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Abstract: Evaluation, analyzing spatial variability of Heavy metals (HM) concentration in sediment of Aswan 
Reservoir was carried out. Samples were collected and tested for determining the true concentrations of: Copper 

(Cu), Zinc (Zn), Manganese (Mn), Lead (pb), and Iron (Fe) through 2009. Ggeostatistical analyst tools were used to 
explore this data, test spatial interpolation methods, analyze spatial distribution and autocorrelation of HM 

concentration, and finally predicted HM concentrations maps. The results reveals that Ordinary Kriging was the best 

method  for  prediction  HM  maps  based  on  RMS  errors and  R
2.

Also J-bessel  was  selected  as  the  best  fitted 

Semivariogram model for almost all HM data set. The results also demonstrated that Fe and Cu have strong spatial 
dependence structure 8.7%, 15%, while Zn and Mn have moderate and week spatial dependence respectively 

(38.48%, 99%). Also effective range of most HM parameters is close together with the range of 0.972 to 1.641 km. 

Top eastern parts of study area have higher concentration of Cu, and Mn pollution due to man’s activities, while top 
western parts have higher concentration of Fe, and Zn pollution due to presence of rocks. Lead pollution map was 

interpolated using Inverse Distance Weighted because it was detected in little specific locations. 
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1. Introduction 
Heavy metals enter lakes or reservoirs from a 

variety of sources, such as:(1) rocks and soils directly 

exposed to surface water; this is the largest natural 

sources, (2) Dead and decomposed vegetation and 

animal matter, contribute small amounts of metals to 

adjacent   waters,   (3)   Wet   and   dry   fallout   of 

atmosphere particulate matter arrived from natural 

sources, and (4) from man's activities, including the 

discharge of various treated and untreated liquid 

wastes into the water body [1]. 

Trace elements, such as Cu, Zn, Mn and Fe play 

an essential biochemical role in the life processes in 

the aquatic environment. On the other hand, Pb is 

non-essential element and considered to be very toxic 

to the environment [2,3]. Pollution mapping is a time 

consuming process that requires the intense efforts of 

scientists  to  think  spatially,  geographically, 

technically, and statistically to produce an accurate 

prediction map. To understand and solve a problem, 

particularly in the geo-environmental sciences, broad 

interdisciplinary knowledge of basic sciences, 

environmental science, geospatial statistical analysis, 

GIS, and analytical aptitude are necessary 

requirements [4]. Also, due to cost and practicality, it 

is  not  feasible  to  establish  monitoring  stations  in 

every location of study area to measure the pollutant 

concentration. Therefore, prediction of values at other 

locations  based  upon  selectively  measured  values 

could be one of the alternatives [5]. 

There are two main groupings of interpolation 

techniques: deterministic and geostatistical. 

Deterministic interpolation techniques create surfaces 

from measured points, based on either the extent of 

similarity (e.g. Inverse Distance Weighted (IDW)) or 

the degree of smoothing (e.g. radial basis functions). 

Geostatistical interpolation  techniques (e.g. kriging) 

utilize  the  statistical   properties  of  the  measured 

points. Using measured sample points from a study 

area, geostatistics can create prediction for other 

unmeasured locations within the same area. The 

geostatistical techniques quantify the spatial 

autocorrelation among measured points and account 

for the spatial configuration of the sample points 

around   the   prediction   location   [6].   The   main 

advantage of using Kriging in spatial interpolation is 

its ability to calculate the uncertainty of prediction 

which is useful in decision making. A Kriging 

Interpolation  model  predicts  surfaces  better   than 

other models when data are checked for outliers and 

errors [9]. If the data follow a normal distribution, 

Kriging is the best unbiased method of predicting a 

surface [9]. The accuracy of interpolation  methods 

for spatially predicting soil and water properties has 

been analyzed in several studies [10-12]. 

Thus this research has been done to monitor and 

analyze the spatial patterns of HM elements in the 

Old Aswan reservoir sediments using ArcGIS 

Geostatistical Analyst. A set of geo-statistical 

techniques  including  those  for  exploratory  spatial
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data analysis,  structural analysis, and surface 

prediction and assessment were conducted. The HM 

concentration maps were developed using these 

techniques to provide valuable information and risk 

management decision-making. 

 
2. Study area 

The study area is between  High  Aswan  Dam 
and Old Aswan reservoir. Aswan High Dam was 

constructed  on  Nile  River  7.00  km  upstream  old 

Aswan reservoir. The study area lies between the 

longitudes of 32°51'42.642"E to 32°53'57.778"E and 

latitudes 23°58'59.827"N to 24°1'54.911"N (Fig. 1). 

