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Abstract: This paper is concerned with the problem of predicting the future generalized order statistics ( ssgo  ) 

based on a mixture of two components from a class of continuous distributions. Generalized Type-II hybrid 
censoring scheme (HCS) of the observed data has been used here. The prior belief of the experimenter is measured 
by a general class of distributions, suggested by AL-Hussaini (1999b). We consider the two sample prediction 

technique to compute Bayesian predictive intervals for a future ssgo  . A mixture of two Weibull components 

model is considered as a special case of the class. Our results are specialized to upper order statistics and upper 
record values. Also, we give an example based on real data. Finally, Markov Chain Monte Carlo algorithm is used to 
find the Bayesian predictive intervals. 
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1. Introduction 

 In many practical problems of statistics, one 
wishes to use the results of a previous data to predict 
the results of a future data from the same population. 
One way to do this is to construct an interval, which 
will contain these results with a specified probability. 
This interval is called the prediction interval. 
Prediction has been applied in medicine, engineering, 
business and other areas as well. For details on the 
history of statistical prediction, analysis and 
applications, see for example, Aitchison and 
Dunsmore (1975), Geisser (1993), Dunsmore (1974), 
Howlader and Hossain (1995), AL-Hussaini (1999a, 
1999b), Corcuera and Giummol (1999), Nordman and 
Meeker (2002), Ahmadi et al.(2010), Ahmadi et al. 
(2005), Ahmadi and Balakrishnan (2012), Ateya 
(2011), Ahmad et al.(2012), Balakrishnan and Shafay 
(2012) and Shafay and Balakrishnan (2012). 

Several authors have predicted future order 
statistics and records from homogeneous and 
heterogeneous populations that can be represented by 
single-component distribution or finite mixtures of 
distributions, respectively. For more details, see 
AL-Hussaini et al.(2001), AL-Hussaini and Ahmad 
(2003a, 2003b), Ali Mousa and AL-Sagheer (2006) 
and AL-Hussaini (2004). 

The two most popular censoring schemes are 
Type-I and Type-II censoring schemes. The hybrid 
censoring scheme is the mixture of Type-I and Type-II 
censoring schemes. It was introduced by Epstein 
(1954). In hybrid censoring scheme the life-testing 
experiment is terminated at a random time 

},{min= :1 TXT nr


 , where nr 1,2,...,  and 

)(0,T  are fixed in advance. Following Childs 

et al. (2003), we will refer to this scheme as Type-I 
hybrid censoring scheme (Type-I HCS), since under 
this scheme the time on test will be no more than T. 
Recently, it becomes quite popular in the reliability 
and life-testing experiments, see for example, the 
work of Chen and Bhattacharya (1988), Gupta and 
Kundu (1988), Kundu (2007) and Kundu and 
Howlader (2010). 

Noting that this scheme, which would 
guarantee the experiment to terminate by a fixed time 
T, may result in few failures, for this reason, Childs et 
al.(2003) proposed a new HCS, referred to as Type-II 
hybrid censoring scheme (Type-II HCS), which 
guarantees a fixed number of failures. Inference based 
on Type-II HCS from Weibull distribution was made 
by Banerjee and Kundu (2008). Though the Type-II 
HCS guarantees a specified number of failures, it has 
the disadvantage that it might take a very long time to 
observe r  failures and complete the life test. 

Chandrasekar, et al.(2004) found that both 
Type-I and Type-II HCS’s have some potential 
drawbacks. Specifically, in Type-I HCS, there may be 
very few or even no failures observed whereas in 
Type-II HCS the experiment could last for a very long 
period of time. So, they suggest generalized hybrid 
censoring schemes. 

Finite mixture of distributions have proved to 
be of considerable interest in recent years in terms of 
both the methodological development and 
multifarious applications. Mixture distribution 
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modeling was studied as early as the early 1890s by 
Pearson (1894), see also Richardson and Green 
(1997). Kim and Bai (2002) inferred two component 
Weibull mixtures from accelerated life test data using 
maximum likelihood estimates (MLE) with the EM 
algorithm. Jiang and Murthy (1995, 1998) developed a 
graphical method for inferring a mixture of two 
Weibull distributions from failure data. Ahmad et 
al.(1997) found approximate Bayes estimation for 
mixtures of two Weibull distributions under Type-II 
censoring. The class of all finite mixtures of Weibull 
distributions is identifiable, this is proved by Ahmad 
(1988). 

