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Abstract: This paper is concerned with the problem of predicting the future generalized order statistics ( gos’s )

based on a mixture of two components from a class of continuous distributions. Generalized Type-II hybrid
censoring scheme (HCS) of the observed data has been used here. The prior belief of the experimenter is measured
by a general class of distributions, suggested by AL-Hussaini (1999b). We consider the two sample prediction
technique to compute Bayesian predictive intervals for a future gos's . A mixture of two Weibull components

model is considered as a special case of the class. Our results are specialized to upper order statistics and upper
record values. Also, we give an example based on real data. Finally, Markov Chain Monte Carlo algorithm is used to
find the Bayesian predictive intervals.
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L. Introduction , o I =min{X, ,T} , where rel,2,.,n and
In many practical problems of statistics, one o
wishes to use the results of a previous data to predict T €(0,00) are fixed in advance. Following Childs
the results of a future data from the same population. et al. (2003), we will refer to this scheme as Type-I
One way to do this is to construct an interval, which hybrid censoring scheme (Type-I HCS), since under
will contain these results with a specified probability. this scheme the time on test will be no more than T.
This interval is called the prediction interval. Recently, it becomes quite popular in the reliability
Prediction has been applied in medicine, engineering, and life-testing experiments, see for example, the
business and other areas as well. For details on the work of Chen and Bhattacharya (1988), Gupta and
history of statistical prediction, analysis and Kundu (1988), Kundu (2007) and Kundu and
applications, see for example, Aitchison and Howlader (2010).
Dunsmore (1975), Geisser (1993), Dunsmore (1974), Noting that this scheme, which would
Howlader and Hossain (1995), AL-Hussaini (1999a, guarantee the experiment to terminate by a fixed time
1999b), Corcuera and Giummol (1999), Nordman and T, may result in few failures, for this reason, Childs et
Meeker (2002), Ahmadi et al.(2010), Ahmadi et al. al.(2003) proposed a new HCS, referred to as Type-II
(2005), Ahmadi and Balakrishnan (2012), Ateya hybrid censoring scheme (Type-II HCS), which
(2011), Ahmad et al.(2012), Balakrishnan and Shafay guarantees a fixed number of failures. Inference based
(2012) and Shafay and Balakrishnan (2012). on Type-II HCS from Weibull distribution was made
Several authors have predicted future order by Banerjee and Kundu (2008). Though the Type-II
statistics and records from homogeneous and HCS guarantees a specified number of failures, it has
heterogeneous populations that can be represented by the disadvantage that it might take a very long time to
single-component distribution or finite mixtures of observe 7 failures and complete the life test.
distributions, respectively. For more details, see Chandrasekar, et al.(2004) found that both
AL-Hussaini et al.(2001), AL-Hussaini and Ahmad Type-I and Type-Il HCS’s have some potential
(2003a, 2003b), Ali Mousa and AL-Sagheer (2006) drawbacks. Specifically, in Type-I HCS, there may be
and AL-Hussaini (2004). very few or even no failures observed whereas in
The two most popular censoring schemes are Type-II HCS the experiment could last for a very long
Type-I and Type-II censoring schemes. The hybrid period of time. So, they suggest generalized hybrid
censoring scheme is the mixture of Type-I and Type-II censoring schemes.
censoring schemes. It was introduced by Epstein Finite mixture of distributions have proved to
(1954). In hybrid censoring scheme the life-testing be of considerable interest in recent years in terms of
experiment is terminated at a random time both the methodological development and

multifarious  applications.  Mixture distribution
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modeling was studied as early as the early 1890s by
Pearson (1894), see also Richardson and Green
(1997). Kim and Bai (2002) inferred two component
Weibull mixtures from accelerated life test data using
maximum likelihood estimates (MLE) with the EM
algorithm. Jiang and Murthy (1995, 1998) developed a
graphical method for inferring a mixture of two
Weibull distributions from failure data. Ahmad et
al.(1997) found approximate Bayes estimation for
mixtures of two Weibull distributions under Type-II
censoring. The class of all finite mixtures of Weibull
distributions is identifiable, this is proved by Ahmad
(1988).

