Accuracy of left gastric vein hemodynamic changes as screening test for gastroesophageal varices in cirrhotic liver patient using color Doppler ultrasound.

¹Abdelgawad Saied, ¹Mohamed Elfiomy, ¹Ashraf Elbahrawy, ¹Atif Abouelfotoh, ¹Ahmed Elwasseif, ¹Nabil Rafaat, ¹Assem El-Sherif, ²Mokhtar Ragab, ²Ehab A. Helal, ²Sad Rezk Abdul Wahed.

¹Department of Internal Medicine, Gastroenterology and Hepatology unit, Al-Azhar University, Cairo, Egypt. ²Department of Diagnostic- Radiology Al-Azhar University, Cairo, Egypt.

ehab_rad2@yahoo.com

Abstract: Background: Portal hypertension is one of complication of cirrhosis which results in the development of spontaneous porto-systemic collaterals at a number of anatomic sites as a response to increased pressure. **Objective:** To test the accuracy of left gastric vein (LGV) color Doppler homodynamic changes as a screening tool for the presence and severity of gastroesophageal varices (GEV) in cirrhotic patients. **Patients and methods:** One hundred consecutive cirrhotic patients were included in this study. All patients underwent endoscopy before ultrasonic examination. The method of left gastric vein identification unified for all patients. Measurements of diameter, flow direction and flow velocity in the left gastric vein (LGV) as well as the presence of paraesophageal varices (OV), 53 patients had OV and 47 patients had no OV. According to presence of gastric fundal varices (FV), only 9 patients had varices. Moreover, only 3 patients had gastric forniceal varices. The Mean diameter of LGV was 6 ± 1.5 mm with mean flow velocity 15.7 ± 6.7 cm/s. **Conclusion:** The results suggest that portal hemodynamics changes in cirrhotic patients are characterized by passive congestion and increased blood flow. However, these 2 features had different preponderances in different parts of the portal venous system. Flow velocity, direction and diameter of the left gastric vein done by ultrasonic Doppler study may be play a role in evaluation of portal hypertension and relation with the development and size of varices.

[Abdelgawad Saied, Mohamed Elfiomy, Ashraf Elbahrawy, Atif Abouelfotoh, Ahmed Elwasseif, Nabil Rafaat, Assem El-Sherif. Mokhtar Ragab, *Ehab A. Helal*, Sad Rezk Abdul Wahed. Accuracy of left gastric vein hemodynamic changes as screening test for gastroesophageal varices in cirrhotic liver patient using color Doppler ultrasound. *J Am Sci* 2014;10(4):75-85]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 10

Key Words: Left gastric vein; Hemodynamics; Gastroesophageal varices; Liver cirrhosis; Color Doppler ultrasound.

1.Introduction:

Hepatic cirrhosis is defined anatomically as a diffuse process with fibrosis and nodule formation. Whatever the causes are, the end result is the same (cirrhosis) (1). Portal hypertension is one of complication of cirrhosis which results in the development of spontaneous porto-systemic collaterals at a number of anatomic sites as a response to increased pressure. The most clinically significant of these are the gastroesophageal varices because of their propensity to rupture and cause life-threatening hemorrhage (2). Incidence of first variceal hemorrhage ranges from 20 to 40% within 2 years. Recurrent bleeding occurs in 30% to 40% of patients within the next 2 to 3 days and in up to 60 % within 1 week (3). The left gastric vein and to a lesser extent the short gastric veins are the major communications between the portal vein and gastroesophageal varices in patients with portal hypertension (4).

Current guidelines recommend screening all cirrhotic patients by endoscopy, to identify patients at risk of bleeding who should undergo prophylactic treatment. However, since the prevalence of varices in cirrhotic patients is variable, universal screening would imply a large number of unnecessary endoscopies and a heavy burden for endoscopy units. In addition, compliance to screening programs may be hampered by the perceived unpleasantness of endoscopy (5).

Predicting the presence of esophageal varices by non-invasive means might increase compliance and would permit to restrict the performance of endoscopy to those patients with a high probability of having varices. Over the years, several studies have addressed this issue by assessing the potential of biochemical, clinical and ultrasound parameters, transient elastography and CT scanning.

The ultrasonographic examination is a simple, inexpensive, accurate, and noninvasive technique. It has been widely used to investigate the relationship between OV and hemodynamics associated with portal hypertension and liver cirrhosis (6).

In cirrhotic patients, because of portal outflow obstruction (i.e., elevated intrahepatic portal vascular resistance), increased blood flow in the splenic vein cannot enter the liver via the PV, and a considerable percentage of splenic vein flow is forced to bypass the liver. One of the most important shunting routes is the LGV, which may normally arise from the PV and splenic vein. When increased flow in the splenic vein is prominent, the diversion of a large quantity of portal flow via the LGV would result in more severe esophageal varices and might trigger the occurrence of esophageal varices bleeding[7].

In this study, we investigated the accuracy of left gastric vein (LGV) color Doppler homodynamic changes as a screening tool for the presence and severity of gastroesophageal varices (GEV) in cirrhotic patients.

2. Patients and methods:

One hundred consecutive cirrhotic patients (as laboratory proven by clinical and data. ultrasonography findings, histopathological assessment of liver tissue or APRI score) were included in this study. The study was conducted at El-Hussein hospital, Al-Azhar university. All patients without past history of upper GIT bleeding, endoscopic or surgical intervention for management of portal hypertension, history of vasoactive drugs (beta blockers, nitrates, somatostatin or vasopressin), during the period of 6 months before inclusion, as well as patients with thrombosis of portal or hepatic venous systems were excluded.

Patients were subjected to full clinical assessment with special reference to history of chronic liver disease, past history of schistosomiasis and anti-schistosomal therapy, attacks of hematemsis and/or melena, hepatic encephalopathy, and associated comorbidity. In addition the presence of jaundice, ascites, splenomegaly and dilated para-umblical veins were searched for during physical examination.