This area of reservoir is mostly surrounded by rocky 

terrain. 

 
3. Materials and methods 

3.1 Sampling  and laboratory Analysis of heavy 

metals concentrations 
Samples were taken directly from 16 sites from 

surficial  sediment  (approximately the  upper  5  cm) 

from reservoir, in September 2009 using Ekman grab 

method. Each sediment sample was air-dried in the 

laboratory at room temperature and passed through 2 

mm sieve prior to extraction. The dry weight of each 

sample was measured after 12 h of drying in an oven 

at 105°C. The sediment samples were extracted using 

a method modified [13]. Briefly, 1 g of each sample 

was placed into a 200 ml flask, then 0.2 ml sulfuric 

acid, 1 ml nitric acid, and 5 ml perchloric acid were 

added. This mixture was heated at 180°C for 3 hours 

on   a   hotplate.   After   the   mixture   cooled,   1   g 

ammonium  chloride  and  20  ml  0.5  N  HCl  were 

added. The samples were then reheated at 180°C for 

1 hour and evaporated to a volume of ~10 ml. After 

the  samples cooled,  they were  filtered  into  plastic 

bottles through ash-less filter paper 5B. Finally 1 ml 

lanthanum chloride (atomic absorption spectrometry 

grade, 100g-La/L solution) was added. The sample 

volume was standardized to 100 ml using 2% HNO3. 
3.2 Interpolation Procedures 
3.2.1 Comparison of interpolation methods 

First  of  all  the interpolation  method  must  be 
identfy. A cross-validation approach is used to assess 

the  performance  of  Ordinary  kriging  (OK),  and 
Inverse Distance Wight (IDW). The comparison 
criteria used are mean bias error (MBE), root mean 
square error  (RMSE) and determination  coefficient 

(R
2
). Mathematical formula for MBE and RMSE are 

given as: 
 

 
(1) 

(2) 

Where z*(xi) and z (xi) are the estimated and 

observed values at location xi, respectively and N is 

the number of observations. For an appropriate 

estimator, MBE should be close to zero, R
2 

should be 
close to 1 and RMSE should be as small as possible. 
From this point OK was chosen for its satisfying the 
MBE and RMSE criteria. 

3.2.2 Data exploration 
The preliminary step of Geostatistical analysis is 

exploratory  data  analysis,  in  which  the histogram, 

normality,  trend of data, Semivariogram cloud and 

cross covariance cloud of the raw data were observed 

[14,15].Trend analysis is very important because it 

can help in identifying global trends in the input 

datasets and provides a three dimensional perspective 

of the point data. 

3.2.3 Geostatistical techniques 

Many methods are associated with geostatistics, 
but  they  are  all  in  the  kriging  family.  Kriging  is 
divided into two distinct tasks: quantifying the spatial 
structure of the data and producing a prediction. 
Quantifying the structure, known as variography, is 
where a spatial-dependence model is fitted to data 
set. To make a prediction for an unknown value for a 
specific  location,  kriging will use the fitted model 
from variography, the spatial data configuration, and 
the values of the measured sample points around the 
prediction location. According to the theory of 
regionalized variable, the value of a random variable 
Z at a point x is given as below by [16]: 

Z(x) = m(x) + ε´ (x) + ε˝                                   (3) 

where m(x) is the deterministic function 

describing the structural component of Z at point x, ε´ 

(x) is the term denoting the stochastic, locally varying 

but spatially dependent residual from m(x) called the 

regionalized variable,  and ε˝ is the residual having 

zero mean.  If  there  is no  trend  in  a  region,  m(x) 

equals the mean value in the region. Therefore, the 

expected difference between any two points x and x + 

h separated by a distance vector h will be zero. That 

is: 
E[Z(x) – Z(x + h)] = 0                                      (4) 
Where Z(x) and Z(x + h) are the values of the 

random  variable  Z  at  point  x  and  x  +  h.  It  also 

assumed  that  the  variance  of  differences  depends 

only on the distance h between points, so that: 

E[{z(x) – z(x + h)}
2
]=E[{ε´ (x) - ε´ (x +h)} 

2
] =2 

γ(h                                                                              (5) 
The term γ(h)is called semivariance. The 

equation (3) can be written as: 
Z(x) = m(x)+ γ(h)+ ε˝                                        (6) 

To show the equivalence between ε´(x) and γ(h). 

