Shunt Capacitance for a Practical 110 kV System

A. H. Almasoud

EE Dept., Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia, P.O. Box 80204, Jeddah 21589 Email: amasoud@kau.edu.sa

Abstract: It is well known that shunt capacitance is both socially and economically beneficial to power system network. These devices reduce the apparent power (S) which is produced by generators allowing more customers to be served and increasing the income of electrical companies. Shunt compensation units have to be connected to carefully selected substations to result in a high degree of reactive power compensation. This can be done by several methods, such as the Genetic Algorithm (GA), Hybrid of GA or Trial and Error heuristic method. In this paper, we present a comparison of the three algorithms to determine the amount of savings that can be achieved by each algorithm. The system under investigation is a real 110 kV system, operating in the Western Region of Saudi Arabia, and the results reflect experimental data on this system.

[Almasoud A.H. **Shunt Capacitance for a Practical 110 kV System.** *J Am Sci* 2014;10(8):148-154]. (ISSN: 1545-1003). <u>http://www.jofamericanscience.org</u>. 20

Keywords: shunt capacitance, reactive compensation, 110 kV, substation, saving, Saudi Arabia

1.Introduction

The placement of a shunt capacitor within a power system network is not a trivial task. Several methods have been published to determine optimal shunt capacitor placement, such as the Trail and Error heuristic method, Artificial Neural Networks (ANN) method and Genetic Algorithm (GA) [1-17]. Because substations yield different reactive power savings, the proposed methods are useful in determining which substation would yield the greatest reactive power savings as a result of shunt capacitance placement.

In this paper, we present a comparison of the three algorithms to determine which algorithm would yield the greatest reactive power savings. The three methods were applied to a load flow computer program on a real power system network, containing several generators and 48 transmission lines (110kV). The 380 kV system compensation scientific paper was published [18].

2.110 kV System Topology

The system under investigation supplies a number of big cities in the Western region of Saudi Arabia as outlined in Fig. 1. The Western power system network can be represented in term of power production conditions, as shown in Table 1, by assuming that the cost of the production of each kWh is equivalent to \$0.06 (6 cents). Three loading times were also considered i.e. peak, medium and light loading times. One hundred thirty seven substations (110/13.8 kV) supplying loads through the four major cities.

3.Shunt Capacitance Compensation

Capacitance units were placed on different substations (buses) in different main cities in the

kingdom of Saudi Arabia, namely, Jeddah, Makkah, Madinah and Taif. Three algorithms (Trail and Error heuristic, Artificial Neural Networks (ANN) and Genetic Algorithm (GA)) are applied in order to find out the optimal places for shunt capacitance and then calculate the saving as a result. The calculations were carried out on three different loading times. That is to say when system loads are light, medium and peak. Saving have been found on three different times of loading throughout a year of consuming loads. The second major benefit of adding shunt capacitance is to reduce the distribution current throughout the power system network. This will reduce the power loss on transmission lines and cables. Thus more power can be transmitted via transmission lines and more customers can be absorbed as a result of adding shunt capacitances. Thirdly, shunt capacitances help stabilize buses voltages during heavy loaded system.

4. Four bus compensation in Jeddah city

In the first stage the computer program places a capacitor on one bus of the system and then find the bus that can give most reactive power compensation. In the second stage the computer program places two capacitors on two buses of the system and then find the two buses that can give most reactive power compensation provided that the bus No. that found from the first stage should be one of the two buses until finding the optimal two buses that can give most reactive power compensation. Similarly, for the third stage the computer program run to find the optimal three buses that give most reactive power compensation. In Jeddah city it is found that four bus compensation give the most reactive power compensation if they are connected simultaneously. The capacitance is then increased until the highest compensation of reactive power on those buses are achieved, provided that the generators are not converted to capacitive power generation. Table 2 shows that substations No. 150,140,190 and 220 yield the highest compensation during peak loading conditions which results in a 583.4 MVAR reduction of inductive production by the generators, corresponding to a 29.08% reduction in total generation (MVAR).

5. Triple bus compensation in Makkah city

In Makkah city it is found that the most reactive power compensation can be achieved if three buses were connected simultaneously. The capacitance is then increased until the highest compensation of reactive power on those buses are achieved, provided that the generators are not converted to capacitive power generation. Table 3 shows that substations No. 520,720 and 510 yield the highest compensation during peak loading conditions which results in a 420.7 MVAR reduction of inductive production by the generators, corresponding to a 20.97% reduction in total generation (MVAR).

