inequality leads to 
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For all.thus from the hypotheses (3.4) and the 
estimation in (3.6) implies the boundedness of the 
solution of (3.1). 
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