Thus, the semivariogram may be mathematically 

described as the mean square variability between two 

neighboring points of distance h as shown in Eq. 5 

[16].:
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            (7) 
Where γ (h) is the semivariogram expressed as a 

function of the magnitude of the lag distance or 

separation  vector h  between  two pints, N(h) is the 

number of observation pairs separated by distance h 

and z (xi) is the random variable at location xi. 

3.2.4 Efficiency evaluation of estimator 
The validation and the sufficiency of the 

developed  model  variogram  can  be  tested  via  a 
technique called cross validation. This test allows 
assessing  the goodness  of  fitting  of  the  variogram 
model,  the  appropriateness  of  neighbourhood  and 
type of kriging used. The interpolation values are 
compared to the real values and then the least square 
error models are selected for regional estimation [17]. 
Criteria that were used to compare the observed and 
estimated values including RMSE and MBA which 
are calculated by the equations 1 and 2 respectively. 
Whatever RMSE and MBA criteria closer to zero 
indicate  a more accurate  and less error  of method 
[18]. 

 
4. Results and Discussion 

In this research HM samples data of year 2009 
only was examined using Geostatistical tools.A 
comparison between the OK and IDW was conducted 
as a first step by comparing the deviation of estimates 
from  the measured  HM  data  through  using  cross- 

validation statistics (MBE, RMSE, and R
2
), table 1 

describe this comparison. 

The statistical results reveal that there was a 

better  performance of OK than IDW for  all items. 

Therefore ordinary kriging method has been used for 

analyzing and mapping HM parameters. A statistical 

summary of the HM concentration (without 

transformation) is presented in table 1, as a first step 

in data exploration. It can be noticed that the mean 

values  of all heavy metals concentration  were less 

than the national guideline values of lake surface 

sediment quality,  were the limit values are 33, 95, 

770,41000,  and  19  For  Cooper,  Zinc,  Manganese, 

Iron, and Lead respectively. 

Table 2 (before transformation) clarify that the 

median and mean values of Cu, Zn, Mn were almost 

similar specially Cu and Zn, and they have relatively 

small  Skewness values,  while  Iron has remarkable 

difference between mean and median values,and has 

high Skewness value. Table 3 demonstrate HM 

parameters values after log transformation and it is 

clear   that   the   Skewness   values   were   slightly 

minimized   for   the  Cu,  Zn,  and  Mn,  while  Fe 

Skewness value changed (from 1.456 to 0.663), and 

the mean and median values for Fe became almost 

similar  after  transformation.  During  assessment  of 

cross validation for  statistical errors it was noticed 

that for best fitted interpolated model and best cross 

validation results,only Iron needed to be transformed 

to the logarithmic values, which agree and confirm 

the  above  analysis.   For   lead  parameter,   it  was 

detected in 6 sites. 
Next, trend was examined; figure 2 demonstrate 

the  global  trends  of  data  in  2009.  X,  Y  and  Z 

represent E, N and vertical direction respectively; 

black lines are samples values; green and blue lines 

are trends. It can be notice that Iron and Zinc 

concentration exhibit a strong trend in west (W)-east 

(E) direction, which represented as green line in the 

figure below, iron concentration starts out with low 

values, increases as it moves toward the center of the 

x-axis, then decreases, while the zinc concentration 

was represented as more pronounced U shape on x- 

axis (fig 3), and blue line which represent the trend in 

north(N) –south(S) direction is increasing as it moves 

towards the north (low trend for Iron and Zinc). 

Copper and Manganese concentration exhibit a week 

trend in E- W and in  N –S directions.  This trend 

consider as a nonrandom (deterministic) component 

of a predicted surface that can be represented by a 

mathematical formula (ex: second order polynomial 

that creates a U shape). For Lead, the figures 

demonstrate that in many sample locations the lead 

were not detected  but there were trend in the two 

directions and the high values were detected in the 

east direction. 

Correlation analyses have been widely applied 

in environmental studies. They provided an effective 

way to reveal the relationships between multiple 

variables in order to understand the factors as well as 

sources  of  chemical   components   between  heavy 

metals  and  reflect  that  the  accumulation 

concentrations of these heavy metals came from 

similar pollution sources [19, 20]. The concentrations 

of Cooper, Zinc, Manganese, Iron showed moderate 

positive relationship with each other and this proof 

that Cu, Zn, Mn, and Fe come from the same source 

of pollution. However, the concentration of Lead 

showed  very  weak  correlations  with  the 

concentrations of the other metals. 