The concept of gos's was introduced by

Kamps (1995) as a unified approach to several models
of ordered random variables such as upper order
statistics (u0s's ), upper record values (urv's),
sequential order statistics, ordering via truncated
distributions and censoring schemes, see for example,
Kamps and Gather (1999), AL-Hussaini (2004),
Jaheen (2002) and Ahmad (2011).

Let us consider a general class of continuous
distributions that suggested by AL-Hussaini and
Ahmad (2003a, 2003b) with cumulative distribution

function (CDF) F(x) given by
Fo)=Fx0)=1-exp[-at(x)], x=0(a,5>0). (1.1)
where 0= (a,f) and Ay(x)=A(x;B), is

non-negative, continuous, monotone increasing and
differentiable ~ function of X such  that

A(x;8)—>0 as x—>0" and A(x;8) > as
X —> 0,
The probability density function (PDF') of this
class is given by

f(x)=adz(x)exp[-aty(x)], x=0.

This class of absolutely continuous distributions
including, as special cases, Weibull (exponential,

Rayleigh as special cases), compound Weibull ( or
three parameters Burr-type XII), Pareto, power

1019 = e, [RG ) TTRGOI 705, Dy =

o R TIRGT 5. D

R TIRGY F (), D, =

function (beta as a special case), Gompertz and
compound Gompertz distributions, among others.
The corresponding reliability function

(RF) and the hazard rate function (HRF') are

given, respectively by

R(x) = exp[-aldy(x)], x=0,

h(x)=aldy(x), x=0.

The CDF of finite mixture of two components
E(x) and Fz(x) from a class (1.1), is given, for
0<p <1, by

F(x)= pF(x)+ p,F(x),
where p, = p, p, =1-p,.

q = 1725 Fq (x)

F (x)=1- exp[—aqﬂﬁq (x)], x=0.

The PDF  of finite mixture f(x) is given by

J ()= ph()+p,fr(%), (1.2)
where, for qg=1,2,

hence the CDF' of a finite mixture F'(x) of such

two components is

FOo=1-pexpl-o,4, (9]-p, expl-c 4, (9]

For from

(1.1)

is,

The corresponding RF  and HRF are given,
respectively, by
R(x) = piR (x)+ p,R,(x), (1.3)

H(x)= f(x)/R(x).
For the generalized Type-II HCS, the
likelihood function can be written, see Chandrasekar

et al.(2004), m#—-1 and m=-1
respectively, as

when

>

r” ’n’
0,1,...,r=1;D, =r, (1.4a)
=0,...,r—1,
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L(O|x)= k’[R(xr)]k’llL[H(xi), D, =0,1,.

Dy
KR IH (), Dy =rpn,
i=1

D,
K2 RIDIT[H ), Dy = 0,7 -1,
i=1

Lr=1;,D,=r, (1.4b)

where X =(X,,...,X,),and C, :szl%" v, =k+m—-t)(m+1).

It is noticed that, Type-II HCS and Type-I
HCS can be obtained as special cases from
generalized Type-II HCS as follows:
* Scheme 1: when the experiment terminated at time
1, with T, —> 00, we obtain Type-II HCS.
» Scheme 2: when the experiment terminated at time

X ., we obtain two cases

(a) Type-I HCS, when 7; =0.
(b) Type-Il HCS, when 7, —> 0.
» Scheme 3: when the experiment terminated at time
T, with T, =0, we obtain Type-I1 HCS.

We shall use the conjugate prior density, that was
suggested by AL-Hussaini (1999b), in the following
form

(@) C(@v)exp[-D(Gv)], (1.5
where 0 =(p,a,,a,,B,5,),ve], Q isthe

hyperparameter space.
It follows, from (1.4a), (1.4b) and (1.5), that
the posterior density function is given by

7 (01)=4 QOVexd-DOV] LAY, (1.6)
where A7 = L;z(e; V)L(O | x) d6.

In this paper, Bayesian predictive intervals (BPI's)
for a future gos's are constructed when the

i (v10) =
RO f(),

previous (informative) sample is a finite mixture of
two components from a general class of continuous
distributions under generalized Type-II HCS.
Two-sample scheme is used here. In Section 3,
illustrative example of finite mixture of two Weibull
components is discussed. Specializations are made in
uos's and urv's cases. Concluding remarks are
presented in Section 4.