Complete blood count, alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin, serum bilirubin, blood urea, serum creatinine and INR were tested for all patients. Anti-body to hepatitis C virus (HCV Ab) and hepatitis B surface antigen were tested for patients when was possible by third generation ELISA. Antinuclear antibody (ANA) and anti-smooth muscle antibody (ASMA) were tested in patients negative for HCV Ab and HBs Ag.

In patients with decompensated liver disease, cirrhosis was diagnosed on the basis of clinical, laboratory, and ultrasonography data. Patients with compensated liver disease (n=37), diagnoses of cirrhosis based on histopathological assessment of liver tissue (n=10), or APRI score (n=27) (8). Severity of liver cirrhosis evaluated according to Child-Turcotte-Pugh classification (9).

Abdominal ultrasonography and Color Doppler ultrasonography was performed for all patients using ALOKA prosound series α 7 (Germany), with 3.5 MHz convex probe after overnight fast. Patients were assessed in supine position during quite respiration. Splenic longest axis was also measured and classified into, normal (\leq 12 cm)(10) mildly enlarged (13-15 cm), moderate (16-18) or massive (>18) (11). Ascites, if present, was presented as mild, moderate or marked (10).

Color Doppler In ultrasonography, measurements of diameter, flow direction and flow velocity in the LGV were done in all patients. The site of left gastric vein destination at portal circulation, as well as the presence of para-esophageal varices was assessed. The LGV usually originates from the portalsplenic vein junction or its vicinity and runs to the gastro-esophageal junction. It was identified longitudinally by ultrasonography in a left oblique scan in the epigastric region. Blood flow measurement was made in the straight portion of the LGV, usually within 5 cm from its origin. The diameters of the LGV were calculated from the inner surface within the vessel as seen in a longitudinal view. The sample volume was selected from 2 to 5 mm widths to include the width of the vessel. Flow direction was assessed according to the uperiopward or downward position of the Doppler waveform over the baseline (hepatopetal. bidirectional, or hepatofugal). The beam-vessel angle was less than 60° in every patient. Flow velocity was calculated as an average value of three consecutive measurements. The radiologist was blind to any information on the endoscopic findings of varices and the portal pressure.

Upper GIT endoscopy was done for all patients using PENTAX EPM 3500 (Japan). Esophageal varices were graded according to the criteria of Japanese Research Society for Portal hypertension and endoscopic finding of portal vein hypertension into, no varices, in straight and small caliber varices (F1), moderately enlarged beady varices (F2), or markedly enlarged nodular or tumor-shaped varices (F3). Gastric varices were classified into cardiac or forniceal type. Portal hypertensive gastropathy was depicted as present or absent.

3. Results:

One hundred consecutive cirrhotic patients were included in this study. 50 male patients and 50 female patients with mean age $52.6 \pm 9.1 (31 - 70)$ years. Hepatitis C virus (HCV) was the cause of cirrhosis in 84 patients, Hepatitis B virus (HBV) in 3 patients, autoimmune with anti smooth antibody muscle antibody (ASMA) in 3 patients and cryptogenic in 10 patients. 37 patients were child A, 23 were child B while 40 patients were child C (Table 1). There are 86 patients had history of hepatic coma, 43 patients had ascites, 75 patients had splenomegaly (Table 2). The mean of S. Alb was 3 ± 0.8 mg/dl, the mean of INR was 1.3 ± 0.3 and mean of creatinine 0.9 ± 0.4 . 74 patients could be assessed but 26 patients couldn't be assessed. Mean diameter of LGV was 6 ± 1.5 mm with mean flow velocity 15.7 ± 6.7 cm/s. 55 patients had hepatofugal direction of flow, 16 patients had hepatofugal direction and only 3 patients had bidirection flow of LGV. 60 patients had para-oesophageal varices (PEV) by color Doppler ultrasound and 40 patients didn't have.

There are 42 patients had portal hypertensive gastropathy.

According to presence of OV, 53 patients had OV and 47 patients had no OV. According to presence of gastric cardiac varices, only 9 patients had varices. And according to presence of gastric forniceal varices only 3 patients had varices. LGVD was increased more with increasing age, child C, presence of ascites, increasing S. bilirubin, decreased S. alb, decreased hemoglobin and thrombocytopenia.

Patients with child C, splenomegaly, increase bilirubin, low S. albumin and thrombocytopenia had more hpatofugal direction than others. Patients with Child C had more incidence of detection of PEV, in contrast patients with Child B. OV were present and were increasing in grades with increasing of age, male more than females, child class C more than A, presence of ascites, splenomegaly, increasing S. bilirubin, low S. albumin, increasing INR and thrombocytopenia.

Gastric forniceal varices were present more frequent with male than female, presence of ascites and increasing S. bilirubin. Gastric cardic varice had highly statistics significance similar to OV, but ALT had additional significant relation to cardiac varices rather than OV. There was highly significant relation between OV and LGV values. OV were found with more increase in LGVD and hepatofugal direction by color Doppler ultrasound and There was no relation between left gastric vein values and gastric forniceal varices. The gastric cardiac varices were found with increasing LGVD and hepatopfugal direction.

The percentage ratio of patients with hepatofugal direction was increased with presence of portal hypertensive gastropathy. In the same line, grading of PEV were found more with portal hypertensive gastropathy. LGV diameter, direction, presence of PEV by color Doppler parameter was found to be the best parameter to predict OV with sensitivity 100%, specificity83.3%, PPV88.9% and NPV100%.