6.Four bus compensation in Madinah city

In Madinah city it is found that the most reactive power compensation can be achieved if four buses were connected simultaneously. The capacitance is then increased until the highest compensation of reactive power on those buses are achieved, provided that the generators are not converted to capacitive power generation. Table 4 shows that substations No. 976,1090,1114 and 1040 yield the highest compensation during peak loading conditions which results in a 437.9 MVAR reduction of inductive production by the generators, corresponding to a 21.83 % reduction in total generation (MVAR).

7. Triple bus compensation in Taif city

In Taif city it is found that the most reactive power compensation can be achieved if three buses were connected simultaneously. The capacitance is then increased until the highest compensation of reactive power on those buses are achieved, provided that the generators are not converted to capacitive power generation. Table 5 shows that substations No. 580,640 and 550 yield the highest compensation during peak loading conditions which results in a 230.6 MVAR reduction of inductive production by the generators, corresponding to a 11.50 % reduction in total generation (MVAR).

7. Economic consideration

The three aforementioned methods, namely the Trial and Error heuristic method (proposed method), GA and GA + Hybrid, were applied to different buses of different city network to determine the greatest reduction of total MVAR generation during peak loading conditions. Using the results, the money savings for each method was calculated. Table 6 of Jeddah city shows that for a system with 7705 MVAR total generation, the proposed method yields saving equivalent to \$1013440 per year. Table 7 of Makkah city shows that for the same system of generation, the GA, and GA+ Hybrid methods yield the same saving equivalent to \$909765 per year. Table 8 of Madinah city shows that for the same system of generation the GA, and GA+ Hybrid methods yield the same saving equivalent to \$489387 per year. Table 9 of Taif city shows for the same system of generation that the GA+ Hybrid method yields saving equivalent to \$660560 per year. Moreover, the additional benefit for adding a shunt capacitor is that it allows the system to absorb more customers, thus increasing the total income of the electrical company and improving the capability of the system to withstand dip voltages.

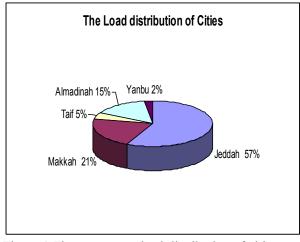


Figure 1 The percentage load distribution of cities at peak load

-		Load Condition	on
	Light	Medium	Peak
Total generated P (MW)	1,7543	4,150	7,440
Total generated Q (MVAR)	449	725.5	2,006
Total generated S (MVA)	1,811	4,213	7,705
Real power losses (kW)	6,200	24,900	71,400
Cost of Energy Losses (\$)	814,680	6,543,720	9,381,960
Total Cost of Energy Losses (\$/year)		16,740,360	

Table 1 System conditions prior to the capacitor placemen.

						Light	Load	Mediu	n Load	Peak	Load							
a ,	1	.,.	. ,	Pg (pu)	1.75	543	4.	15	7.4	44							
		itions pr placeme		Qg (pu)	0.4	49	0.7255		55 2.006								
Ca	pacitor	praceme	m	Sg (pu)	1.811		4.213		7.705								
	BU	S #		LOAD	Con	npensati	or (%) SIZE_ADDED (MVAR)				P gen. (PU)	Q gen. (PU)	S gen. (PU)	MVAR reduced	% red. in Qg	P-loss (PU)		
				Light	16	15	13	15	5	5	3	3	1.7543	0.4284	1.806	20.6	4.59	0.006
150	140	190	220	Medium	15	25	37	33	5	7.5	7.5	7.5	4.1465	0.6941	4.204	31.4	4.33	0.022
				Peak	99	99	85	75	64	60	26	30	7.4373	1.4226	7.572	583.4	29.08	0.0678
				Light	16	15	12	15	5	5	3	3	1.7543	0.4284	1.806	20.6	4.59	0.006
150	140	210	220	Medium		25	24	33	5	7.5	7.5	7.5	4.1465	0.6941	4.204	31.4	4.33	0.022
				Peak	99	99	85	25	64	60	46	10	7.4372	1.4227	7.572	583.3	29.08	0.0678
				Light	16	15	12	10	5	5	3	3	1.7543	0.4286	1.806	20.4	4.54	0.006
150	140	60	200	Medium	16	15	31	27	5	5	7.5	7.5	4.1465	0.6973	4.204	28.2	3.89	0.022
				Peak	99	99	85	70	64	60	32	26	7.4373	1.4227	7.572	583.3	29.08	0.0678
				Light	16	15	12	13	5	5	3	3	1.7543	0.4282	1.806	20.8	4.63	0.006
150	140	210	450	Medium	20	15	24	30	5	5	7.5	7.5	4.1476	0.6975	4.206	28	3.86	0.023
				Peak	99	99	85	30	64	60	46	10	7.4373	1.4229	7.572	583.1	29.07	0.0678
				Light	16	15	8	13	5	5	3	3	1.7543	0.4284	1.806	20.6	4.59	0.006
150	140	182	190	Medium	16	25	12	37	5	7.5	7.5	7.5	4.1465	0.6941	4.204	31.4	4.33	0.022
				Peak	99	99	85	80	64	60	31	25	7.4373	1.4229	7.572	583.1	29.07	0.0678

