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Abstract: This study modeled and estimated stock returns volatility of Khartoum Stock Exchange (KSE) Index 
using symmetric and asymmetric GARCH family models, namely: GARCH(1,1), GARCH-M(1,1), EGARCH(1,1) 
and GJR-GARCH(1,1) models. The study was carried out based on daily closing prices over the period from 2nd 
January 2006 to 31 August 2010.The empirical results reveals that a high volatility process is present in KSE Index 
returns series. The results also provide evidence on the existence of risk premium and indicates the presence of the 
leverage effect in the KSE index returns series. Our findings indicate that Student-t is the most favored distribution 
for all models estimated.  
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1. Introduction  

Financial time series analysis is directed to 
the understanding of the mechanism that drives a 
given time series of data, or, in other words: financial 
time series analysis focuses on “the truth behind the 
data” so that one can find physical models that explain 
the empirically observed features of real life data. 
With such models one can make distributional 
forecasts for future values in time series Karlsson 
(2002). 

Volatility permeates finance and it is a key 
variable used in many financial applications such as 
investment, portfolio construction, option pricing and 
hedging as well as market risk management. Good 
forecasts of volatility, therefore, become extremely 
important in making financial decisions. First, 
knowledge of volatility could guide traders on the risk 
of holding an asset or the value of an option, and also 
provides reasonable forecasting confidence interval. 
Secondly, a reliable volatility model sheds further 
light on the data -generating process of the returns. 
Thirdly, estimates of financial markets volatility may 
be the telescope of envisaging how robustness of the 
economy is and the direction of monetary and fiscal 
policies. These might be the reasons why volatility 
modeling has gained considerable popularity in 
literatures of financial engineering.(Bassey and Issac, 
2011). 

It is well known that financial time series 
data, including stock market returns, often exhibit the 
phenomenon of volatility clustering, meaning that a 
period of high volatility tends to be followed by 
periods of high volatility, and periods of low volatility 
tend to be followed by periods of low volatility. Stock 

returns also exhibit leptokurtosis, meaning that the 
distribution of the financial data has heavy tailed, non-
normal distributions. In addition, data on stock market 
returns is expected to show a so called “leverage 
effect” or asymmetric volatility. This means that the 
effect of bad news on stock market volatility is greater 
than the effect induced by good news Onour (2007). 

The main objective of this paper is to model 
and estimate stock returns volatility of Khartoum 
Stock Exchange (KSE) index, symmetric GARCH 
models will be employed to capture the nature of 
volatility and risk premium, while asymmetric 
GARCH models to capture leverage effects. This 
paper is organized as follows: follows section 1 
review the introduction, section 2 presents a brief 
review of Khartoum Stock Exchange models. Section 
3 presents a brief review of relevant literature. Section 
4 expounds data and methodology. Section 5 provides 
discussion of results and section 6 is a conclusion. 
2- Khartoum Stock Exchange: 

Located in Khartoum, the Khartoum Stock 
Exchange (usually abbreviated to KSE) is the primary 
stock exchange of Sudan. The Khartoum Index is the 
main stock of KSE. The origins of KSE go back to 
1962 when the Ministry of Finance, Bank of Sudan 
and International Financial Corporation conceived the 
idea. This was followed by establishment within The 
bank of Sudan in 1964 of a department for 
government bonds. In fact, the first government bonds 
were issued in 1966 with a bar value of 15 million 
Sudanese pounds and life cycle of 10 years. However, 
a subsequent 1982 ACT to establish KSE was a failure. 
More serious effort in 1992 culminated in setting up 
KSE board. The KSE itself was recognized in 1994 as 
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a legal entity in the wake of endorsement of the KSE 
ACT. The primary market activities were initiated in 
1994 and were shortly followed by the secondary 
market early in 1995.the classification of listed 
companies was initiated in 1994, and in 2001 the 
Shahama certificates were issued. The Khartoum 
Index officially come into being in 2003. A further 
step was joining the African Market Union in 2007. As 
a matter of fact the KSE has been growing steadily 
over the past few years and now has 53 listed 
companies worth 5 billion dollars. However, the stock 
exchange is open for only one hour per day from 
Sunday through Thursday.  

Despite its rapid growth in terms of market 
capitalization KSE is characterized as highly 
concentrated market as only top three companies 
constitute around 90% of the total market 
capitalization. It is also, considered an illiquid market 
as the shares of only three companies are tradable. 