In  this  study,  OK  was  used  to  produce  the 

spatial patterns of heavy metals.The Semivariogram 

models (circular, spherical, exponential, gaussian, 

rational quadratic, Hole effect, K-Bessel, and stable) 

were tested for each parameter of HM data set. 

Prediction performances were assessed by cross 

validation, which examines the accuracy of the 

generated  surfaces.  Table  4  lists  cross  validation 

results to examine the validity of the fitting models 

and parameters of semivariograms for Copper  data 

(2009) as an example. It was clear that Copper 

concentration values fit Gaussian model with default

http://www.jofamericanscience.org/
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parameters (without data transformation or trend 

removal) because it provides most suitable model 

based on this criteria: less root mean square error, the 

mean error should be close to 0, and the root-mean 

square standardized error should be close to 1 [6]. 

Analysis has been conducted for HM data using 

OK with default parameters (spherical model+ No 

transformation   +   No   trend   Analysis),   and   then 

applying OK after applying log transformation and 

trend analysis (if necessary). All parameters of 

Semivariogram  model  and  cross  validation  before 

and after analysis were demonstrated in table 5 for 

each HM parameters. The ratio of nugget variance to 

sill  expressed  in  percentages  can  be regarded as a 

criterion  for  classifying  the  spatial  dependence  of 

HM parameters. If this ratio is less than 25%, then the 

variable has strong spatial dependence; if the ratio is 

between  25  and  75%,  the  variable  has  moderate 

spatial   dependence;   and   greater   than   75%,   the 

variables shows only weak spatial dependence [21]. 

The  analysis  illustrate  that  Iron  and  Copper  have 

strong spatial dependence structure, while Zinc and 

Manganese have moderate and week spatial 

dependence  respectively.  Also  effective  range  of 

most parameters is close together with the range of 

972.073 to 1641.11 m. 

Interpolation  maps  before  and  after  analysis 

were shown in figure 4, were the final HM pollution 

maps were  presented in  the right  side of  figure 4 

(a,b.c,d) below. It was observed from all resulted HM 

maps below that there was influence of trend analysis 

on their spatial distribution. For Iron: J- Bessel model 

was used after applying Log-transformation and trend 

removal (using second order polynomial as trend type 

and Global interpolation as a trend removal method), 

also   it   is   clear   that   the   most   polluted   area 

concentrated in the upper lift side due to presence of 

rocks (fig 4a), were water depth and water speed in 

the left side is higher than the right side due to 

presence of hydropower plants, and this movement of 

water lead to continuous erosion in this side, hence 

rocks is present in left side of the study area.Cooper 

and Manganese interpolation maps were constructed 

by applying  first  order  polynomial  trend  type  and 

local polynomial interpolation as a trend removal, 

Gauessian and J- Bessel models were applied for 

Copper and Manganese respectively. No log 

transformation were performed for Cu and Mn, were 

the   Skewness   values   did   not   gain   significantly 

changes after transformation. From figure 4(b,c), it 

can be observed that the upper right side area exhibit 

a   highest   cooper,   manganese   pollution   due   to 

different  man's  activities  as:  Remnants  of  fishing 

boats  like  gasoline,  Agricultural  pesticides  due  to 

little surrounding cultivated area. Zinc Interpolation 

map  was  deduced  using  J-  Bessel   model   after 

applying  trend  removal  (using  second  order 

polynomial as trend type and Global interpolation as 

a trend removal method), without log transformation 

also, Zinc was concentrated in the upper lift side area 

due to presence of rocks. For lead:due to shortage of 

samples, deterministic method for interpolation was 

more suitable  for  lead concentration,  so IDW was 

selected  for  interpolated  map  generation.  It  was 

noticed also that J-bessel considered as best fitted and 

suitable Semivariogram model for data set with small 

samples numbers. 

 

 
Figure  1. Location of the study area.

 

 
Figure  2. Global trends of Copper, Iron, Zinc, Manganese, Lead samples data in 2009.
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Figure  3. Iron and Zinc in E-W direction in 2009. 
 

(a)         Iron 
 

 
 
 
 
 
 
 
 
 
 
 
 

(b)         Copper 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)         Manganese
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(d)         Zinc 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(e)         Lead 

 
Figure  4. Interpolation maps for (a) Iron, (b) Copper, (c) Manganese, (d) Zinc, and (e) Lead data before and after 

analysis using O K and only for lead using IDW. 
 

