
Journal of American Science, 2013; 9(6)                    http://www.jofamericanscience.org 

509 

 

Impact of Order Batching on Compound Bullwhip Effect 
 

Mina H. Mikhail 1, Mohamed F. Abdin 2 and  Mohamed A. Awad 3  
 

1 Industrial Automation Department, German University in Cairo (GUC), Egypt 
2, 3 Design and Production Engineering department, Ain Shams University, Egypt 

eng_mina85@yahoo.com  
 

Abstract: Order batching in supply chains provides economic benefit in aggregating demand to save in production 
and transportation costs. However, rounding of orders to achieve a batch size is recognized as a source of the 
bullwhip effect problem within supply chains. Conditions are established under which two or more causes may 
attenuate or dampen the net BWE. The proposed supply chain consists of a supplier feeding two retailers with 
stochastic demand, described by a first order autoregressive AR(1) time series process. Supplier feeds retailers in 
batches for a number of future time units based on the MMSE demand forecasting method. Two BWE measures are 
studied, one for each demand stream individually and one for the aggregated demand. These two measures are 
related to demand parameters of the retailers and the number of forecasting time units. Supplier should select the 
optimum batch size based on demand forecasting, such that the aggregate BWE of the two retailers is less than the 
sum of the separate BWE. 
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1.Introduction: 

Supplier feeding more than one retailer could 
gain economic benefit of batching by supplying 
orders to retailers in batches to cover demand for n 
future time units. However, order batching increases 
the BWE depending on the batch size. If demand 
interaction exists between retailers, aggregate BWE is 
introduced resulting from the synergistic effect 
between retailers. Depending on its value, aggregate 
BWE of the retailers could be less than the sum of 
separate BWE, producing higher system efficiency 
and lower costs to the supplier.  

 
2. Literature review: 

Forrester (1961) was first to explain bullwhip 
phenomenon as lack of information exchange 
between the components of the supply chain and thus 
it is also known as the Forrester Effect.   Sterman 
(1989) through the Beer Game interpreted the 
phenomenon as a consequence of players' irrational 
behaviors or misperception of feedback.  

Lee et al. (1997b) defined bullwhip effect as the 
increase of order variability as one move up the 
supply chain from retailers to wholesalers, 
manufacturers, and suppliers and stated four causes 
for the BWE including: Demand forecast updating, 
price variations, order batching, rationing and 
shortage gaming. The reasons for order batching 
include the economic order quantity (EOQ), periodic 
inventory review, and transportation economies.  

Lee et al. (1997a) suggested breaking order 
batches, spreading customers' orders or 

replenishments evenly over time, and the use of third-
party logistics companies to reduce the negative 
effect of batching.  

Cachon (2000) measured the value of 
information sharing on supply chains by reducing 
lead times and increasing delivery frequency by 
reducing shipments batch sizes. 

Riddalls (2001) studied the impact of batch 
production cost on the bullwhip effect. He found that 
the relationship between batch size and demand 
amplification is non-linear and depends on the 
remainder of the quotient of average demand and 
batch size.  

Holland (2004) aimed to quantify the level of 
bullwhip induced in a two-echelon supply chain as a 
result of batching in the ordering rules. He found that 
the level of bullwhip across one echelon was 
proportional to the square of the batch size. 

Matloub (2011) showed that when the quotient 
of the average demand and batch size is integer, 
demand amplification does not grow with increase in 
batch size.  

Zhang (2004a) studied the bullwhip effect based 
on three different forecasting methods for a simple 
inventory system with a first order auto-regressive 
process AR(1). Results showed that forecasting 
methods play an important role in determining the 
impact of lead time and demand auto correlation on 
the bullwhip effect. He concluded that MMSE 
forecasting method is clearly the winner among 
forecasting methods if only inventory costs are 
considered, because it leads to the lowest inventory 
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cost in a first order autoregressive AR(1) demand 
process. 

 Cachon et al. (2007) noted that "various factors 
influencing production can occur simultaneously: 
e.g., it is possible that a firm faces increasing 
marginal costs and fixed ordering costs and positively 
correlated demand. Hence, whether or not a firm 
smoothes production relative to sales depends on the 
relative importance of the factors.  