Like all financial institutions in Sudan, KSE 
is regulated by laws inspired from Islamic Shariaa. 
One of the most popular financial instruments 
introduced by Islamic Shariaa practices in the KSE 
activities is the existence of Government Musharakah 
Certificates (GMCs), which represents an Islamic 
equivalent of the conventional bonds (also known as 
Shahama bonds). Through Shahama bonds the state 
borrows money in the domestic market instead of 
printing more banknotes. After one year, holders of 
GMCs can either cash or extend them. These bonds 
are backed by the stocks and shares portfolio of 
various companies owned by the Ministry of Finance 
and therefore are asset-backed. The profitability of 
GMCs can reach 33 per cent per annum and depends 
on the financial results of the companies involved. 
Hence, the profit of a GMC is variable rather than 
fixed. The government issues these bonds on a 
quarterly basis and their placement is done very 
quickly- in just six days. KSE is relatively small 
market as compared to the stock markets of the 
developed countries or even to some countries in the 
Arab region; the number of listed companies is few 
and most stocks are infrequently traded, market 
capitalization and traded value are very 
low(Elsheihk,2011). 
3.Literature Review 

The autoregressive conditional 
heteroscedasticity (ARCH) model was first elaborated 
in a seminal paper by Engle(1982). Since then, the 
topic of modeling volatility in financial time series has 
been the focus of numerous researchers. Therefore, in 
this section we overview a number of papers that have 
investigated the performance of GARCH models with 
regard to non-normal error distribution in mature 
stock markets. For instance, a paper by Arabi (2012) 
has estimated the volatility of exchange rate that was 

caused by inconsistent economic policies adopted by 
successive governments which failed to realize 
realistic exchange rate of the Sudanese pound. The 
consequences of high inflation rate, deterioration of 
the productive sectors, continuous internal and 
external deficits and depreciation of the exchange rate. 
To estimate the volatility of the exchange rate, 
EGARCH (1,1) was used. The results show that 
leverage effect term is negative and statistically 
different from zero, indicating the existence of the 
leverage effect (negative correlation between past 
returns and future volatility. 

Xin Zheng (2012) tested whether stock 
return distribution’s assumptions influence the 
performance of volatility forecasting. The 
methodologies include empirical analysis using 
GARCH-Normal, GARCH-Student-t and GARCH-
Skewed Generalized Error Distributions. Not only 
daily returns, realized weekly and monthly volatilities 
of S&P/ASX 200 Index and ASX All Ordinaries Index 
are calculated over 10 years, but also the out-of 
sample-volatilities are compared. Their output 
indicates that GARCH-Student-t is superior to others 
over short-run forecast horizon while GARCH-SGED 
performs better than others over long-run forecast 
horizon. 

Freedi etal(2012) in their study examined 
several stylized facts (heavy-taileness, leverage effect 
and persistence) in volatility of stock price returns 
exploiting symmetric and asymmetric GARCH family 
models for Saudi Arabia. Their study was carried out 
using closing stock market prices over 15 years 
covering the period 1 January 1994 to 31 March 2009. 
The sample period was divided into three sub-periods 
according to the local crisis in 2006. Their findings 
revealed that asymmetric models with heavy tailed 
densities improve overall estimation of the conditional 
variance equation. Moreover, they found that AR (1)-
GJR GARCH model with Student-t outperform the 
other models during and before the local crisis in 2006, 
while AR (1)-GARCH model with GED exhibits a 
better performance after the crisis. Furthermore, their 
results revealed that the existence of leverage effect at 
1 percent significance level. They conclude that 
volatility persistence in the samples during and after 
crises decreases in all models under various 
distribution assumptions. 

A paper by Vee and Gonpot (2011) aimed at 
evaluating volatility forecasts for the US 
Dollar/Mauritian Rupee exchange rate obtained via a 
GARCH (1,1) model under two distributional 
assumptions: the generalized Error Distribution (GED) 
and the Student’s-t distribution. They make use of 
daily data to evaluate the parameters of each model 
and produce volatility estimates. The forecasting 
ability was subsequently assessed using the symmetric 
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loss functions which are the Mean Absolute 
Error(MAE) and Root Mean Square Error (RMSE). 
The latter show that both distributions may forecast 
quite well with a slight advantage to the 
GARCH(1,1)- GED for out-of-sample forecasts. 

Prashant(2010) has stated that volatility in 
the Indian and Chinese stock markets exhibits the 
persistence of volatility, mean reverting behavior and 
volatility clustering. His study based on more than 
three years of recent daily data on Nifty and SSE to 
illustrate these stylized facts, and the ability of 
GARCH(1,1) to capture these characteristics. Daily 
returns in the stock markets exhibit nonlinearity and 
volatility clustering which are satisfactorily captured 
by the GARCH models. In both markets, volatility 
tends to die out slowly. In their findings revealed that 
the volatility is more persistent in the Chinese stock 
market than the Indian stock market. 

 A project by Ladokhin (2009) focused on 
the problem of volatility modeling in financial 
markets. It began with a general description of 
volatility and its properties, and discussed its usage in 
financial risk management. The research was divided 
into two parts: estimation of conditional volatility and 
modeling of volatility skews. The first one was 
focused on comparing different models for conditional 
volatility estimation. They examined the accuracy of 
several of the most popular methods: historical 
volatility models (e.g., Exponential Weighted Moving 
Average), the implied volatility, and autoregressive 
conditional heteroskedasticy models (e.g., the 
GARCH family of models). The second part of the 
project was dedicated to modeling the implied 
volatility skews and surfaces. 