Table 1. MBE, RMSE, and R2 for HM parameters, using OK and IDW methods 
Sedm. Concentration for Heavy 

metals (2009) 
IDW OK 

 Mean Bias Error RMSE R2
 Mean Bias Error RMSE R2

 

Copper -0.04662 2.748 0.088 -0.02276 2.628 0.176 

Zinc -0.7053 9.819 0.244 -0.1358 7.872 0.482 

Manganese -5.422 77.6 0 -4.92 73.49 0.069 

Iron 2.791 170.8 0.071 1.786 163.3 0.172 

Lead 0.09158 2.665 0.251 0.04928 2.517 0.48 
 

Table 2. Descriptive Statistics of (non-transformation) heavy metals concentration parameters (2009) 
Non Transformation HM 

Parameters concent. 
(2009) 

 
Minimum 

 
Maximum 

 
Mean 

 
Median 

Standard 

deviations 

Skewne 

ss 

Kurtos 

is 

1-st 

quantile 

3-rd 

Quantile 

Copper 9.1 19.8 14.456 14.15 2.9721 0.26758 2.4204 12.6 15.9 

Zinc 50.2 90.1 68.494 68.7 11.29 0.12827 2.0544 59.7 78 

Manganese 36.2 596 469.88 439 78.305 0.44793 1.7828 409.5 533.5 

Iron 230 801 390.13 350 164.56 1.4556 4.2506 279 432.5 

Lead 0 8.1 1.3188 0 2.3875 1.8292 5.2634 0 1.7 

 

Table 3. Descriptive Statistics of (Log-transformation) heavy metals concentration parameters (2009) 
Log Heavy Metal Parameters 

concentrations (2009) 
Minimum Maximum Mean 

Media 
n 

Standard 
deviations 

Skewne 
ss 

Kurtosi 
s 

1-st 
quantile 

3-rd 
Quantile 

Copper 2.2083 2.9857 2.651 2.649 0.20845 0.19104 2.6918 2.5337 2.7653 

Zinc 3.916 4.5009 4.214 
4.229 

7 0.16653 
- 

0.11605 2.0198 4.0893 4.3567 

Manganese 5.8916 6.3902 6.14 
6.083 

7 
0.16334 0.30179 1.7371 6.0148 6.2779 

Iron 5.4381 6.6859 5.933 
5.851 

4 
0.4007 0.66262 2.2655 5.6307 6.0868 

Lead 0 8.1 1.319 0 2.3875 1.8292 5.2634 0 1.7 
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From  this  study  it  can  be  concluded  that  by 
using Geostatistical –variogram analysis and spa

interpolation (kriging), there is possible to determin

and mapped heavy metals concentration in sediment 

of Aswan Reservoir. The results showed that Iron nd 
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Table 4. Prediction errors for different models for Copper parameter (2009) 
Cross Validation for 
copper 

spherical Exponential Gaussian 
Rational 

Quadratic 
K- 

Bassel 
Stable Circular 

Hole 
Effect 

Mean -0.05735 -0.1039 -0.02276 -0.1216 
- 

0.03678 
- 

0.04602 
- 

0.04109 
-0.06112 

Root-Mean-Square- 
Error 

2.663 2.788 2.628 2.914 2.65 2.674 2.629 2.718 

Root-Mean-Square 
Standardized 

0.9598 1.004 0.9486 1.041 1.017 0.9572 0.9643 0.938 

 

Table 5. Parameters of heavy metal concentration variograms 
Cross 

Validation 
Copper Zinc Manganese Iron Lead 

 Before 
analysis 

After 
analysis 

Before 
analysis 

After 
analysis 

Before 
analysis 

After 
analysis 

Before 
analysis 

After 
analysis 

Before 
analysis 

After 
analysis 

           
Model Spherical Gaussian Spherical J-Bessel Spherical J-Bessel Spherical J-Bessel Spherical LDW 

Mean -0.0711 -0.0134 -0.2385 -0.4717 -0.571 -0.056 -0.147 -0.658 -0.0871 0.002 

Root_Mean- 
Square 2.636 2.227 8.127 7.079 76.8 69.74 142.8 120.8 1.775 2.087 

Root_Mean- 
Square 
Standardized 

 
1.007 

 
0.9923 

 
0.9292 

 
1.286 

 
9613 

 
1.513 

 
1.237 

 
1.709 

 
1.022 

 

Nugget  0.7257  12.597  1509.8  0.002   
Partial still 4.0322  20.132  8.6862  0.026   
effective Range 1617.6  972.073  1200.5  1641   
Spatial Ratio 15%  38.48%  99%  8.7%   

5. Conclusions 3.     Abou Elella, S.M.; Hosny M.M.; Bakry, M. F.
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