2 Bayesian Two Sample Prediction
Suppose that the first 7 gos's

Xl;n,m,k,Xz;n,m,k,...,X 1<r<n,

represents the previous sample of size n from a
mixture of two general components from a class of
continuous distributions based on generalized hybrid

ryn,m,k

censoring schemes and let Y.y s ¥,y 4 xoeees

Yyvwg, K21, M>-1 be a second

independent generalized ordered random sample (of
size¢ N ) of future observations from the same
distribution. We wish to predict the future gos

Y,=Y, yux » b=12,.,N, in the future

(1.6) sample of size N .

It was shown by Kamps (1995) that the
PDF  of gos Y, is givenas

SO OV RO, M=,

2.1)
-1,

) (b-1
where 77 =K +(N—j)(M +1) and a)fb>=(—1){ . j
’ 1

Substituting (1.2) and (1.3) in (2.1), we have
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[p}jlf W+ p, (0]

i=0

hy, (y16) o
x[p i)+ po (0],

The predictive PDF of Y, , b=
given the previous gos’s X is given by

S 010=[1 0107 ©0)0d6, y>0. (23)

Bayesian prediction bounds with caver 7 for Y,

1,2,..,N,

b=1,2,..., N are obtained by evaluating

Y, >v[x]= [ f; 0 |0dy, v>0. @4
A 100z% BPI for Y, isthen given by
PIL(x) <Y, <U(x)]=r,

where L(x) and U(x) are obtained,

respectively, by solving the following two equations
l+7

PY, > L() [ €] == .5)
-7

PIY, > U(@)| ] = 2.6)

Since the joint posterior density of the vector

* .
parameters @, 7 (6|x), can not be expressed in

closed form and hence it can not be evaluated
analytically, so we propose to apply Metropolis
algorithm to draw MCMC samples. Eberaly and
Casella (2003) were interested in the problem of
estimating the posterior Bayesian credible region by
the MCMC algorithm. Bayarri et al.(2006) proposed
MCMC algorithms to simulate from conditional
predictive distributions.

This technique can be done by rewritten the
predicive PDF  of Y, , b=12,..., N given

the previous gos's X as

N
Zh;b 62 eiﬁx)
fr o= ,
> [ B (v160,x)dy
i=1

where 6,,i=1,2,3,...,X are generated from the

Q2.7)

posterior density function (1.6).

A 1007% BPI (L,U) with cover T

x> 0P[R (»)+ p,R, (NI,

(In[p,R, (»)+ p,R, (D" [P R, (») + P, R, (]

892

2.2)

of the future gos Y, is given by solving the

following two nonlinear equations

N 00
;ILhyb(ylﬁi,X)dy=1+T

. , 28)
20,15, (01 0x)dy

N 00
;IUhYb(yIHi,x)dy -

S (2.9)
20,15, (710, 00dy

Numerical methods such as
Newton-Raphson, are generally necessary to solve

the above two equations to obtain L and U for a
given 7.

3 Example (Weibull components)
In this model, for ¢ =1,2 and x>0,

— A _ By th
;tﬂq (x)=x17, so /%q (x)=pB,x " . Sotheq
PDF is
B, s,
S, =a,px? expl-a,x?], x>0.
Suppose that all parameters are unknown.
Let p, be independent of ;,, and independent
of ,81, ,82. As a suitable prior distribution of py,

we consider the beta distribution with positive

parameters bl and bz in the form

b= b1
z(p)ocp' p° .

Suppose that &; and &, are distributed as

gamma distributions with positive

(é‘l,dl) and (52,012) , respectively, in the forms
Xl %

-1 -1
7 ()% o' exp (—dj), and x (0(2)0(0(2 exp (o), and

parameters

the prior distributions of [, and [, are gamma

distributions with positive parameters (0;,d;) and
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(54, d 4) , respectively, in the forms

o1
and w(fp) o By exp(—dgfr).
density function

81
7B« f°  exp-dz ),
Now, the

92 (plaalaazaﬁlaﬂz) is given by

joint  prior of

bl byl S 81 o8-l 5,1
e e g ﬂ;“
xexp~(dia +d,o, +d, 5, +d )]

x[gé(mmé(m]"ﬂ

(SR RE Y U S N R
e e g ,554
xexp~(dia +d, o, +d; 5, +d )]