Shamiri and Isa (2009) investigated the 
relative efficiency of several different types of 
GARCH models in terms of their volatility forecasting 
performance. They compared the performance of 
symmetric GARCH, asymmetric EGARCH and non-
linear asymmetric NAGARCH models with six error 
distributions (normal, skew normal, student-t, skew 
student-t, generalized error distribution and normal 
inverse Gaussian.  

In an investigation by Kosapattarapim et al 
(2008), employed six simulated studies in GARCH 
(p,q) with six different error distributions are carried 
out. In each case, they determine the best fitting 
GARCH model based on the AIC criterion and then 
evaluate its out of-sample volatility forecasting 
performance against that of other models. The analysis 
was then carried out using the daily closing price data 
from Thailand (SET), Malaysia (KLCI) and Singapore 
(STI) stock exchanges. Their Results show that 
although the best fitting model does not always 
provide the best future volatility estimates the 
differences are so insignificant that the estimates of 

the best fitting model can be used with confidence. 
The empirical application to stock markets also 
indicated that a non normal error distribution tends to 
improve the volatility forecast of returns. They 
conclude that volatility forecast estimates of the best 
fitted model can be reliably used for volatility 
forecasting. Moreover, their empirical studies 
demonstrated that a skewed error distribution 
outperforms other error distributions in terms of out-
of-sample volatility forecasting. 

According to Engle etal(2007) Volatility is a 
key parameter used in many financial applications, 
from derivatives valuation to asset management and 
risk management. Volatility measures the size of the 
errors made in modeling returns and other financial 
variables. It was discovered that, for vast classes of 
models, the average size of volatility was not constant 
but changes with time and is predictable. 
Autoregressive conditional Heteroscedasticity 
(ARCH)/generalized autoregressive conditional 
Heteroscedasticity (GARCH) models and stochastic 
volatility models are the main tools used to model and 
forecast volatility. Moving from single assets to 
portfolios made of multiple assets, they found that not 
only idiosyncratic volatilities but also correlations and 
covariance's between assets are time varying and 
predictable. Multivariate ARCH/GARCH models and 
dynamic factor models, eventually in a Bayesian 
framework, were the basic tools used to forecast. 
  According to Karmakar(2005) one of the 
objectives of the various GARCH models is to provide 
good forecasts of volatility which can then be used for 
a variety of purposes including portfolio allocation, 
performance measurement, option valuation, etc. 
Investors seeking to avoid risk, for example, may 
choose to adjust their portfolios by reducing their 
commitments to assets whose volatilities are predicted 
to increase or by using more sophisticated dynamic 
diversification approaches to hedge predicted 
volatility increase 

A study by Alshogea(1988) was devoted to 
examining whether the volatility of the 
macroeconomic variables have any influence on Saudi 
stock market volatility. They present descriptive 
statistics for Saudi stock market returns. Then, they 
estimates Bollerslev’s GARCH(p,q)-model with no 
exogenous variables and checks weather it provides an 
adequate model for the volatility of Saudi stock 
returns. Finally, they explore the impact of 
macroeconomic variables on the volatility of the Saudi 
stock market return by examining three different sets 
of the GARCH models namely AR(1)-GARCH-X(1,1), 
the AR(1)-GARCH-S(1,1, and the AR(1)-GARCH-
G(1,1) model. 
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4.Data and Methodology 
4.1 Data 

The data used in this study is the daily 
closing price index of the Khartoum Stock Exchange 
(KSE) over the period from 2 January 2006 to 31 the 
August 2010 consisting of 1217 observations. The 
daily closing prices were converted to returns series as 
follows: 











1-t

t

p

p
ln tr                              (1) 

Where tr is the continuously compounded 

daily returns of KSE index at time t, 1-tp and tp are 

the closing price index of KSE at time t and t-1 
respectively. It is very important to note that since 
October 18, 2009, the index on the Khartoum stock 
market has been on decline. In a mere 16 days of 
trading (October 18,2009 to November 10,2009),the 
stock market index fell from 3077.12 to 2363.3. Since 
that time,the KSE index was reporting to fluctuate 
around an average value 0f 2363.3 (Zakria and Winker, 
2012). In the light of this knowledge, we divided the 
daily closing prices index into two sub periods, the 
first sub- period covering the period from jan.2,2006 
to October.18,2009 with 1042 observations;the second 

sub –period which is from Nov.10.2009 to 
Aug.31,2010 with 209 observations. 
4.1.1 Descriptive Statistics 

Descriptive statistics of daily returns series 
are presented in table 1 to reach an understanding of 
the nature and distribution characteristics of the KSE 
index returns series. From table 1, we observe that the 
average daily returns is positive and close to zero for 
all periods, with the values of standard deviation 
reflecting a high level of dispersion from the average 
returns in the market. The high kurtosis values reveal 
that the daily returns series of KSE index are clearly 
leptokurtic. The skewness values are positive skewed 
for all periods implying that the distribution has a long 
right tail and departure from normality. The departure 
from normal distribution in the KSE daily returns 
series was confirmed with Jarque-Bera test as it is 
associated significant level less than 1% confidence 
level. 