The concept of ssgo   was introduced by 

Kamps (1995) as a unified approach to several models 
of ordered random variables such as upper order 

statistics ( ssuo  ), upper record values ( svur  ), 
sequential order statistics, ordering via truncated 
distributions and censoring schemes, see for example, 
Kamps and Gather (1999), AL-Hussaini (2004), 
Jaheen (2002) and Ahmad (2011). 

Let us consider a general class of continuous 
distributions that suggested by AL-Hussaini and 
Ahmad (2003a, 2003b) with cumulative distribution 

function )(CDF )(xF  given by  

0),>,(0,)],( [  exp1=);(=)(    xxxFxF
 
(1.1) 

 where ),(=   and ),;(=)(  xx  is 

non-negative, continuous, monotone increasing and 
differentiable function of x  such that 

0);(  x  as 
 0x  and );(  x  as 

.x  

The probability density function )(PDF  of this 

class is given by  

0.)],([exp)(=)(  xxxxf    

 This class of absolutely continuous distributions 
including, as special cases, Weibull (exponential, 
Rayleigh as special cases), compound Weibull ( or 
three parameters Burr-type XII), Pareto, power 

function (beta as a special case), Gompertz and 
compound Gompertz distributions, among others. 

The corresponding reliability function 

)(RF  and the hazard rate function )(HRF  are 

given, respectively by  

0,)],([exp=)(  xxxR   

0.),(=)(  xxxh   

The CDF  of finite mixture of two components 

)(1 xF  and )(2 xF  from a class (1.1), is given, for 

1,0 1  p  by  

),()(=)( 2211 xFpxFpxF   

 where 121 1=,= pppp  . 

For 1,2,=q )(xFq  from (1.1) is, 

0.)],([exp1=)(  xxxF
qqq   

The PDF  of finite mixture )(xf  is given by  

),()(=)( 2211 xfpxfpxf 
             (1.2) 

 where, for 1,2,=q

0,>)],([exp)(=)( xxxxf
qqqqq     

hence the CDF  of a finite mixture )(xF  of such 

two components is  

)].([  exp)]([ exp1=)(
222111 xpxpxF     

The corresponding RF  and HRF  are given, 
respectively, by  

),()(=)( 2211 xRpxRpxR 
            (1.3)  

).()/(=)( xRxfxH  

For the generalized Type-II HCS, the 
likelihood function can be written, see Chandrasekar 

et al.(2004), when 1m  and 1= m , 
respectively, as  
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where ),...,(= 1 rxxx , and 1).)((=,=
1=1  mtnkC ti

t

it   

 
It is noticed that, Type-II HCS and Type-I 

HCS can be obtained as special cases from 
generalized Type-II HCS as follows:   
 • Scheme 1: when the experiment terminated at time 

1T  with 2T , we obtain Type-II HCS.  

• Scheme 2: when the experiment terminated at time 

nrx : , we obtain two cases   

 (a) Type-I HCS, when 0=1T .  

(b) Type-II HCS, when 2T .  

• Scheme 3: when the experiment terminated at time 

2T  with 0=1T , we obtain Type-I HCS.  

 
We shall use the conjugate prior density, that was 
suggested by AL-Hussaini (1999b), in the following 
form  

)],;( [  exp);(   );(  DC 
     (1.5) 

 where ,),,,,,(= 2121  p    is the 

hyperparameter space. 
It follows, from (1.4a), (1.4b) and (1.5), that 

the posterior density function is given by  

  ,)|(  )];([  exp );( =)|( 1
* xLDCAx    (1.6)  (1.6) 

 where .)|();(=1
1 


dxLA 


 

In this paper, Bayesian predictive intervals ( sIBP  ) 

for a future ssgo   are constructed when the 

previous (informative) sample is a finite mixture of 
two components from a general class of continuous 
distributions under generalized Type-II HCS. 
Two-sample scheme is used here. In Section 3, 
illustrative example of finite mixture of two Weibull 
components is discussed. Specializations are made in 

ssuo   and svur   cases. Concluding remarks are 
presented in Section 4. 