72'*(9| X)oc X[p& () + P&, (x )

=1

bl byl S 81 5l 5,1
pnpoo o B ﬂ?
xexd—~d, +d,o, +d 5 +d, )]

D
X[pléfl(];)"‘ngz(Tz)]n :
D

=1

From (3.2), the marginal posterior density of p, is

72'*(}71 la,ay, B, By, %) oc

by

Similarly, the marginal posterior densities for «, and B 0 4

X];[[pll/ll ()& (x) + Py, (x)E,(x)], D=

<[ Town ()& )+ Py ()E],

XH[plfl(xi) +p2f2(xi)]7

;z(e)ocpb 4 b2 10:51 1 52 lﬁ% lﬂj“
x exp[Adia +dya, +ds 4 +dy )]

For wuos's (previous sample), as special

case from the case m#=—1 (m=0 and k=1),
by multipling the likelihood function (1.4a) and the
prior density function (3.1), the joint posterior density
function will be in the form

3.1)

[ Tow &)+ P )EE] Dy =01,

(3.2)
D =0,1,..r-1;D,=r,
P pe PR (D) + PR
XH[plf(x )+ 0, f5(x)], D, =r,..n,
PP PR )+ PRy (6 )T (3.3)
XH[plfl(xi)+p2f2(xi)]7 D, =0,1,..y-1,D, =r,
i=1

-1 b2 n— D2

p1 [P, R (T))+ p,R,(T))]
D, =0,..r-1

=1,2 are given, respectively, by
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”*(aq | P> B B X) o

”*(/gq | P, @y, 0y, X)

where s =34,

a,"" expl~d,at, [p,R () + p,R,(T)] ™"

[ lipfie)+ Pt Di=rn,

ajqil eXp[—dqaq IR (x,) + PRy (x,)]"

n—D2

o’ expl—d o, [P R(T,) + poRo(T3)]

XH[plﬂ(xi)+pzﬂ(x[)]a Dz =0,...,l"—l,

S

By B exp[—d S, 1P\ Ri(T) + p,R, (T} )]niDl

/i) +pofoe)] Dy=rom,

S

B expl~d B, pR(x,) + p,R, (x)]"”
XH[p1fl(xi)+pzfz(xi)]a D1 = 0,1,...,1’—1;D2 =r,

S

By expl—d, B, R (Ty) + p,Ry(T)]"

/i) +pofoG)] Dy =0,r =1,

Now, we consider the following two special cases:

(1) Both the previous and the future (3.5).

samples are upper order statistics
Here, we consider the future sample is #0s’s , so the
predictive PDF (2.7) can be written as

N
D iy, (v16;.%)

ok _ Jj=1
==

solving the equations

N 00
> [ hy, (v10,,x)dy
j=1

, (3.6) (3.6) &

[ iy, (716,.5)dy Z

Jj=1
where

hyy, (710) < [p i)+ pa S (y)]zw,-'”’ [P R(V)+ PR, (I, ' _

i=0

> [ hy, (v10;,x)dy

N 00
> [ hy, (v16;,x)dy
Jj=1

N -
and 0, =(pij>;,0;, 5 5)) ; ZL hy, (y16;,x)dy
j=123,...,N are generated from (3.3), (3.4) and A

894

<[ Iip i)+ P sG], D =0,1,..r=1;D,=r, G4
i=1

(3.5)

A 100 7% BPI of the future uos Y, is given by

(3.7)

(3.8)
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(2) Previous sample is #0s's and future sample
is urv's
Here, we consider the future sample is

urv's , so the predictive PDF  (2.7) can be written
as

N

2y, (910,.%)
fir 10 =2 :
> [ 1 (16,,%) dy
Jj=1

where
h;Yh 1O =(n[pRO)+ RO [AfiO)+afr0)].
and 9].,j=l,2,...,N are generated from (3.3),
(3.4) and (3.5).