Engle (1982) ARCH LM test statists 
indicate the presence of ARCH process in the 
conditional variance for all the periods. This provide 
an evidence of the validity of using GARCH family 
models. The Ljung Box Q statistics order16 in returns 
and its corresponding squared reflects a high serial 
correlation.  

  
 

Table 1. Descriptive Statistics of the KES returns series 
Whole sample Second sub-period First sub-period statistics 
-0.115865 -0.009719 -0.111724 Minimum 
0.211437 0.013787 0.211215 Maximum 
0.000004 0.000004 0.0000134 Mean 
0.000209 0.000000 0.0000 Median 
0.014332 0.001351 0.014709 Standard deviation  
1.692250 3.203592 2.570619 Skewness  
67.74630 66.91315 65.306 Kurtosis 
212979.3 35930.08 2.570619 Jarque- bera 
0.0000 0.0000 0.0000 Prob. of Jarque- bera 
82.782 29.975 87.414 Q 16 
0.0000 0.019 0.0000 Prob.Q16 
199.49 32.663 71.401 162Q  

0.0000 0.008 0.0000 Prob.of 162Q  

34.95850 30.56323 22.53764  ARCH(2) 
0.0000 0.0000 0.0000 Prob.of ARCH(2) 

 
 

Figure 1 shows the daily returns series of 
the KSE index for the first and second sub – periods 
and for the whole sample period. We can see from 
this figure small returns tend to be followed by 

smaller returns and large returns tend to be followed 
by larger returns. This behavior of stock returns series 
indicates that there is a clear evidence of volatility 
clustering in KSE index returns. 
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Figure 1: Daily returns of KSE for first and second sub- periods, and for the whole sample (respectively) 
 

4-1-2 Unit Root Test for the KSE daily Index 
 Table 1 presents results of the unit root test 

for both daily closing prices index and its returns 
series using Augmented Dickey Fuller (ADF) Test 
statistic. The (ADF) test for KSE price index in level 

form reveal that it is of stationary type for first and 
second sub period, but it is non- stationary series for 
the whole sample. However when applying the same 
test for the returns series, we can reject the null 
hypothesis of a unit root for all periods.  
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Table 2: Stationary Test for daily closing prices and returns series 
KSE returns series  KSE closing prices series   
Critical values ADF statistic Critical values ADF statistic period 

10% 5% 1%  10% 5% 1%  
-2.57 -2.86 -3.44 -29.42 -2.57 -2.86 -3.43 -2.70 First sub-period 
-2.57 -2.87 -3.46 -15.52 -2.57 -2.88 -3.46 -4.94 second sub-period 
-2.57 -2.86 -3.44 -17.81 -2.56 -2.86 -3.43 -2.38 Whole sample 

 
4-2 Methodology 

 To capture nature of volatility, risk 
premium, and leverage effects on KSE returns series, 
different symmetric and asymmetric GARCH models 
were used.In the volatility modeling process using 
GARCH models, the mean and variance of the series 
are estimated simultaneously. 
4-2-1 Exchange Rate Volatility  

Exchange rate volatility is a measure of the 
fluctuations in an exchange rate. It is also known as a 
measure of risk, whether in asset pricing, portfolio 
optimization, option pricing, or risk management, and 
presents a careful example of risk measurement, 
which could be the input to a variety of economic 
decisions. It can be measured on an hourly, daily, 
weekly, monthly or annual basis. Based on the 
assumption that changes in an exchange rate follow a 
normal distribution, volatility provides an idea of 
how much the exchange rate can change within a 
given period. Volatility of an exchange rate, just like 
that of other financial assets, is usually calculated 
from the standard deviation of movements of 
exchange. 
4.2.2 Volatility models  

volatility model should be able to forecast 
volatility. Virtually all the financial uses of volatility 
models entail forecasting aspects of future returns. 
Typically a volatility model is used to forecast the 
absolute magnitude of returns. volatility models can 
be divided into symmetric and asymmetric models.IN 
this paper we used two symmetric GARCH models 
which are GARCH(1,1) and GARCH –M(1,1), and 
two asymmetric GARCH models, namely 
EGARCH(1,1) and GJR-GARCH(1,1). 
4-2-2-1 ARCH Model  

 ARCH models based on the variance of the 
error term at time t depends on the realized values of 
the squared error terms in previous time periods. The 
model is 

specified as: 

)2(tt uy 
  

  )3(,0~ tt hNu
  

)4(
1

2
0 




q

t
itjt uh 

 
 

This model is referred to as ARCH(q), 
where q refers to the order of the lagged squared 

returns included in the model. If we use ARCH(1) 
model it becomes 

2
1t10t uh   

Since th is a conditional variance, its value 

must always be strictly positive; a negative variance 
at any point in time would be meaningless. To have 
positive conditional variance estimates, all of the 
coefficients in the conditional variance are usually 
required to be non-negative. Thus coefficients must 

be satisfy  and .  
4-2-2-2 GARCH Model 

 The model allows the conditional variance 
of variable to be dependent upon previous lags; first 
lag of the squared residual from the mean equation 
and present news about the volatility from the 
previous period which is as follows: 

 
 

 
q

i

p

i
itiitit huh

1 1

2
0 )5(  

In the literature most used and simple 
model is the GARCH(1,1) process, for which the 
conditional variance can be written as follows: 

)6(11
2

110   ttt huh   

Under the hypothesis of covariance 

stationary, the unconditional variance th  can be 

found by taking the unconditional expectation of 
equation 5. 
We find that 

)7(110 hhh    

Solving the equation 5 we have  

)8(
1 11

0






h  

For this unconditional variance to exist, it 

must be the case that 111  and for it to be 

positive, we require that 00  . 