Table 2 Effect of four-shunt capacitor compensation on Jeddah network

Table 3 Eff	ect of trip	le-shu	nt ca	pacitor	comp	pensation	on M	akkah n	etwork
	Light I	and	Ma	dium I	and	Dog	l L oo	d	

				1 401	• - DI	Light			n Load	Denisation O	Load	1			
				D. 4	()	0									
Sv	stem con	nditions	prior to		(pu)	1.7			15		44				
	capacito				(pu)	0.4	-		255		006				
	1	1		Sg ((pu)	1.811		4.2	213	7.705			-		
	BUS #		LOAD	Co	mpens	ation	SI	ZE-ADD	DED	P gen.	Q gen.	S gen.	MVAR	% red.	P-loss
	D05 #		LOAD	F	actor ((%)		(MVAR)	(PU)	(PU)	(PU)	reduced	in Qg	(PU)
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
520	720	510	Medium	31	23	29	10	10	10	4.1475	0.6864	4.204	39.1	5.39	0.023
			Peak	55	55	96	24	26.5	42.5	7.4373	1.5853	7.6044	420.7	20.97	0.0678
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
840	720	510	Medium	25	23	29	10	10	10	4.1475	0.6874	4.204	38.1	5.25	0.023
			Peak	55	55	96	31	26.5	42.5	7.4373	1.5867	7.6047	419.3	20.90	0.0678
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
520	840	510	Medium	31	25	29	10	10	10	4.1475	0.6867	4.204	38.8	5.35	0.023
			Peak	55	55	96	24	31	42.5	7.4373	1.5876	7.6048	418.4	20.86	0.0678
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
720	780	510	Medium	23	26	29	10	10	10	4.1475	0.6879	4.204	37.6	5.18	0.023
			Peak	55	55	96	27	24.5	42.5	7.4376	1.6027	7.6083	403.3	20.10	0.0681
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
520	780	510	Medium	31	26	29	10	10	10	4.1475	0.687	4.204	38.5	5.31	0.023
			Peak	55	55	96	24	24.5	42.5	7.4376	1.6036	7.6085	402.4	20.06	0.0681

Table 4 Effect of four-shunt capacitor compensation on Madinah network

						Light	Load	Mediu	ım Load	Peak I	Load						
Grund		1:4:		Pg (pu	ι)	1.7	543	4	.15	7.4	4						
	em cond			Qg (pu	1)	0.4	149	0.1	7255	2.00)6						
C	apacitor	placeme	int	Sg (pu	ι)	1.8	311	4.	.213	7.70)5						
	BU	JS#		LOAD	Со	mpensat	ion Facto	or (%)	SIZE_	ADDED	(MVA	R)	P gen. (PU)	Q gen. (PU)	S gen. (PU)	MVAR reduced	% red. in Qg
				Light	50	- 99	99	99	25	20	20	20	1.7543	0.3763	1.7942	72.7	16.19
976	1090	1114	1040	Medium	88	87	- 99	- 99	30	20	20	20	4.1465	0.684	4.2025	41.5	5.72
				Peak	99	99	99	99	35.5	48.5	63	53	7.4396	1.5681	7.603	437.9	21.83
				Light	99	99	- 99	99	10	20	20	20	1.7543	0.3791	1.7948	69.9	15.57
990	1090	1114	1040	Medium	77	87	99	99	10	20	20	20	4.1465	0.6941	4.204	31.4	4.33
				Peak	99	- 99	- 99	99	28.5	48.5	63	53	7.4398	1.5781	7.6054	427.9	21.33