The results of this study are tabulated through the following tables:

Table 1: Ba	sic data of stud	ied patients

Basic data	n (%)
Sex	
Male	50 (50%)
Female	50 (50%)
Etiology of cirrhosis	
HCV	84 (84%)
HBV	3 (3%)
Autoimmune	3 (3%)
Cryptogenic	10 (10%)
Child class	
А	37 (37%)
В	23 (23%)
С	40 (40%)

Table 2: Clinical data of studied patients

Clinical data	n (%)
History of hepatic coma	
No	86 (86%)
Yes	14 (14%)
Ascites	
No	57 (57%)
Minimal	1 (1%)
Mild	9 (9%)
Moderate to Marked	33 (33%)
Splenomegaly	
No	25 (25%)
Mild	38 (38%)
Moderate	34 (34%)
Massive	3 (3%)

Table 3: Left gastric vein color Doppler values among	
studied patients.	

studicu patients.					
Mean \pm SD	Range				
$6 \pm 1.5 \text{ mm}$	3 – 11 mm				
15.7 ± 6.7 cm/s	4 – 48.6 cm/s				
1 ± 1.3 column	0-5 columns				
$0.3 \pm 0.5 \text{ cm}$	0 - 2 cm				
Number	%				
60	60				
4	4				
5	5				
31	31				
26	26				
55	55				
16	16				
3	3				
26	26				
55	55				
19	19				

LGV=Left gastric vein, PEV=Para esophageal varices, O.V.=esophageal varices.

	LGV diameter					
	Normal	increased	X^2	Р		
Sex						
Μ	2(28.6%)	34(50.7%)	1.5	0.4		
F	5(71.4%)	33(49.3%)		0.4		
Age	47.6 ± 4.6	54.3 ± 7.6	3.7	0.03		
Etiology of cirrhosis						
HCV	7(100%)	54(80.5%)				
HBV	0(0%)	1(1.5%)				
Autoimmune.	0(0%)	2(3%)	11.2	0.08		
Crypt.	0(0%)	10(15%)				
Child class						
Α	6(85.7%)	28(41.8%)				
В	0(0%)	20(29.9%)	27.2	0.000		
С	1(14.3%)	19(28.3%)	21.2	0.000		
Hepatic coma						
No	7(100%)	61(91%)	0.5	0.01		
Yes	0(0%)	6(9%)	8.5	0.01		
Ascites		, , ,				
No	7(100%)	46(68.7%)				
Minimal	0(0%)	0(0%)				
Mild	0(0%)	7(10.4%)	36.1	0.000		
Marked	0(0%)	14(20.9%)				
Splenomegaly						
No	2(28.6%)	16(23.9%)				
Mild	3(42.8%)	29(43.3%)				
Moderate	2(28.6%)	20(29.8%)	4.3	0.6		
Massive	0(0%)	2(3%)				
ALT	50.1±24.3	44.2±2.66	0.24	0.8		
AST	57.7±25.9	62.2±37.2	2.4	0.09		
T. Bilirubin	0.8 ± 0.2	1.7 ± 1.1	6.8	0.002		
S. Albumin	3.7 ± 0.6	3.1±0.8	9.4	0.000		
INR	1.2 ± 0.3	1.3±0.3	2.3	0.1		
S. Creatinine	0.8 ± 0.2	0.9±0.3	0.4	0.7		
Blood urea	27.1±4.7	32.4±8.1	1.2	0.3		
Hemoglobin	13.3 ± 1.7	10.9±2.6	3.1	0.05		
WBCs ×10 ³	6.5 ± 2.1	5.9±2.4	0.3	0.7		
Platelet×10 ³	181±88	127±85	4.5	0.01		
APRI	2 ± 3.1	1.8±2.2	1.5	0.2		

Table 4: Relation between basic data, clinical and laboratory values and left gastric vein diameter.

INR=International normalize ratio, APRI=AST Platelet Ratio Index. ALT=Alanine aminotranseferase, AST=Aspartate aminotransferase.

Table 5: Relation between basic data, clinical and laboratory values and left gastric vein flow direction parameters.

	LGV flow direction						
	Petal F		Bi	X^2	р		
Sex							
М	27(49.1%)	8(50%)	1(33.3%)	0.3	0.9		
F	28(50.9%)	8(50%)	2(66.7%)				
Age	53.8±7.8	54.4±7.6	48.3±2.1	1.6	0.19		
Etiology							
HCV	45(81.8%)	13(81.3%)	3(100%)				
HBV	1(1.8%)	0(0%)	0(0%)	2.5	0.87		
Autoimm.	1(1.8%)	1(6.3%)	0(0%)				
Crypt.	8(14.6%)	2(12.4%)	0(0%)				
Child class							
А	27(49.1%)	4(25%)	3(100%)				
В	16(29.1%)	4(25%)	0(0%)	9.8	0.04		
С	12(21.8%)	8(50%)	0(0%)				
Hepatic coma							
No	49(89.1%)	16(100%)	3(100%)	3.7	0.15		
Yes	6(10.9%)	0(0%)	0(0%)				
Ascites	. ,	. ,					
No	39(70.9%)	11(68.8%)	3(100%)				
Minimal	0(0%)	0(0%)	0(0%)	6.9	0.14		
Mild	7(12.7%)	0(0%)	0(0%)				
Marked	9(16.4%)	5(31.2%)	0(0%)				

Splenomegaly					
No	14(25.5%)	2(12.5%)	2(66.7%)		
Mild	28(50.9%)	4(25%)	0(0%)	14.9	0.02
Moderate	11(20%)	10(62.5%)	1(33.3%)		
Massive	2(3.6%)	0(0%)	0(0%)		
ALT	41.9±26.8	49.8±24.3	69.6±4.9	1.4	0.2
AST	59.5±39.1	64.3±25.3	89.3±14.2	2.4	0.07
T.Bilirubin	1.5±0.9	2.1±1.6	0.7±0.3	4.9	0.003
S. Albumin	3.2±0.8	2.8±0.8	4.1±0.1	8.5	0.000
INR	1.3±0.3	1.4±0.4	1±0.1	2.5	0.07
S. Creatinine	0.9±0.3	0.9±0.4	0.6±0.2	0.8	0.5
Blood urea	31.4±7.5	32.3±8.6	39±12.1	0.8	0.5
Hemoglobin	11.2±2.8	10.9±2.1	11.7±3.4	0.07	0.9
WBCs ×10 ³	6.1±2.4	5.6±2.2	4.9±0.95	0.5	0.7
Platlet ×10 ³	132±63	87±46	386±184	23.2	0.000
APRI	1.8±2.6	2.2±0.9	0.7±0.2	1.5	0.2

INR=International normalize ratio, APRI=AST Platelet Ratio Indix. ALT=Alanine aminotranseferase, AST=Aspartate aminotransferase.