Advantages of GARCH models compared to 
ARCH models 

 The main problem with an ARCH model is 
that it requires a large number of lags to catch the 
nature of the volatility, this can be problematic as it is 
difficult to decide how many lags to include and 
produces a non-parsimonious model where the non-
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negativity constraint could be failed. The GARCH 
model is usually much more parsimonious and often 
a GARCH(1,1) model is sufficient, this is because the 
GARCH model incorporates much of the information 
that a much larger ARCH model with large numbers 
of lags would contain.  
4-2-2-3 GARCH-M Model 

The importance of the relationships between 
market risk and expected returns is crucial infinance 
theory. The idea from Engle et al.(1987) was 
consequently used to estimate the conditional 
variances in GARCH and then the estimations will be 
used in the conditional expectations' estimation. This 
is the so called GARCH in Mean (GARCH-M) 
modelas: 

ttt uhr                                     (9) 

jt

q

j
jit

p

i
it huh 






 

1

2

1
0                (10) 

Where: 

 is the volatility coefficient (risk premium) 
for the mean. 

P is the order of the ARCH component 
model 

q is the order of the GARCH component 
model 

A positive risk-premium (i.e. ) indicates 
that data series is positively related to its volatility. 
Furthermore, the GARCH-M model implies that 
there are serial correlations in the data series itself 
which were introduced by those in the volatility 

th process. The mere existence of risk-premium is, 

therefore, another reason that some historical stocks 
returns exhibit serial correlations. 
4-2-2-4 GJR GARCH Model 

 The GJR model is a simple extension of 
GARCH with an additional term added to account for 
possible asymmetries (Brooks, 2008:405).Glosten, 
Jagananthan and Runkle (1993) develop the GARCH 
model which allows the conditional variance has a 
different response to past negative and positive 
innovations.  
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where  is a dummy variable that is:  
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In the model, effect of good news shows 

their impact by i , while bad news shows their 

impact by  . In addition if 0  news impact 

is asymmetric and 0 leverage effect exists. To 

satisfy non-negativity condition coefficients would 

be 00  , 0i  , 0  and 0ii  . 

That is the model is still acceptable, even if 0i  , 

provided that 0ii  (Brooks, 2008:406). 

4-2-2-5 Exponential GARCH Model  
Exponential GARCH (EGARCH) proposed by 
Nelson (1991) which has form of leverage effects in 
its equation. In the EGARCH model the specification 
for the conditional covariance is given by the 
following form: 
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Two advantages stated in Brooks (2008) for 

the pure GARCH specification; by using  thlog  

even if the parameters are negative, will be positive 
and asymmetries are allowed for under the EGARCH 
formulation. 

In the equation k  represent leverage 

effects which accounts for the asymmetry of the 
model. While the basic GARCH model requires the 
restrictions the EGARCH model allows unrestricted 
estimation of the variance (Thomas and 
Mitchell2005:16).  

If 0k  it indicates leverage effect exist 

and if 0k  impact is asymmetric. The meaning of 

leverage effect bad news increase volatility. 
5- Empirical Results  

 In this section we estimate and discuss 
different GARCH models for the first and second 
sub- period of KSE returns series. The models are 
estimated using maximum likelihood method under 
three errors distributions namely normal, Student- t 
and generalized error distribution (GED). The 
likelihood function is maximized using Marquardt 
iterative algorithm to search for optimal parameters. 
Tables 3,5,7,and 9 presents parameters estimates of 
GARCH(1,1), GARCH-M(1,1), EGARCH(1,1) and 
GJR- GARCH(1,1) models respectively.  

In the variance equation from table 3, all 

coefficients 0 (Constant), ARCH term ( 1 )and 

GARCH term( 1 ) are highly significant at 

conventional levels and with expected sign for the 

two periods. The significance of 1  indicates the 

information about volatility from the previous day 
and it explanatory power on current volatility. In the 
same way, statistical significance of the GARCH 
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parameter ( )1  not only indicates explanatory 

power on current volatility but also suggests volatility 
clustering in the daily returns of KSE volatility. 

Furthermore, the sum of parameters 1 and 1 of 

second sub- period is less than one and close to 

unity,indicating that volatility persistence is present 
in KSE index returns series. In contrast, the sum of 
these parameters for the second sub -period is larger 
than one,indicating that the conditional variance 
process is explosive.  