				Light	50	- 99	- 99	99	25	20	20	20	1.7543	0.3777	1.7945	71.3	15.88
976	1060	1114	1040	Medium	88	87	99	99	30	20	20	20	4.1465	0.69	4.2035	35.5	4.89
				Peak	99	99	99	99	35.5	39.5	63	53	7.4395	1.5805	7.6056	425.5	21.21
				Light	50	99	- 99	99	25	20	20	20	1.7543	0.3802	1.7950	68.8	15.32
976	1050	1114	1040	Medium	88	99	- 99	99	30	20	20	20	4.1465	0.694	4.204	31.5	4.34
				Peak	99	99	99	99	35.5	39.5	63	53	7.4396	1.5808	7.6056	425.2	21.20
				Light	50	- 99	- 99	99	25	15	20	20	1.7543	0.3864	1.7964	62.6	13.94
976	1035	1114	1040	Medium	88	80	- 99	99	30	20	20	20	4.1465	0.696	4.2045	29.5	4.07
				Peak	99	99	- 99	99	35.5	38.5	63	53	7.4395	1.5817	7.6058	424.3	21.15

Table 5 Effect of triple-shunt capacitor compensation on Taif network.

						Light	Load	Medium	Load	Peak	Load				
Su	tom an	aditions	prior to	Pg	(pu)	1.7	543	4.1	5	7.	44				
2	capacito		1	Qg	(pu)	0.4	49	0.7255		2.006					
	capacito	Ji place	ment	Sg	(pu)	1.8	311	4.21	3	7.7	/05				
	BUS #		LOAD	Co	mpens	ation	SI	ZE-ADDI	ED	P gen.	Q gen.	S gen.	MVAR	% red.	P-loss
	D05 #		LUAD	F	actor (%)		(MVAR)		(PU)	(PU)	(PU)	reduced	in Qg	(PU)
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
580	640	550	Medium	99	99	83	10	20	15	4.1475	0.664	4.200	61.5	8.48	0.023
			Peak	99	94	99	12	21.5	22	7.4397	1.7754	7.6486	230.6	11.50	0.0699
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
580	620	550	Medium	99	88	83	10	15	15	4.1475	0.669	4.201	56.5	7.79	0.023
			Peak	99	99	99	12	21	22	7.4397	1.7758	7.6487	230.2	11.48	0.07021
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
580	610	550	Medium	99	96	83	10	15	15	4.1475	0.669	4.201	56.5	7.79	0.023
			Peak	99	99	99	12	21	22	7.4397	1.7761	7.6488	229.9	11.46	0.07021
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
580	630	550	Medium	99	96	83	10	30	15	4.1475	0.654	4.199	71.5	9.86	0.023
			Peak	99	69	99	12	21	22	7.4397	1.7762	7.6488	229.8	11.46	0.07022
			Light	0	0	0	0	0	0	1.7543	0.449	1.811	0	0	0.0062
630	660	550	Medium	96	99	83	30	5	15	4.1475	0.659	4.199	66.5	9.17	0.023
			Peak	99	64	99	30	3.5	22	7.4397	1.7762	7.6488	229.8	11.46	0.07024

Table 6 Optimum solution of shunt capacitor compensation on Jeddah network.

	1 40	ie o optimum bolution of bi	name eapaeneer eempenbation	on veadan netni
		Light Load	Medium Load	Peak Load
System values prior	Pg (pu)	1.7543	4.15	7.44
to capacitor	Qg (pu)	0.449	0.7255	2.006
placement	Sg (pu)	1.811	4.213	7.705
to capacitor	Qg (pu)	0.449		2.006