Table & Delation between	loft goathia wai	n values and es	mhagaal wariaaa
Table 6: Relation between	ient gastric vei	n values and es	ophageal varices.

		Esophageal varices				Р
	No OV	F1	F2	F3		
LGV diameter:						
Normal	6(12.8%)	0(0%)	1(3.6%)	0(0%)	16.2	0.01
Increased	36(76.7%)	7(63.7%)	15(53.6%)	9(64.3%)		
LGV flow direction:						
Hepatopetal	36(85.7%)	7(100%)	11(68.8%)	1(11.1%)		
Hepatofugal	4(9.5%)	0(0%)	4(25%)	8(88.9%)	27.6	0.000
Bidirection	2(4.8%)	0(0%)	1(6.2%)	0(0%)		
Site of termination:						
Portal	29(61.7%)	7(63.4%)	12(42.9%)	7(50%)	16.6	0.01
Splenic	13(27.7%)	0(0%)	4(14.3%)	2(14.3%)		
Grading of PEV:						
No	34(72.3%)	9(81.8%)	9(32.1%)	8(57.1%)		
Mild	3(6.4%)	0(0%)	0(0%)	1(7.1%)	27.2	0.001
Moderate	3(6.4%)	1(9.1%)	1(3.6%)	0(0%)		
Large	7(14.9%)	1(9.1%)	18(64.3%)	5(35.7%)		

LGV=left gastric vein, PEV=Para esophageal varices by doppler.

Table 7: Relation between left gas	stric	vein	valu	les and	l gastric foi	niceal	varices.

	Forniceal vari	Forniceal varices		
	absent	present	X^2	Р
LGV diameter:				
Normal	7(7.2%)	0(0%)	2.4	0.3
Increased	64(66%)	3(100%)		
LGV flow direction:				
Hepatopetal	53(74.6%)	2(66.7%)		
Hepatofugal	15(21.2%)	1(33.3%)	0.4	0.8
Bidirection	3(4.2%)	0(0%)		
Site of termination:				
Portal	52(53.6%)	3(100%)	3.7	0.2
Splenic	19(19.6%)	0(0%)		
Grading of PEV:				
No	60(61.7%)	0(0%)		
Mild	4(4.1%)	0(0%)	7.2	0.065
Moderate	5(5.2%)	0(0%)		
Large	28(28.9%)	3(100%)		

LGV=left gastric vein, PEV=Para esophageal varices by doppler.

Table 8: Relation between left gastric vein values and gastric cardiac varices.

	Cardiac varices			
	absent	present	X^2	Р
LGV diameter:				
Normal	7(7.7%)	0(0%)	7.6	0.02

Increased	58(63.7%)	9(100%)		
LGV flow direction:				
Hepatopetal	52(80%)	3(33.3%)		
Hepatofugal	10(15.4%)	6(66.7%)	10.3	0.006
Bidirection	3(4.6%)	0(0%		
Site of termination:				
Portal	48(52.8%)	7(77.8%)	5.8	0.055
Splenic	17(18.7%)	2(22.2%)		
Grading of PEV:				
No	55(60.4%)	5(55.6%)		
Mild	4(4.4%)	0(0%)	2.2	0.5
Moderate	5(5.5%)	0(0%)		
Large	27(29.7%)	4(44.4%)		

LGV=left gastric vein, PEV=Para esophageal varices by doppler.

Table (9): Sensitivity, specificity, PPV and NPV of LGV parameters in detecting esophageal varices.

Parameters	Sensitivity	Specificity	PPV	NPV
LGV diameter.	96.8 %	14.3 %	45.5 %	85.7 %
LGV flow direction.	37.5 %	85.7 %	66.7 %	64.3 %
PEV by Doppler.	50.9 %	72.3 %	67.5 %	56.7 %
LGV diameter and flow direction.	92.3 %	50 %	66.7 %	85.7 %
LGV diameter and PEV.	100 %	31.3 %	64.5 %	100 %
LGV flow direction and PEV.	57.1 %	96.2 %	88.9 %	80.6 %
LGV diameter, flow direction and PEV.	100 %	83.3 %	88.9 %	100 %
LGV diameter, flow direction, PEV and Chlid A.	100 %	0 %	50 %	NaN
LGV flow direction, PEV and Child A.	16.7 %	85.7 %	50 %	54.5 %
LGV diameter, PEV, Child A.	100 %	0 %	12.5 %	NaN
LGV diameter and Child A.	66.7 %	0 %	7.1 %	0 %
LGV flow direction and Child A.	5.3 %	60 %	14.3 %	33.3 %
PEV and Child A.	4 %	50 %	11.1 %	25 %

LGV=left gastric vein, PEV=Para Esophageal Varices, PPV=Positive Predictive Value, NPV=Negative Predictive Value.

Table (10): Sensitivity, specificity, PPV and NPV of LGV parameters in detecting gastric varices.

-	ubie (10). Sensitivity, specificity, 11		parameters m	uccccm5 5.	
	Parameters	Sensitivity	Specificity	PPV	NPV
	LGV diameter.	100 %	11.5 %	18.2 %	100 %
	LGV flow direction.	50 %	80.6 %	33.3 %	89.3 %
	LGV diameter and flow direction.	100 %	36.8 %	33.3 %	100 %

LGV=left gastric vein, PPV=Positive Predictive Value, NPV=Negative Predictive Value.