 
Table 3: parameter estimation of GARCH(1,1) model 

GED Student-t Normal  Period 
Mean Equation 

0.0000121 
(0.944) 

0.0001023 
(0.5016) 

0.000189 
(0.4341) 0 (Constant)  First sub-period 

Variance Equation 
0.0000158 
(0.0000) 

0.000000363 
(0.0000) 

0.000035 
(0.0000) 0 (Constant)  

0.710333 
(0.0000) 

0.906947 
(0.0000) 

0.739475 
(0.0000) 

effect) (1 ARCH   

0.349251 
(0.0000) 

0.262485 
(0.0000) 

0.407046 
(0.0000) 

effect) (1 GARCH   

   Mean Equation Second sub-period 
0.000000316 
(0.9928) 

0.00000508 
(0.8356) 

-0.0000094 
(0.8664) 0 (Constant)   

Variance Equation 
0.0000000426 
(0.0000) 

0.0000000224 
(0.0000) 

0.0000000616 
(0.0000) 

Constant)( 0   

0.149968 
(0.0000) 

0.150947 
(0.00000) 

0.113809  
(0.0000)  

effect) (1 ARCH   

0.600016 
(0.0000) 

0.598786 
(0.0000) 

0.669848 
(0.0000) 

effect) (1 GARCH   

 
Table 4: Model diagnostics of GARCH(1,1) mod 

GED Student-t Normal  Period 
    First sub-period 
13.682 
(0.846) 

3.9008 
(1.0000) 

17.79 
(0.601) 

 )20(Q   

1.3274 
(1.0000) 

0.3827 
(1.0000) 

2.3089 
(1.0000) 

 )20(2Q   

0.814397 
(0.9999) 

0.210237 
(1.0000) 

1.64 
(0.9984) 

)10(LM   

-7.061110 -8.404881 -6.33938 AIC  
-7.042098 -8.381116 -6.32037 SC  
3679.308 4379.741 3030.649 Log-L  
    Second sub-period 
17.936 
(0.592) 

15.321 
(0.758) 

20.029 
(0.456) 

)20(Q   

3.5407 
(1.0000) 

1.574 
(1.0000) 

7.9301 
(0.992) 

)20(2Q   

2.6115 
(0.9891) 

0.8276 
(0.9999) 

7.3081 
(0.6961) 

)10(LM   

-12.4933 -12.5091 -11.9462 AIC  
-12.4292 -12.4292 -11.8823 SC  
1309.539 1312.203 1252.379 Log-L  

Figures in the parentheses are p-values. )20(Q  and )20(2Q  are respectively the Box-Pierce statistics at lag 20 of 

standardized and squares standardized residuals. AIC, SC, Log-L are the Akaike Information Criterion, Schhwarz 
Criterion and Log likelihood value respectively. 
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Table 5: parameter estimation of GARCH-M(1,1) model 

GED Student-t Normal  Period 
Mean Equation 

-0.000903 
(0.0159) 
0.139179 
(0.0005) 

-0.000228 
 (0.1140) 
0.069422 
(0.0055) 

-0.002411 
(0.0000) 
0.282338 
(0.0000) 

0 (Constant)  

 

premium) (risk  

First sub-period 

Variance Equation 
0.0000227 
(0.0000) 

0.000000363 
 (0.0000) 

0.0000370 
(0.0000) 

0 (Constant)  

0.709943 
(0.0000) 

1.055555 
 (0.0000) 

0.714855 
(0.0000) 

effct) (1 ARCH   

0.364385 
(0.0000) 

0.281332 
 (0.0000) 

0.377484 
(0.0000) 

effect) (1 GARCH   

Mean Equation  Second sub-
period 

-0.0000105 
(0.9463) 
0.0011763 
(0.9949) 

0.0000256 
(0.5966) 
0.092723 
(0.6142) 

-0.0000428 
(0.7945) 
0.046927 
(0.8603) 

0 (Constant)  

 

premium) (risk  

 

Variance Equation 
0.0000000703 
(0.0000) 

0.000000015 
(0.0000) 

0.0000000801 
(0.0000)  

( 0 ) Constant)   

0.354217 
(0.0000) 

0.494815 (0.00000) 0.335840  
(0.0000)  

effct) (1 ARCH   

0.592805 
(0.0000) 

0.493785 
(0.0000) 

0.603810  
(0.0000)  

effect) (1 GARCH   

     
 

 
Table 6: Model diagnostics of GARCH -M(1,1) model for KSE 

GED Student-t Normal  Period 
    First sub-period 
14.692 
(0.794) 

9.3681 
0.978)( 

15.833 
(0.727) 

 )20(Q   

1.3945 
(1.0000) 

0.7294 
(1.0000) 

1.6128 
(1.0000) 

)20(2Q   

0.8416 
(0.9999) 

0.3938 
(1.0000) 

0.9806 
(0.9998) 

)10(LM   

-6.753552 -7.075862 -6.347832 AIC  
-6.729787 -7.052096 -6.34067 SC  
3520.224 3687.896 3309.047 Log-L  
    Second sub-period 
16.541 
(0.863) 