	I	Proposed Met	hod		
Shunt Compensated Bus No's.	1	40, 150, 190,	220		14
Load Case	Light	Medium	Peak		Ligh
Shunt Added Mvar	5, 5, 3, 3,	7, 5, 7, 7,	60, 64, 26, 30,		7, 8, 0, 0,
Generated P (PU)	1.7541	4.1465	7.4374	1	1.754
Generated Q (PU)	0.4284	0.6941	1.4226		0.44
Generated S (PU)	1.8057	4.2042	7.5722	1	1.810
Reduced MVAR	20.60	31.40	583.40		0.0
% Reduction in Qg	4.59	4.33	29.08		0.0
Power Losses (PU)	0.006	0.022	0.0678		0.00
Capacitors Cost (\$/year)	16,000	52,000	180,000	2	25,00
Power Loss Cost (\$/year)	788,400	5,781,600	8,908,920	7	88,4
Total System Cost (\$/year)	804,400	5,833,600	9,088,920	8	13,4
Savings (\$/year)	10,280	710,120	293,040		1,28
TOTAL SYSTEM SAVINGS (\$/year)		1,013,440			
				. —	

GA Method (GA+Hyb) Method 40, 150, 190, 220, 270, 310 140, 150, 190, 220, 270, 310	Peak
	Peak
ght Medium Peak Light Medium) 55 0
, 10 13,10,10 57,47,30 8, 9, 5 12,10,5 48	8,55,2
0, 0 7, 0, 0 14, 10, 9 0, 0, 0 5, 0, 0 3	7, 4, 5
543 4.1465 7.4374 1.7543 4.1465 7	.4373
49 0.6941 1.4478 0.449 0.6941	1.431
108 4.2042 7.5770 1.8108 4.2042 7	.5737
00 31.40 558.20 0.00 31.40 5	575.00
00 4.33 27.83 0.00 4.33	28.66
06 0.022 0.06793 0.006 0.022 0.	06780
000 80,000 167,000 22,000 64,000 1	76,00
400 5,781,600 8,925,989 788,400 5,781,600 8,9	909,3
400 5,861,600 9,092,989 810,400 5,845,600 9,0	085,3
80 682,120 288,971 4,280 698,120 2	96,64
972,371 999,046	

48,55,28

37, 4, 5

7.4373 1.431

7.5737

575.00

28.66

0.067803

176,000

8,909,314 9,085,314

296,646

Peak 42, 41, 46 7.4365 1.4832 7.5830 522.80 26.06 0.0670 129,000

8,800,515 8,929,515

452,445

	_		Light Load	Medium Load	Peak Load
System values prior		Pg (pu)	1.7543	4.15	7.44
to capacitor		Qg (pu)	0.449	0.7255	2.006
placement		Sg (pu)	1.811	4.213	7.705

Shunt Compensated
Bus No's.
Load Case
Shunt Added Mvar
Generated P (PU)
Generated Q (PU)
Generated S (PU)
Reduced MVAR
% Reduction in Qg
Power Losses (PU)
Capacitors Cost
(\$/year)
Power Loss Cost
(\$/year)
Total System Cost
(\$/year)
Savings (\$/year)
TOTAL SYSTEM
SAVINGS (\$/year)

(\$/year)

to capacitor placement

						-	-				
Proposed Method				GA Method		(GA+Hyb) Method					
510, 520, 720				510, 520, 72	0		510, 520, 720				
Light	Medium	Peak	Light	Medium	Peak		Light	Medium	Р		
0, 0, 0	10, 10, 10	43, 24, 27	0, 0, 0	7, 7, 7	42, 41, 46		0, 0, 0	7, 7, 7	42,4		
1.7543	4.1475	7.4373	1.7543	4.1475	7.4365		1.7543	4.1475	7.4		
0.4490	0.6860	1.5853	0.4490	0.6900	1.4832		0.4490	0.6900	1.4		
1.8108	4.2038	7.6044	1.8108	4.2045	7.5830		1.8108	4.2045	7.5		
0.00	39.50	420.70	0.00	35.50	522.80		0.00	35.50	52		
0.00	5.44	20.97	0.00	4.89	26.06		0.00	4.89	26		
0.0062	0.0228	0.0678	0.0062	0.0230	0.0670		0.0062	0.0230	0.0		
0	60,000	94,000	0	42,000	129,000		0	42,000	129		
814,680	5,978,700	8,908,920	814,680	6,044,400	8,800,515		814,680	6,044,400	8,80		
814,680	6,038,700	9,002,920	814,680	6,086,400	8,929,515		814,680	6,086,400	8,92		
0	505,020	379,040	0	457,320	452,445		0	457,320	452		
884,060				909,765			909,765				

Table 8 Optimum solution of shunt capacitor compensation of Madinah network.