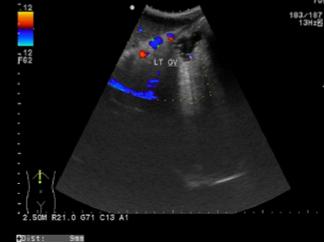


Fig. 1: A-Color Doppler ultrasound shows the hepatopetal flow direction of LGV (measures 9 mm). B- Upper G.I.T endoscopy shows F1 straight and small caliber varices.

4. Discussion

Liver cirrhosis represents a tremendous health burden in Egypt. Portal hypertension and the development of esophageal varices "OV" and gastric varices "GV" that carries the risk of bleeding is a major complication of liver cirrhosis. Oesophageal varices are detected in approximately 50% of cirrhotic patients, at their diagnosis. OV is more common in Child-Pugh class C patients compared to Child-Pugh class A patients (5). Once OV is formed it can bleed at a rate of 5-15% per year. The risk of bleeding is higher in patients with large varices >5mm diameter, higher Child-Pugh score, and those with red wall markings on varices at endoscopy.

Current guidelines recommend that all cirrhotic patients should undergo screening endoscopy at diagnosis to identify patients with varices (5). Interobserver variation in detection and grading had been reported by many researchers (12-14). The current guidelines result in a significant economic burden, especially that up to 50% of patients may not develop OV up to10 years after the initial diagnosis (15).

Many investigators explored the usefulness of different clinical, laboratory, and imaging parameters in the screening of OV. Platelet count, Child-Pugh score, platelet count / spleen diameter ratio, Liver and spleen elastography, variable abdominal ultrasound indices as portal vein diameter and flow speed were all tried but sensitivity and specificity were not enough to recommend the use of any of these tests (16).

Esophageal varices were documented by upper endoscopy in 53 patients 53%, Zardi et al., (16) reported an incidence of 57% of OV in patients with liver cirrhosis, where 84 % of the studied patients had HCV as the cause of cirrhosis. The demographic characteristics of patients showed that older patients had higher grades of OV (p=0.04) and also had cardiac varices (p 0.006) but not forniceal varices. This coincides with other researchers (17) who reported in a large prospective study (582 patients without history of bleeding) that older patients had higher grades of OV. On the other hand this is conflicting with (18) who reported that age didn't affect presence of OV. However their study design was retrospective, which might explain the conflicting results.

Likely male patients were more prone to have both OV (p 0.002) & Forniceal varices (p 0.04). This is in the same line with Barrera *et al.* (19) who correlates between male and high risk esophageal varices (HREV) in cirrhotic patients. On the other hand, Agha *et al.* (20) reported that gender didn't affect presence or absence of OV in schistosomiasis. This controversy may be due to type of patients which are cirrhotic patients in (19) who coincide with our patients and bilharziasis in (20) who is opposite to my results.

Low albumin and thrombocytopenia were common finding in OV and cardiac varices. While increased bilirubin and ascites were common finding in OV and forniceal varices. Patients with ascites were more prone to have OV and more high grades of OV, this results is similar to results of Bota *et al.*(21) who found that ascites is more frequent present with presence of OV and specifically with high grades of OV.

Splenomegaly correlated with presence of OV and grading of OV. Furthermore, the grade of OV increased head to head in relation to the size of the spleen. Thrombocytopenia and hyperbilirubinemia were independent risks for presence of OV. This is parallel to (22-24). Moreover in one study, (25) concluded that splenomegaly and thrombocytopenia are the best noninvasive predictors for OV.

Although, the results showed that serum albumin was decreased with presence of OV and increasing grading of OV. But it cannot be reliably taken as a risk for OV, as there are many factors affecting albumin level in blood. This result is in the same line with (26) who reported that hupoalbuminemia is significantly decreased with OV, but it is better to add spleen size to it as predictors for OV.

In this study it was found that there was no relation between white blood cells (WBCs) and OV. This result is similar to results of Alcantara *et al.* (27) who reported that there is no statistically significant correlation between white blood cells and OV. High International normalize ratio (INR) was a risk of OV existence. And it is also affected by many factors. Likely more than one study had reported similar conclusion (21, 27).

Patients with higher Childs' classification were more frequent to have higher grade of OV and cardiac varices but not forniceal varices. Patients with large grades of OV had high child classification more than patients with absence OV or low grades of OV. Like my results there are numerous studies concluded that high Child's score is an isolated risk factor for both OV detection and grade (28). Most of studies didn't explore cardiac and forniceal varices, but they dealt with them as one unit (gastric or fundal varices). And it has been reported that high Child `s classification is a risk factor for presence of fundal varices (29).

APRI score had no relation to OV and fundal varices. This is head to head to (30) who concluded that APRI score hadn't impressiveness to be predictor for OV. Most of clinical and laboratory predictors for OV were also predictors to cardiac varices. This may be explained that cardiac varices originated mainly as extensions to OV. In this study, demographic characteristics of patients with left gastric vein dilatation showed that older patients were found to have greater left gastric vein diameter (LGVD) (p 0.03). This observation might be a reflection to the fact that older patients were more frequent to have portal hypertension as proved by having OV. Neither the cause of cirrhosis, nor the co existence of Bilharziasis had a relation to LGVD. Which point that none of these factors carries any additional load to the readily existing portal hypertension.

In this study LGVD and LGV direction of flow showed a relation to patients laboratory markers. Independent predictors of high LGVD were low hemoglobin (p=0.05), low platelet (p=0.01), decreased albumin (p=0.002) and high bilirubin (p=0.002). LGV direction showed also correlation with platelet count, bilirubin and serum albumin. This may be due to correlation of these parameters with OV. The results showed that LGVD increased head to head in relation to the grade of OV (p=0.01).This is in line with (31) who reported that the diameter of the LGV trunk increased with increasing varix size.