12.124 
(0.912) 

16.940 
(0.657) 

)20(Q   

2.3963 
(1.0000) 

0.6420 
(1.0000) 

2.9124 
(1.0000) 

)20(2Q   

1.4653 
(0.9990) 

0.1692 
(1.0000) 

1.9461 
(0.9967) 

)20(LM   

-12.01381 -12.6671 -11.88792 AIC  
-11.94984 -12.6031 -11.82395 SC  
1259.44 1327.288 1246.288 Log-L  
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From estimation results in table 5,the 
estimated coefficient (risk premium) of conditional 
variance in the mean equation of the GARCH- M(1,1) 
model for the first sub –period is positive and 
significant, indicating that KSE return it is risky 
"accept". In other words, when risk goes up volatility 
also goes up, so the more the volatility the more the 
risky "accept" it is. These results underscore that high 
and low of KSE index are associated with the rise 
and fall of the returns volatility, that is, an increase in 
the risk leads to an increase in the amount of the risk 
premium demanded by investors to compensate for 
the additional amount of risk to which they are 
exposed. For the second sub- period, the estimated of 
risk premium is positive, but insignificant. The 
results of the variance equation for the GARCH- 
M(1,1) model shows that all coefficients are highly 
significant at traditional levels. 

 The estimated results of EGARCH(1,1) 
and GJR -GARCH(1,1) models in table 7 and 8 
reveal that all estimated coefficient in the variance 
equations are Statistically significant at conventional 
levels. Moreover, the estimates of the leverage effect 

term(


) in each of asymmetric models(EGARCH 
and GJR -GARCH) are significant accept but is 

insignificant in GJR -GARCH under normal 

distribution for the second period. The sign of 


is 
negative in EGARCH model and positive in GJR- 
GARCH model, which is consistent with the normal 
conditions. These results signify that bad news or 
shocks market or disturbing information has more 
effect on conditional variance than good news, 
indicating that the existence of leverage effect is 
observed in returns of the KSE index.  

Tables 4,6,8 and 10 present the diagnostics 
tests for different GARCH models (GARCH, 
GARCH-M, EGARCH and GJR -GARCH). From 
the results of these tables the Ljung Box Q statistics 
of order 20 on both standardized residuals and 
squared standardized residuals are all non –
significant at 5% levels, indicating that no serial 
correlation exist in the standardized residuals of the 
models. The LM test for presence of ARCH effects at 
lag 10 for all GARCH models did not exhibit 
additional ARCH effects. The conclusion drawn from 
these results is that the GARCH models considered in 
similar investigations are all adequate for describing 
the volatility of Khartoum Stock Exchange(under 
similar conditions).  

 
Table 7: parameter estimation of EGARCH(1,1) model 

GED Student-t Normal  Period 
Mean Equation 

0.0000557 
(0.6676) 

0.0000305 
(0.7760) 

0.000571 
(0.0000) 

0 (Constant)  First sub-
period 

Variance Equation 
-3.903888 
(0.0000) 

-3.414329 
 (0.0000) 

-3.9523439 
(0.0000) 

0 (Constant)  

0.712322 
(0.0000) 

0.507665 
 (0.0000) 

0.862875 
(0.0000) 

effct) (1 ARCH   

0.640076 
(0.0000) 

0.729441 
 (0.0000) 

0.605768 
(0.0000) 

effect) (1 GARCH   

-0.109134 
(0.0000) 

-0.059544 
(0.0000) 

-0.127479 
(0.0000) 

effect)  ( Leverage   

Mean Equation   Second sub-
period 

0.00000440 
(0.9013) 

-0.0000112 
(0.6204) 

-0.0000765 
(0.1837) 

0 (Constant)   

Variance Equation 
-1.684524 
(0.0000) 

-1.386165 
(0.0000) 

-1.679786 
(0.0000) 

0 (Constant)  

0.175846 
(0.0000) 

0.188216 
(0.00000) 

0.211943 
(0.0000) 

effct) (1 ARCH   

0.897791 
0.0000)( 

0.922142 
(0.0000) 

0.893776 
(0.0000) 

effect) (1 GARCH   

-0.07213 
(0.0123) 

-0.086664 
(0.0042) 

-0.069697 
(0.0182) 

effect)  ( Leverage   
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Table 8: parameter estimation of GJR -GARCH(1,1) model 

GED Student-t Normal  Period 
 Mean Equation  

0.00000564 
(0.9785) 

0.0000412 
 (0.5428)) 

0.0000772 
(0.8029) 

0 (Constant)  First sub-
period 
 Variance Equation 

0.0000157 
(0.0000) 

0.00000142 
(0.0000)  

0.0000355 
(0.0000) 

0 (Constant)  

0.518998 
(0.0000) 

1.008363 
 (0.0000) 

0.487518 
(0.0000) 

effct) (1 ARCH   

0.349663 
(0.0000) 

0.220067 
 (0.0000) 

0.399902 
(0.0000) 

effect) (1 GARCH   

0.402596 
(0.0001) 