		Light Load	Medium Load	Peak Load
System values	Pg (pu)	1.7543	4.15	7.44
prior to capacitor	Qg (pu)	0.449	0.7255	2.006
placement	Sg (pu)	1.811	4.213	7.705

				-				-				
	Proposed Method					GA Method			(GA+Hyb) Method			
Shunt Compensated Bus No's.	1040, 1060, 1090, 1114				1040	0, 1060, 1090	, 1114	1040, 1060, 1090, 1114				
Load Case	Light	Medium	Peak		Light	Medium	Peak		Light	Medium	Peak	
Shunt Added	0, 0,	20, 20,	30, 20,		0, 0,	0, 15,	1, 20,		0, 0,	0, 15,	1, 20,	
Mvar	0,0	10, 20	10, 40		0, 0	6,9	6,9		0, 0	6,9	6, 9	
Generated P (PU)	1.7543	4.1465	7.4395		1.7543	4.1475	7.4403		1.7543	4.1475	7.4403	
Generated Q (PU)	0.4490	0.696	1.5817		0.4490	0.666	1.8202		0.4490	0.666	1.8202	
Generated S (PU)	1.8108	4.2045	7.6058		1.8108	4.2006	7.6597		1.8108	4.2006	7.6597	
Reduced MVAR	0.00	29.50	424.30		0.00	59.50	185.80		0.00	59.50	185.80	
% Reduction in Qg	0.00	4.07	21.15		0.00	8.20	9.26		0.00	8.20	9.26	
Power Losses (PU)	0.0062	0.0228	0.0701		0.0062	0.023	0.070745		0.0062	0.023	0.070745	
Capacitors Cost (\$/year)	0	140,000	100,000	Ī	0	60,000	36,000]	0	60,000	36,000	
Power Loss Cost (\$/year)	814,680	5,991,840	9,211,140		814,680	6,044,400	9,295,893		814,680	6,044,400	9,295,893	
Total System Cost (\$/year)	814,680	6,131,840	9,311,140		814,680	6,104,400	9,331,893		814,680	6,104,400	9,331,893	
Savings (\$/year)	0	411,880	70,820		0	439,320	50,067		0	439,320	50,067	
TOTAL SYSTEM SAVINGS (\$/year)	482,700					489,387			489,387			

1.7543

0.449

7 44

2.006

to capacitor placement	Sg (pu)		4.213									
	F		GA Method					(GA+Hyb) Method				
Shunt Compensated Bus No's.			550, 580, 620					550, 580, 620				
Load Case	Light	Medium	Peak	Ligł	nt	Medium	Peak		Light	Medium	Peak	
Shunt Added Mvar	0, 0, 0	0, 9,0	16, 10, 4	0, 0,	0	5, 9,0	9, 9,0		0, 0, 0	5, 10, 0	7, 10, 2	
Generated P (PU)	1.7543	4.1475	7.4397	1.754	43	4.1475	7.4393		1.7543	4.1475	7.4393	
Generated Q (PU)	0.4490	0.669	1.7754	0.449	9 0	0.664	1.785		0.4490	0.66	1.7854	
Generated S (PU)	1.8108	4.2011	7.6486	1.810)8	4.2003	7.6505		1.8108	4.1997	7.6505	
Reduced MVAR	0.00	56.50	230.60	0.00)	61.50	221.00		0.00	65.50	220.60	
% Reduction in Qg	0.00	7.79	11.50	0.00)	8.48	11.02		0.00	9.03	11.00	
Power Losses (PU)	0.0062	0.023	0.0699	0.000	52	0.02305	0.069808		0.0062	0.023	0.0698	
Capacitors Cost (\$/year)	0	18,000	30,000	0		28,000	18,000		0	30,000	19,000	
Power Loss Cost (\$/year)	814,680	6,044,400	9,184,860	814,6	80	6,057,540	9,172,771		814,680	6,044,400	9,171,720	
Total System Cost (\$/year)	814,680	6,062,400	9,214,860	814,6	80	6,085,540	9,190,771		814,680	6,074,400	9,190,720	
Savings (\$/year)	0	481,320	167,100	0		458,180	191,189		0	469,320	191,240	
TOTAL SYSTEM SAVINGS (\$/year)	648,420				649,369				660,560			