A 1007% BPI

solving the equations

N 00
[, 10,0
Jj=1 —

of Y, is given by

+7T

" , (3.9

> [ 1y (16, x)dy

j=1

N o0

D), (016, x)dy

= _1-7  @3ao
2

N 00
Zj By, (v16,,x)dy

4 Numerical Computations
In this section, 95% BPI's for future
gos's independent samples of size N =4 from a

Weibull(,,B,), q=1.2,

components based on u#0s's under generalized
Type-II HCS are obtained by considering two sample
scheme according to the following steps:

1. For a given values of the prior parameters

mixture of two

(bl,bz), generate a random value p, from the

Beta(b,,b,) distribution.
2. For a given values of the prior parameters
0,,d, for q=1,2, generate a random value «,

from the Gamma(d,,d,) distribution.
3. For a given values of the prior parameters
0,,d, for s=3,4, generate a random value ﬁq

foo ¢=1,2, from the Gamma(d,,d,)

895

distribution.

4. Using the generated values of p,, @, &,,
B, and f,, we generate ordered sample of size
n from a mixture of two Weibull(a,,f3,),
g =1,2, components as follows:

- Generate two observations %;,U, from Uniform

(0,1).

1
In(1-u,).5
- if  u <p;, then x:[_g]ﬂl’
a,
In(1 i
n(l—u
otherwise x=[—g]ﬂ2'
a,

- Repeat above steps 7 times to get a sample of size
n.

5. The above generated sample was censored using
generalized Type-II HCS (and special case from it).

(P @ s Boy ),
j=12,.,1000 from (3.3), (3.4), (3.5) using
MCMC  algorithm.

7. The 95% BPI for the observations from a

future independent sample of size N =4 are
obtained by solving numerically:

-Egs. (3.7) and (3.8) with 7=0.95 in
the case that both the previous and the future samples
are UOS'S .

- Egs. (3.9) and (3.10) in the case that
the previous sample is #0s’s and the future sample
is urv's.

The 95% BPI's for future gos's
Y,, b=1,2,3,4 under generalized Type-II HCS

(and special cases from it) are displayed in Tables
(1a,b,c) and (2a,b,c). The Number of samples which

cover the BPI's is 10000 samples. Numerical
results are taking into two different hyper parameters:

Group [1]: b1=2, b2=3, d1=3.5,
d,=28, d,=16, d,=03, 5 =36,
0,=2.5, 6,=2 and 0,=04.

Group [2]: b1=2, b2=3, d1=1.5,
d,=1.8, d,=16, d,=33, 5=36,
0,=3.5, 6,=2 and 0,=34.

6. Generate
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Table (1a): BPI's ofthe future ©0s Y, considering Scheme 1