0.540603 
(0.0000) 

0.399902 
(0.0000) 

effect)  ( Leverage   

Mean Equation  Second sub-
period 

0.000224 - 
(0.0347) 

0.000000850 
(0.9696) 

-0.0000136 
(0.8072) 

0 (Constant)   

 Variance Equation 
0.000000153 
(0.0000) 

0.000000173 
(0.0000) 

0.000000064 
(0.0000) 

Constant)( 0   

0.091579 
(0.0254) 

0.105759 
(0.00006) 

0.096319 
(0.0022) 

effct) (1 ARCH   

0.728680 
0.0000)( 

0.612551 
(0.0000) 

0.674706 
(0.0000) 

effect) (1 GARCH   

0.137244 
(0.0312) 

0.080220 
(0.01530) 

0.030477 
(0.4311) 

effect)  ( Leverage   

 
Table 9: Model diagnostics of EGARCH (1,1) model 

GED Student-t Normal  Period 
    First sub-period 
13.425 
(0.857) 

9.6229 
0.975)( 

17.876 
(0.596) 

 )20(Q   

1.2709 
(1.0000) 

0.8430 
(1.0000) 

2.2517 
(1.0000) 

)20(2Q   

0.7181 
 (1.0000) 

0.4864 
(1.0000) 

1.6326 
(0.9985) 

)10(LM   

-7.060115 -7.588484 -6.3494 AIC  
-7.036350 -7.564719 -6.3256 SC  
3679.790 3954.806 3309.868 Log-L  
    Second sub-period 
18.937 
(0.524) 

12.730 
(0.889) 

20.183 
(0.447) 

)20(Q   

3.5312 
(1.0000) 

0.7927 
(1.0000) 

6.8288 
(0.9970) 

)20(2Q   

2.7940 
(0.9859) 

0.19094 
(1.0000) 

6.54208 
(0.7679) 

)20(LM   

-12.37291 -12.44424 -11.76931 AIC  
-12.29295 -12.36427 -11.68935 SC  
1297.969 1305.423 1234.893 Log-L  

 
Tables 4,6,9 and 10 presents the diagnostics 

tests for different GARCH models (GARCH, 
GARCH-M, EGARCH and GJR- GARCH). From 

the results of these tables the Ljung Box Q statistics 
of order 20 on both standardized residuals and 
squared standardized residuals are all non –
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significant at 5% levels, indicating that there is no 
serial correlation in the standardized residuals of the 
models. LM test for presence of ARCH effects at lag 
10 for all GARCH models did not exhibit additional 
ARCH effects. The conclusion drawn from these 
results is that the all GARCH models considered in 

this study are all adequate for describing the volatility 
of Khartoum Stock Exchange  

 The results of three selection criteria(AIC, 
SC, Log-L) presented in tables 4,6,9 and 10 reveal 
that student-t is the most favored distribution for all 
models estimated in this study.  

 
Table 10: Model diagnostics of GJR -GARCH (1,1) model 

GED Student-t Normal  Period 
    First sub-period 
13.9 
(0.836) 

6.8406 
0.997)( 

16.85 
(0.577) 

 )20(Q   

1.0769 
(1.0000) 

0.6028 
(1.0000) 

1.8359 
(1.0000) 

)20(2Q   

0.5934 
 (1.0000) 

0.3311 
(1.0000) 

1.1841 
(0.9996) 

)10(LM   

-7.060414 -7.705328 -6.345448 AIC  
-7.040376 -7.681563 -6.321682 SC  
3681.886 4015.623 3307.806 Log-L  
    Second sub-period 
19.512 
(0.489) 

14.265 
(0.817) 

19.821 
(0.469) 

)20(Q   

6.6873 
(0.998) 

1.2595 
(1.0000) 

7.7083 
(0.994) 

)20(2Q   

2.7940 
(0.9859) 

0.563496 
(1.0000) 

7.04986 
(0.7207) 

)20(LM   

-12.09453 -12.6369 -11.93766 AIC  
-12.01456 -12.55694 -11.85770 SC  
1268.878 1325.556 1252.486 Log-L  

 
 
6. Conclusions 

In this paper we have modeled and 
estimated stock returns volatility of KSE using 
different GARCH models including symmetric and 
asymmetric models, GARCH(1,1), GARCH – M(1,1), 
EGARCH(1,1) and GJR –GARCH(1,1). Daily 
returns series of KSE index reveal some patterns such 
as positive skewness, leptokurtosis, significant 
departure from normality, volatility clustering and 
existence of Heteroscedasticity, all of which are 
commonly experienced in other stock markets. 
Empirical results is also show that explosive 
volatility process is present in KSE index returns 
over the sample period. The risk premium term for 
GARCH – M(1,1) is statistically significant with 
positive sign for the first sub-period,implying that an 
increase in volatility is associated with an increase in 
returns. Moreover, the results reveal the existence of 
leverage effect in EGARCH and TGARCH models. 
Our findings also show that Student- t is found to be 
the most favored distribution for all models estimated 
in our study. 
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