 
2  Bayesian Two Sample Prediction 

 Suppose that the first r ssgo 

,1,,...,, ,,;,,2;,,1; nrXXX kmnrkmnkmn   

represents the previous sample of size n  from a 
mixture of two general components from a class of 
continuous distributions based on generalized hybrid 

censoring schemes and let ,...,, ,,2;,,1; KMNKMN YY

,,,; KMNNY 1,K 1M  be a second 

independent generalized ordered random sample (of 

size N ) of future observations from the same 
distribution. We wish to predict the future gos

KMNbb YY ,,; , ,1,2,...,= Nb  in the future 

sample of size N . 
It was shown by Kamps (1995) that the 

PDF  of gos bY  is given as  
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 where 1))((=  MjNKj  and .
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Substituting (1.2) and (1.3) in (2.1), we have  
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 The predictive PDF  of bY , ,1,2,...,= Nb  

given the previous ssgo  x  is given by  

0.>,)|()|(=)|( * ydxyhxyf
bYbY 





   
(2.3) 

 Bayesian prediction bounds with caver   for bY , 

Nb 1,2,...,=  are obtained by evaluating  

0.>,)|(=]|>[ 


dyxyfxYP
bYb




  
(2.4) 

 A %100 BPI  for bY  is then given by  

,=)](<<)([ xUYxLP b  

where )(xL  and )(xU  are obtained, 

respectively, by solving the following two equations  

,
2

1
=]|)(>[


xxLYP b

             
(2.5) 

.
2

1
=]|)(>[


xxUYP b

             
(2.6) 

 Since the joint posterior density of the vector 

parameters  , )|(* x , can not be expressed in 

closed form and hence it can not be evaluated 
analytically, so we propose to apply Metropolis 
algorithm to draw MCMC samples. Eberaly and 
Casella (2003) were interested in the problem of 
estimating the posterior Bayesian credible region by 
the MCMC algorithm. Bayarri et al.(2006) proposed 
MCMC algorithms to simulate from conditional 
predictive distributions. 

This technique can be done by rewritten the 

predictive PDF  of bY , Nb 1,2,...,=  given 

the previous ssgo  x  as  
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(2.7) 

 where 1,2,3,...,=, ii  are generated from the 

posterior density function (1.6). 

A %100 BPI ),( UL  with cover   

of the future gos bY  is given by solving the 

following two nonlinear equations  
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Numerical methods such as 
Newton-Raphson, are generally necessary to solve 

the above two equations to obtain L  and U  for a 
given  . 

 
3  Example (Weibull components) 

 In this model, for 1,2=q  and 0,>x

q

q
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Suppose that all parameters are unknown. 

Let 1p  be independent of 21,  and independent 

of ., 21   As a suitable prior distribution of 1p , 

we consider the beta distribution with positive 

parameters 1b  and 2b  in the form  

.)(
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bb
ppp  

 Suppose that 1  and 2  are distributed as 

gamma distributions with positive parameters 

),( 11 d  and ),( 22 d , respectively, in the forms  

,)22(   exp
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  and 

the prior distributions of 1  and 2  are gamma 

distributions with positive parameters ),( 33 d  and 
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),( 44 d , respectively, in the forms  
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 Now, the joint prior density function of 
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For ssuo   (previous sample), as special 

case from the case 1m  ( 0=m  and 1=k ), 
by multipling the likelihood function (1.4a) and the 
prior density function (3.1), the joint posterior density 
function will be in the form  
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From (3.2), the marginal posterior density of 1p  is  
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 Similarly, the marginal posterior densities for q  and ,q 1,2=q  are given, respectively, by  
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 where 3,4.=s  

Now, we consider the following two special cases: 
 

(1) Both the previous and the future 
samples are upper order statistics 

Here, we consider the future sample is ssuo  , so the 

predictive PDF (2.7) can be written as  
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solving the equations  
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(2) Previous sample is ssuo   and future sample 

is svur   
Here, we consider the future sample is 

svur  , so the predictive PDF  (2.7) can be written 
as  
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4  Numerical Computations 

 In this section, 95% sIBP   for future 

ssgo   independent samples of size 4=N  from a 

mixture of two ),,( qqWeibull  1,2,=q  

components based on ssuo   under generalized 
Type-II HCS are obtained by considering two sample 
scheme according to the following steps:   
1.  For a given values of the prior parameters 

),,( 21 bb  generate a random value 1p  from the 

),( 21 bbBeta  distribution.  