[ om0 ¥y Srowo [1] Sroup 2]
(71 T3 [, N T.angth  CP{24) TS T.angrh | CP{26)
15, 9] il [(0.00004, 0.1739) 047386 253 (000011, 019427 0,193%9&6 251
(0.2 0351 ¥ | (000159, 25917 1.2G7& 24 [0.00364, 0.41245) 0.40831 QC .4
¥y | [L01599, 2b5EE1Y] BN dhe | [(nOlBel, 044534 0./5694 | 9&./
¥, | (D.0E323, 497992) | 491669 271 [(n.04954, 1.50747) 145838 92984
(33 2Mm 1 (000002, 0,33917) 033915 0.5 [0.00003, 0,33434] 033491 201
(0.6 0.2) | Yy [ (000133, 0.46158)] 045025 287 [0.00177, 0,45845] 045668 F1-s
Yo | [O.0EE04, 063241 0.E7737 255 [0.05414, 0.E0213) 033799 LN
¥, | (015726, 0.86119) | 0.70393 a1 | (015385, 0.E3545) CLEEde | 984
(D0 44 ks (000005, 0L.2T7F29) 027734 0.2 [0.00003, 0.20040) 020065 905
(0710 | % | (000344, 0.40304) 03995 245 | (000128, 0.41732) | 041604 | 96,4
Y2 | [0.02303, 0.53513] on1a31 IF0 [(0.01500, 0.C0430) 0.36070 7.0
¥y | (005406, 0/2eEE] | UeVLES @ | [n0sded, 0500467 0.34544 8.8
T
[n N ¥y Frous fi) Froun (27
[, 7= L, un Lanzth| CP{&0) (LN Length C2{24)
[15, <] Y] T0.00004, 0.388587 | 058834 9.5 (0.00014, 0.19473] | 019461 95 4
(0.2, 0] | ¥ (000176, 0.9866%7 | 0.08403 SE.0 (000254, 0.42127) | 041573 DEE
Y3 (001484, 1.9643] | 194945 E.5 (001423, 0.776101 | 076187 97 4
¥y (005639, 3.6554] | 359501 G979 (0.040%9, 1.44853) 1.407& 953
(33 300 | vy 000002, 0536637 | 033661 2511 (002004, 0.51543) | 032544 958
(0.3 03] v, T000134, 0453087 | 045174 9.6 (000152, 0,441947 | 044012 Q5.7
Y3 [0.05675, 0.63271) | 057596 9E5.8 (0.029C8, 0.56957) | 054049 989
¥y 70.16008, 0.81622) | 065634 Se.2 (0.032C9, 0.83620] | 0.F5411 G977
(50 471 | ¥y ‘000003, 0.29156)1 | 0.29153 95,9 (000230, 2.28110) C.27585 957
[OF, 11| Y7 7000156, 0,423147 | 042158 E.8 (000502, 0,40722] 4022 959
3 [0.02405, 0.58489) | 056084 a7.3 (002814, 0.53863) | 051051 a7 0
¥, 7008195, 0.801607 | 0.81%62| 25241 (0.05074, 0.73003) | 066535 G955
T
o ¥, [T E coun 2y
[Ty, T2 [L L Length | CP{24) [y Length| C2{%3)
(15,9 | ¥ | [(00OC003, 0690681 | 069083 | 955 | [0CO003, 0.39534) 039531 | 95.51
(0.2,02) | ¥ | (00C15e, 2.00203) | 200047 [ <65 | [0co0z, 1.01922) 1.0182 | 92&.9
v, | (001825, 456445) | 454601 | =71 | [0C0933, 2.06134) 2.05201 | 97.4
¥, | [0.0B0S0, 1028441 | 10.203% | <978 | (0.00655, 3.5C56 3.89501| 989
(33,300 | v | [0OCOOE, 033713 | 252717 | 955 | (0.00003, 03227 032467 | 5.0
(03,051 ¥ | (00OC793, 0.49564) | 248771 | <5.2 | [0C0539, 0.46437) 045523 | 35.4
¥y | (D0ZF05, 0.76882) | 074577 | 987 | (0.02351, 0285 060499 | 28,3
ol (00520, 1701811 | Lé0e4l | 958 | T0Cve4d, 111401 S03457 | 289
(50, 47) | ¥ | (001728, 027947 | D2szzl| 957 | [0C1324, 027210 025586 | 9254
(D5, 071 ¥ | (0OC160, 0411531 | 240993 | 9464 | [0C0492, 0.40644) 040152 | 5.9
Yo | [0.02283, 0.55453) 05297 971 | [0Cz628, 0.55054) 052436 | 27.%
v | [005262, O.7FF54] | 2.7-7o3 | 97.s | (01323, 0.50639] 077400 | 9845

896
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Table(2a): BPI 's of the future urv Yp considering Scheme 1

[ ¥ =roup [17 Sroun (2T
[Ty, T2) . in T.engrh CR{2a) r,in T.angrh TG
[15,9] b [0.00116, 30.1336) 012244 S0 (000276, 0.69267) DEESODE 100
(0.2, 081 ¥z | (009161, 114.327) 114.23539 97.1 |(0.06480, 28.6358) 28561 99,3
¥ [0.5350, 305.877] F05 342 26,5 JL023117, 66.7161) 66, 4+5493 2.0
¥y [1.5585, &/9.691] V=T R3S Ged lusses, 14s91H) 1de.365Y V-