The results also showed that the direction of flow in the LGV had a positive relation to the grade of OV as 85.7% of patients without varices showed centripetal flow versus 9.5% showing hepatofugal flow. While patients with grade F3 showed 88.9% hepatofugal flow versus only 11.1% hepatopetal flow. Similar results were reported in more than one study as the hepatofugal flow and speed were related to the development of higher grades of OV (2, 31, 32).

Moreover, in one study the author concluded that the velocity of the flow is more important than the diameter in predicting high grade OV (29). Parallel to these results (33) who concluded that rapid hepatofugal flow in the LGV velocities more useful than LGVD in predicting recurrence of varices following endoscopic treatment. Unlike the previous studies both LGVD and speed of flow showed to be the most relevant tests to the portal vein diameter. Moreover LGVD proved to be a good predictor of the advanced OV as it detected 64% of patients with stage 2 and 3 OV and it reported the sensitivity of 75% in detecting OV (16). Similar data were also reported by (34).

Another observation in this study, that the detection of para-oesophageal varices, grading of para-oesophageal varices, number of para-oesopgageal varices columns and the maximum diameter of these varices were all positively linked to the grade of OV. This is on the same line with (35) who concluded that the detection of para-oesophageal varices is a sensitive marker that is linked to bleeding OV. In the same line, Para-oesophageal varices had the same haemodynamics as the LGV and both were able to

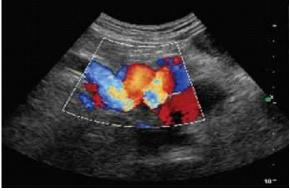
predict early variceal recurrence after sclerotherapy (36).

Anatomically, Porto-systemic Collaterals are divided into periesophageal collateral veins and paraoesophageal collateral veins. Periesophageal collateral veins were thought to be more important predictor of OV than para-oesophageal collaterals (37-39). On the other hand only LGV flow direction and presence of para-oesophageal varices by Doppler correlated with the presence of gastric varix. This is in contrast with (33) who reported that hepatofugal flow correlated with OV but not forniceal varices. The existence of other non tested shunts as gastro-renal or paraumblical collateral can explain the dysconcordance of the results of this study. Additionally, lack of studies testing haemodynamics of gastric varices hindered our trial to find relevant data, as many studies excluded the patients with gastric varices from analysis (31) or either low number of patients with gastric varices were recruited in the study only 8 patients. Sato et al. (40) like our study only 12 patients had gastric varices. We faced the same situation in our study as only 12 patients had gastric varices.

The complex anatomy of the portal-systemic circulation and the presence of other types of shunts that were not included in different studies can explain the conflicting results between all studies. To overcome this limitation, we studied the combined "bivariate" analysis of different parameters on the detection of both OV and gastric varices. The concomitant detection of elevated LGVD and detected para-oesophageal varices highly correlated with detection of OV. This observation proved to be also true for gastric cardiac varices but not to gastric forniceal varices. It is relevant to say that anatomically, forniceal varices are connected to splenic vein and short gastric veins.

In view of these results we studied the sensitivity and specificity of each individual test and a formula of more than one test in peruse of the most sensitive and probably specific formula in detection OV and fundal varices (FV). LGVD proved to be a sensitive test in detecting OV 96.7% but the specificity was only 14.2%.The sensitivity was even higher with FV 100% and specificity of 11.4%. In another study the LGVD reported a sensitivity of 75% in detecting OV, the same sensitivity of 75% was reported in an additional study (16).

Direction of flow had a sensitivity of 37.5% and a specificity of 85.7% in detecting OV. Unlike our results (34) reported a higher sensitivity 83%" for flow direction in detecting OV. However in their study almost 43% of the patients had history of haematemesis, which was one of the exclusion criteria in the current study. On the other hand in my study the utility of elevated LGVD in predicting fundal varix showed a sensitivity of 50% and a specificity of 80.6%.


Based on these results LGVD proved to have a high sensitivity but very low specify in detecting both OV and FV. But the direction of flow showed an opposite pattern with low sensitivity and high specificity for detecting both OV and FV. The concomitant detection of elevated LGVD and direction of flow showed a sensitivity of 50.9% and a specificity of 72.3% for detecting OV, while it showed' a sensitivity of 92.3% and a specificity of 50% in detecting FV. The combined detection of high LGVD and presence of paraoesophageal varices by Doppler recorded a sensitivity of 100% and a specificity of 31.2%. While the triple detection of high LGVD, abnormal direction of flow and presence of paraoesophageal varices recorded 100% sensitvity and 83% specificity.

We used color doppler ultrasound to elicit left gastric vein parameters to can predict OV, but there are another route to elicit left gastric vein parameters, the most accurate one of them is percutaneous transhepatic splenoportography which give direct information about collaterals of portosystemic shunts, OV, left gastric vein, short gastric veins, splenic vein and portal vein (41). Its use is not reliable as it doesn't demonstrate well direction of flow of left gastric vein, in addition to this it is invasive maneuver, may be more cost than upper GIT endoscopic study and need more skills to be done.

On the opposite side, it give more details about porto venous system as whole than color Doppler, it can evade tense ascites and gaseous distention which hinder color Doppler ultrasound and can safely avoid anomalies of left gastric vein and OV. But still color Doppler is better than any other way to elicit left gastric vein parameters which give more data than percutaneous transhepatic splenoportography specially direction of flow which is extremely important to predict OV.

Conclusion

In conclusion, The results suggest that portal hemodynamics changes in cirrhotic patients are characterized by passive congestion and increased blood flow. However, these 2 features had different preponderances in different parts of the portal venous system. Flow velocity, direction and diameter of the left gastric vein done by ultrasonic Doppler study may be play a role in evaluation of portal hypertension and relation with the development and size of varices.