2.  For a given values of the prior parameters 

qq d,  for 1,2,=q  generate a random value q  

from the ),( qq dGamma   distribution.  

3.  For a given values of the prior parameters 

ss d,  for 3,4,=s  generate a random value q  

for 1,2,=q  from the ),( ss dGamma   

distribution.  

4.  Using the generated values of ,1p 1 , 2 , 

1  and ,2  we generate ordered sample of size 

n  from a mixture of two ),,( qqWeibull 

1,2,=q  components as follows:   

- Generate two observations 21,uu  from Uniform

(0,1).  

- if ,11 pu   then ,]
)(1ln

[= 1

1

1

2 



u
x


  

otherwise .]
)(1ln

[= 2

1

2

2 



u
x


  

- Repeat above steps n  times to get a sample of size 
n .  
5.  The above generated sample was censored using 
generalized Type-II HCS (and special case from it).  

6.  Generate ( jjjjjp 21211 ,,,,  ), 

001,2,...,10=j  from (3.3), (3.4), (3.5) using 

MCMC  algorithm.  

7.  The 95% BPI  for the observations from a 

future independent sample of size 4=N  are 
obtained by solving numerically:   

   - Eqs. (3.7) and (3.8) with 0.95=  in 
the case that both the previous and the future samples 

are ssuo  .  
   - Eqs. (3.9) and (3.10) in the case that 

the previous sample is ssuo   and the future sample 

is svur  .  

  The 95% sIBP   for future ssgo 

,bY 1,2,3,4=b  under generalized Type-II HCS 

(and special cases from it) are displayed in Tables 
(1a,b,c) and (2a,b,c). The Number of samples which 

cover the sIBP   is 10000 samples. Numerical 
results are taking into two different hyper parameters: 

Group [1]: 2=1b , 3=2b , 3.5=1d , 

2.8=2d , 1.6=3d , 0.3=4d , 3.6=1 , 

2.5=2 , 2=3  and 0.4=4 . 

Group [2]: 2=1b , 3=2b , 1.5=1d , 

1.8=2d , 1.6=3d , 3.3=4d , 3.6=1 , 

3.5=2 , 2=3  and 3.4=4 .   
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Table (1a): sIBP   of the future uos bY  considering Scheme 1  

 

Table(1b): BPI′s of the future uos Yb considering Scheme 2 

 

Table(1c): BPI′s of the future uos Yb considering Scheme 3 
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Table(2a): BPI′s of the future urv Yb considering Scheme 1 

 
 

Table(2b): BPI′s of the future urv Yb considering Scheme 2 

 
 

Table(2c): BPI′s of the future urv Yb considering Scheme 3 
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5  Conclusions 
1. Bayesian prediction intervals for future 
observations are obtained using a two-sample scheme 
based on a finite mixture of two Weibull components 
model from gos’s under generalized Type II HCS. 
Our results are specialized into two cases:   
- Both the previous and the future samples are 

ssuo  .  

- The previous sample is ssuo   and the future 

sample is svur  .   
2.  It is evident from Tables (1a,b,c) that, the lengths 

of the sIBP   decrease as the sample size increases. 
While, from Tables (2a,b,c), the lengths of the 

sIBP   increase as the sample size increases.  
3.  It is evident from all tables that the lower bounds 
are relatively insensitive to the specification of the 
hyper parameters while, the upper bounds are 
somewhat sensitive.  
4.  In general, for fixed sample size n  and fixed 

censored sizes r , 1T  and 2T , the length of the 

sIBP   increase by increasing b .  
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