 Light Load
 Medium Load
 Peak Load

4.15

0.7255

Conclusions

System

values prior

Pg (pu)

Qg (pu)

It is well known that shunt capacitances added value to power system networks. The 110 kV system under investigation represents a real system, operating in the Western region of the Kingdom of Saudi Arabia, with the capacity of 7705MVA in 2003. The three methods investigated showed saving ranging according to the results shown in Tables 6-9. Based on study, it is recommended that the electrical companies have to consider applying shunt capacitors to their electrical substations. It is recommended that the shunt capacitances should be of automatic variable values in order to suit different time of loading and to keep the generating system to be reactive power production and not capacitive power production. This study indicates that if the data of the system are for this year, the compensation will be bigger than the calculated one and the savings as well. The study was not an easy task since the collecting data took time and the programming also took some time and the program testing took another extra time in order to check the results come out of the load flow computer program to

be matched with the results of the load flow of the Saudi electrical company. This check is important and it is the first step to start to use the developed computer program in applying shunt compensation and finding the optimal buses that can be used for compensation and trusting the results.

Acknowledgement

The author would like to thank the Saudi Electrical Company (Western Region) for their help in providing the researcher with the necessary data to complete the research and yield valuable results.

References

- 1. Duran H. Optimal number location and size of shunt capacitors in radial distribution feeders, a dynamic programming approach. IEEE Trans. 1968; 87:1769-74.
- 2. Nair K, Kuppurajulu A. Optimization of static capacitors installations and switching schedule in distribution systems. IEE Proc.1975; 4:415-8.

- 3. Mamandur K, Chenoweth R. Optimal control of reactive power for improvement in voltage profile and for real power loss minimization. IEEE Trans.1981; 100: 3185-94.
- 4. Kaplan M. Optimization of number, location, size, control type and control setting of shunt capacitors on radial distribution feeders. IEEE Trans. 1984; 103: 2659-65.
- 5. Santoso N, Tan O. Neural-net based real-time control of capacitors installed in distribution systems. IEEE Trans. 1990; 5: 266-72.
- 6. Chiang H. Optimal capacitor placement in distribution systems, Part 1: A new formulation and the overall problem. IEEE Trans. 1990; 5: 634-42.
- Salama M, Chikhani A. An expert system for reactive power control of a distribution system, Part 1: System configuration. IEEE Trans. 1992; 7: 940-5.
- Abe M, Ostsuzuki N, Emura T, Tekeuchi M. Development of a new fault location system for multi-terminal single transmission lines. IEEE. 1994: 259-68.
- Sundhararajan S, Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans. 1994; 9: 1499-507.
- Laframboise J, Ferland G, Chikhani A, Salama M. An expert system for reactive power control of a distribution system, Part 2, System implementation. IEEE Trans. 1995; 10: 1433-41.

5/29/2014

- 11. Chen C, Hsu C, Yan Y. Optimal Distribution feeder capacitor placement considering mutual coupling effect of conductors. IEEE Trans. 1995; 10: 987-94.
- 12. Huang Y. Solving the capacitor placement problem in radial distribution systems using Tabu Search approach. IEEE Trans. 1996; 11: 1868-73.
- Anathapadmanabha T, Kulkarni A, Rao A, Rao K. Knowledge based on expert system for optimal reactive power control in distribution system. Electrical Power and Energy Systems. 1996; 18: 27-31.
- 14. Miu K, Chiang H, Darling G. Capacitor placement, re-placement and control in large-scale distribution systems by a GA-based two-stage algorithm. IEEE Trans. 1997; 12: 1160-6.
- Ng N, Salama M, Chikhani A. Classification of capacitor allocation techniques. IEEE Trans.2000; 15: 387-92.
- 16. Gerbex S, Cherkaoui R, Germond A. Optimal location of multi-type FACTS devices in a power system by means of Genetic Algorithms. IEEE Trans.2001; 21: 537-44.
- 17. Cai J, Erlich I, Stamtsis, G. Optimal choice and allocation of FACTS devices in deregulated electricity market using Genetic Algorithms. IEEE Power Systems conference and exposition. 2004; 1: 201-7.
- Almasoud A. Shunt Capacitance for a practical 380 kV system. IJENS. 2009: 23-27.