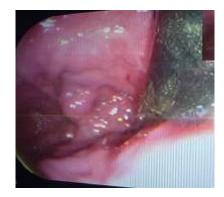


Fig. 2: A. Color Doppler ultrasound of para-oesophageal varices with color aliasing. B- Upper G.I.T endoscopy shows F3 markedly enlarged nodular or tumor-shaped cardiac varices.

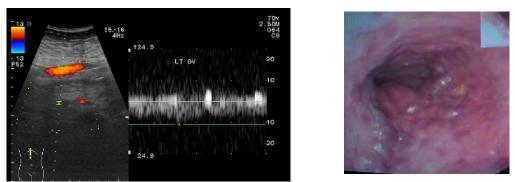


Fig.3: A- Color Doppler and spectral analysis shows hepatofugal flow and velocity (11 cm/sec) at left gastric vein. B- Upper G.I.T endoscopy shows F2 moderately enlarged beady varices.

References

- 1. Sherlock S. and Dooley J.: Diseases of the liver and biliary system. Blackwell scientific publications 2002; Oxford (U.K) (10th edition).
- Adithan S, Venkatesan B, Sundarajan E, Kate V and Kalayarasan R.: Color Doppler evaluation of the left gastric vein hemodynamics in cirrhosis and portal hypertension and its correlation with esophageal varices with variceal bleed. Indian Journal of Radiology and Imaging 2010; 20:289 – 293.
- 3. D'Amico G. and Luca A.: Natural history: Clinical haemodynamic correlations; Prediction of the risk of bleeding. Baillieres Clin Gastroenterol 1997; 11: 243-56.
- Widrich WC, srinivasan M, Semine MC, Robbins AH. Collateral pathways of the left gastric vein in portal hypertension. AJR 1984; 142(2):375-82.
- Castera L, Pinzani M, Bosch J. Non invasive evaluation of portal hypertension using transient elastography. J Hepatol. Epub 2011.56(3):696-703.
- 6. Martins RD, Szejnfeld J, Lima FG, Ferrari AP. Endoscopic, ultrasonographic, and US-Doppler parameters as indicators of variceal bleeding in patients with schistosomiasis. Dig Dis Sci 2000; 45: 1013-1018.
- Nakano R, Iwao T, Oho K, Toyonaga A, Tanikawa K. Splanchnic hemodynamic pattern and liver function in patients with cirrhosis and esophageal or gastric varices. Am J Gastroenterol 1997: 92: 2085-2089.
- Snyder N, Gajula L, Xiao SY, Grady J, Luxon B, Lau DT, Soloway R and Petersen J.: APRI: an easy and validated predictor of hepatic fibrosis in chronic hepatitis C. J Clin Gastroenterol. 2006 Jul;40(6):535-42.
- Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the esophagus in bleeding oesophagealvarices. Br J Surg 1973; 60(8):646-9.
- El-Sherif A.M., Abou-Shady M.A., Al-Bahrawy A.M., Bakr R.M. and Hosny A.M.:Nitric oxide levels in chronic liver disease patients with and without oesophageal varices. Hepatol Int 2008; 2: 341-345.
- 11. Bates J.A.: Abdominal ultrasound. Churchillivingstone, Edinburgh, London, 2nd edition 2004; 97-107.
- Cales P and Pascal J.: "Gastroesophageal endoscopic features in cirrhosis: comparison of intracenter and intercenter observer variability," Gastroenterology 1990; 99(4):1189-1990.
- 13. Scopus B. Winkfield, C. Aubé, P. Burtin, and P. Calès. "Inter-observer and intra-observer

variability in hepatology," European Journal of Gastroenterology and Hepatology 2003; 15(9), 959–966, 2003

- 14. Merli M., Nicolini G and Angeloni S.: "Incidence and natural history of small esophageal varices in cirrhotic patients" Journal of Hepatology 2003; 38,(3) 266–272.
- Rye K, Scott R, Mortimore G, Lawson A, Austin A, and Freeman J.: Towards Noninvasive Detection of Oesophageal Varices. International Journal of Hepatology. Volume 2012 (2012), Article ID 343591: 9 pages.
- Zardi EM, Uwechie V, Caccavo D, Pellegrino NM, Cacciapaglia F, Di Matteo F, Dobrina A, Laghi V, AfeltraA.:Portosystemic shunts in a large cohort of patients with liver cirrhosis:detection rate and clinical relevance. J Gastroenterol 2009; 44(1):76-83.
- 17. Tanaka R, Itoshima T, Nagashima H.: Follow-up study of 582 liver cirrhosis patients for 26 years in Japan. Liver. 1987 Dec; 7(6):316-324.
- 18. Varghese J, Cherian JV, Solomon R, Jayanthi V.: Predictors of variceal bleed among patients with liver cirrhosis in the era of sclerotherapy. Singapore Med J. 2008 Mar;49(3):239-242.
- Barrera F, Riquelme A, Soza A, Contreras A, Barrios G, Padilla O, Viviani P, Pérez-Ayuso RM.: Platelet count/spleen diameter ratio for non-invasive prediction of high risk esophageal varices in cirrhotic patients. Ann Hepatol. 2009;8(4):325-30.
- Agha A, Abdulhadi MM, Marenco S, Bella A, Alsaudi D, El-Haddad A, Inferrera S, Savarino V, Giannini EG. Use of the platelet count/spleen diameter ratio for the noninvasive diagnosis of esophageal varices in patients with schistosomiasis. Saudi J Gastroenterol. 2011;17(5):307-311.
- 21. Bota S, Sporea I, Sirli R, Focsa M, Popescu A, Danila M, Strain M. (2012): Can ARFI elastography predict the presence of significant esophageal varices in newly diagnosed cirrhotic patients? Ann Hepatol. 2012;11(4):519-25.
- Mendes FD, Suzuki A, Sanderson SO, Lindor KD, Angulo P. Prevalence and indicators of portal hypertension in patients with nonalcoholic Fatty liver disease. Clin Gastroenterol Hepatol. 2012 Sep;10(9):1028-1033.e2.
- Tafarel JR, Tolentino LH, Correa LM, Bonilha DR, Piauilino P, Martins FP, Rodrigues RA, Nakao FS, Libera ED, Ferrari AP, da SilveiraRöhr MR. Prediction of esophageal varices in hepatic cirrhosis by noninvasive markers. Eur J GastroenterolHepatol. 2011;23(9):754-8.