[33 23] 1 [0.002535, +9.2069) 49.20437 258 JLO.0DS54E, 11.%5361] 1194513 29.2

(0.8 09| ¥y | [0.20199, I65.767) | 26556501 98.1 |(0.18677, 37.14737) 2E2E0E 299.0
Yz [0.3757, 693.837) 593.1613| 975 |(0.36056, 76.3252) T5.96464 28,9
¥a [0.5388, 1369.22) 1368.68132 27,1 |(0.4787, 220.8767) 2Z9.398 28.0
(50, 44 ¥y | (0.01182, 53.2567%) S3.Z244858| 954 [0, 19.04359) 190453 29.4
(0.7, 1) 4, [0.1726, 324.956]) 224.7534| 9381 (00761, 133.788) 133.7110 99,0
'y [N.3551, FALEI9) Fe4. 56839 R [(Lza91, 25.55) 4451209 LR
Vs (0.5040, 1597.83]) 1597.215| 970 (0.1340, 1104.37) 1103.936 298.7
T
(nnN W Group [ 17 Group [27
[Ty, T2) (L, LN Length | CP{%h) (L, LN Length [CP{24)
(15,9 ¥y | (00013, 18.8104) 18.8091| 990 | [(0.00183, 9.06734) 9.06551 100
(0.2, 08) | ¥a | (0.0806, 65.263) 65.1824| 986 | (0.05549 29.6474) | 2959191 | 998
¥y | (04939, 165.665) 165.171 28,1 | (0.22866, 62.6221) 62.39344 | 9986
Ya | (L4322, 337.073) 23E5.640 = (05337, 108.434) 107.8005% o444
(33 301 | ¥; | (00004, 15.9266) 18.9282| 987 | (0.00062, 16.7129) 1671228 98.9
(D032, 09) | Yo | (00349, §1.5796G) 51,9447 | 9384 | (0.03528 347439 3470563 E7
¥5 | (0.19157, 185.188) | 154.9964 98,1 | (0.1995, 133.168) 1329685 98.4
¥y | (05350, 407.05%9) 496524| 978 | (05335, 358.595) 358.0615 | 981
(50, 47) | v, [0, 31.0441) 31.0441| 99.52] (0.00002, 23.2591) 23%.25908 99.7
[05,1) | ¥y | (01278, 386.733) 386.605 9.0 | [0.1024, 149.639) 14553566 99.4
¥y | (0,295, 1833.00) 183270 | 988 | (02738, 445361) 445.0872 99.0
¥y [0.466, 3846.52) 584&.05 GEG [D.4652, 971.607) 97,1418 IET
T
7 | 7 Greup 1] Croup [

(T, 74 (LA Length [CP{3A) L i Length  [CP{24)
[15 ) Yy [0.00152, 1€.0156] 46,04408 S8l [0.CO-7F, 17.521€] 175199 29,0
(0.1, 047 ¥y [D.2184, 1744.291] 1421407 SHEI [0.CEE9, 544467 L 1478 MEY

*y (0778, 433.208) 122425 G [0.444, 112.516) 112,082 Q8.3
4 [2.378, GF7.013) 372 E3T 271 [L.14:9, 211.36%5) 2102271 98,0

[#3,30 ¥, | [0.00C9, 59.06331) | 5906841 | S50 | (C.0O208, 33.95887) 222807 998

(1.3, 058)| ¥y | (0.0243, 19€.5588) | 1965425 | <30 | (0.0235, 63.152%) 53279 995
Vi | (00919, 462.879) | 460.7871| <90 | (C.0327, 1542158) 1641221 990
Ya | (02096, 9516470 | 55..4374| 90| (0207, 232.469) 232262 | 99.0
(50, 47) | ¥, | (0.0157, 77.28434) | 77.26464 | 92| (0.C170, 287718) 287548 | 995
(05, 0.7 ¥a (D1834, 222.35712) EEE s wET [C1FRFR, 39.4013) LT A
Vs | (0.35C1, 5447461) | 544396 <82 | (034837 17.0803° | 1707-093 | 928
¥y | (0,520, 975.938) 75415 es0| (05187, Z07.258) 3067393 985
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5 Conclusions

1. Bayesian prediction intervals for future
observations are obtained using a two-sample scheme
based on a finite mixture of two Weibull components
model from gos’s under generalized Type II HCS.
Our results are specialized into two cases:

- Both the previous and the future samples are

uos's .
- The previous sample is uo0s's and the future

sampleis urv's .
2. Ttis evident from Tables (1a,b,c) that, the lengths

ofthe BPI's decrease as the sample size increases.
While, from Tables (2a,b,c), the lengths of the

BPI’s increase as the sample size increases.

3. Itis evident from all tables that the lower bounds
are relatively insensitive to the specification of the
hyper parameters while, the upper bounds are
somewhat sensitive.

4. In general, for fixed sample size 7 and fixed

censored sizes 7, I, and T, the length of the
BPI's increase by increasing b .
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