- Zapata-Colindres JC, Montaño-Loza A, Zepeda-Gómez S, Uscanga L. Predictive factors for portal hypertension in patients with primary sclerosing cholangitis. Gastroenterol Hepatol. 2006;29(1):7-10.
- 25. Arhip O, Cijevschi-Prelipcean C, Manole A, Matei M.: Clinical and biological correlations of esophageal varices in patients with compensated hepatic cirrhosis. Rev Med Chir Soc Med Nat Iasi. 2010;114(3):671-6.
- 26. Fagundes ED, Ferreira AR, Roquete ML, Penna FJ, Goulart EM, Figueiredo Filho PP, Bittencourt PF, Carvalho SD, Albuquerque W. Clinical and laboratory predictors of esophageal varices in children and adolescents with portal hypertension syndrome. J Pediatr Gastroenterol Nutr. 2008 Feb;46(2):178-83.
- 27. Alcantara RV, Yamada RM, De Tommaso AM, Bellomo-Brandão MA, Hessel G. Non-invasive predictors of esophageous varices in children and adolescents with chronic liver disease or extrahepatic portal venous obstruction. J Pediatr (Rio J). 2012 Jul;88(4):341-6.
- 28. Kim BK, Kim do Y, Han KH, Park JY, Kim JK, Paik YH, Lee KS, Chon CY, Ahn SH. Risk assessment of esophageal variceal bleeding in Bviral liver cirrhosis by a liver stiffness measurement-based model. Am J Gastroenterol. 2011 Sep;106(9):1654-62.
- 29. Kim T, Shijo H, Kokawa H, Tokumitsu H, Kubara K, Ota K, Akiyoshi N, Iida T, Yokoyama M, Okumura M. Risk factors for hemorrhage from gastric fundal varices. Hepatology. 1997 Feb;25(2):307-12.
- 30. Stefanescu Horia, Mircea Grigorescu, Monica Lupsor, Anca Maniu, Dana Crisan, Bogdan Procopet, Diana Feier and Radu Badea. A New and Simple Algorithm for the Noninvasive Assessment of Esophageal Varices in Cirrhotic Patients Using Serum Fibrosis Markers and Transient Elastography. J Gastrointestin Liver Dis. 2011 Mar;20(1) 57-64.
- 31. Hino S, Kakutani H, Ikeda K, Uchiyama Y, Sumiyama K, Kuramochi A, Kitamura Y, Matsuda K, Arakawa H, Kawamura M, Masuda K, Suzuki H. Hemodynamic assessment of the left gastric vein in patients with esophageal varices with color Doppler EUS: factors affecting development of esophageal varices. Gastrointest Endosc. 2002 Apr;55(4):512-51.
- 32. Komatsuda, T.; Ishida, H.; Konno, K.: Color Doppler findings of gastrointestinal varices. Abdom. Imaging 1998; 23: 45-50.

- 33. Hino S, Kakutani H, Ikeda K, Sumiyama K, Uchiyama Y, Kuramochi A, Kitamura Y, Kawamura M, Tajiri H, Urashima M:Prediction of Recurrence of Esophageal Varices Following Endoscopic Treatment Using Color Doppler Endoscopic Ultrasonography. Gastrointestinal endos. 2004;59(5) 1555.
- Li F.H.; Hao, J.; Xia, J.G. Hemodynamic analysis of esophageal varices in patients with liver cirrhosis using color Doppler ultrasound. World J. Gastroenterol 2005; 11(29): 4560-4565.
- 35. Cui Yi, Xi-FengMi. The value of EUS in predicting portal hypertension associated hemorrhage of in patients with esophageal and gastric varices. Gastrointestinal endoscopy 2009; 69 (2) 238.
- 36. Takahiro Sato, Katsu Yamazaki, Jouji Toyota, Yoshiyasu Karino, Takumi Ohmura and Jun Akaike (2009): Endoscopic ultrasonographic evaluation of hemodynamics related to variceal relapse in esophageal variceal patients. Hepatology Research 2009; 39(2):126-33.
- 37. Irisawa A, Obara K, Sato Y, Saito A, Takiguchi F, Shishido H, Sakamoto H, Kasukawa R. EUS analysis of collateral veins inside and outside the esophageal wall in portal hypertension. Gastrointest Endosc 1999; 50(3):374-380.
- Bolognesi M, Sacerdoti D, Merkel C, Bombonato G, Gatta A. Noninvasive grading of the severity of portal hypertension in cirrhotic patients by echo-color-Doppler. Ultrasound Med Biol 2001; (27): 901-907.
- 39. Yin XY, Lu MD, Huang JF, Xie XY and Liang LJ (2001): Color Doppler velocity profile assessment of portal hemodynamics in cirrhotic patients with portal hypertension: correlation with esophageal variceal bleeding. J Clin Ultrasound 2001; 29(1):7-13.
- Sato T, Yamazaki K, Toyota J, Karino Y, Ohmura T and Akaike J.(2009): Endoscopic ultrasonographic evaluation of hemodynamics related to variceal relapse in esophageal variceal patients. Hepatology Research 2009; 39(2):126-33.
- **41.** Shertsinger AG, Manuk'ian GV, Manuk'ian VG, Cherkasov VA, Zhigalova SB, Khovrin VV, Aliev KhKh, Tsaava DV: Pathogenesis of esophageal and gastric varicose veins formation in patients with liver cirrhosis. Eksp Klin Gastroenterol. 2011;(6):73-8.

3/19/2014