Zhang (2010) investigated compound causes of 
the bullwhip effect in supply chains by considering 
an inventory system with multiple price-sensitive 
demand streams. Joint price and demand dynamics 
are captured by a vector time-series process that 
incorporates the stochastic co-movements in price 
and demand. Two BWE measures are introduced, one 
for each demand stream individually and one for the 
aggregated demand resulting from the interaction of 
two or more BWE causes. Conditions are established 
under which a pair of simultaneous compound causes 
may attenuate or dampen the net BWE. 

 
3. Proposed research 

This paper continues on the mathematical model 
developed by Zhang (2010). Order batching is 
introduced to the model by supposing the supplier is 
feeding the two retailers in batches to cover demand 
for n future time units based on MMSE demand 
forecast. Separate and aggregate BWE are measured 
for the supply chain.  

 
4. Mathematical model: 

The proposed model calculates separate and 
aggregate BWE by measuring order variance to a 
supplier for a certain period and comparing it to 
demand variance to retailers for the same period. 
4.1 Order model: The model consists of a supplier 
feeding two identical retailers with stochastic demand 
and price described by a first order auto-regressive 
AR(1) time series process. Orders are delivered in 
batches to cover demand for n future time units. 
Batch size is based on MMSE demand forecasting. 

From Zhang (2010), conservation of flow 
implies that: 

1,1,,,   titititi dyyq    (1) 

Where, tiq ,  is the order to supplier for period t, tiy ,  

is the order-up-to level for period t, 1, tiy  is the 

order-up-to level for period t-1, 1, tid  is the demand 

for period t-1. 
Let  1,  nttDi be the aggregated demand 

forecast for n time units which is defined as the sum 
of demand for periods  1,.....,1,  nttt . 

Therefore:     
n

tii dnttD   1,1,  (2) 

Let  1,ˆ  nttDi  be the MMSE (minimum 

mean square error) aggregated demand forecast. 
 As shown in Zipkin (2000), for normally 

distributed demand, an approximately order-up-to 
level can be calculated as the sum of forecasted 
demand for n time units and safety stock.  

  tiiti nttDy ,, ˆ1,ˆ    (3) 

Where, ti,̂ is the standard deviation of demand 

forecast error, which is considered equal to zero as 
the demand forecast error is constant over time.  
By sub. eq. (3) in (1), therefore: 

    1,, 2,11, 


 tiiiti dnttDnttDq (4) 

 
4.2 BWE measure: Zhang (2000) identified two 
types of BWE measures; one is based on the demand 
and order stream of an individual retailer and the 
other is constructed to measure the BWE of pooled 
retail demands and orders.  

Separate BWE: It exists if )()( ,, titi dVqV  and the 

size of the effect is measured by their difference, 

)()( ,, titii dVqVM  .  

Aggregate BWE: It exists if 
)()( ,2,1,2,1 tttt ddVqqV   and 

)()( ,2,1,2,1 tttt ddVqqVM   measures the size 

of the BWE. 
Expanding the variance of the sum, the aggregate 
BWE measure can be expressed as: 

 ),cov(),cov(2 ,2,1,2,121 tttt ddqqMMM          (5) 

The sum of the two separate BWE measures 
plus an adjustment to account for the covariance 
between the order streams and the demand streams. 
In subsequent discussions, this adjustment is referred 
to as the pooling factor. When the pooling factor is 

negative, M is less than the sum of the separate iM . 

4.3 Demand model: As shown in Zhang (2000), the 
demand streams facing two interacting retailers are 
jointly determined by a linear combination of demand 
inertia, interaction between retailers, and demand 
forecasting error. 

tttt ddad ,11,2121,1111,1             (6) 

tttt ddad ,21,2221,1212,2              (7) 

Where, 1a and 2a are constant intercept terms 

that determine the means of td ,1 and td ,2 , 

coefficients 11 and 22 determine autocorrelation due 

to demand inertia, coefficients 12 and 21 describe 

the interaction between the two demand streams, t,1  
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and t,2  are the error due to demand forecasting 

update. 
 For analytical convenience, demand process 

could be expressed in a mean-centered form by 
subtracting the unconditional (stationary) demand 
from its respective demand. 

Let, 1 and 2 be the unconditional mean demand for 

retailers 1 and 2, and let tiz , be the non-stationary 

demand. Therefore,  

 titi dz .,,      (8) 

By sub. eq. (8) in (6), (7); the joint demand process 
can be written as: 

tttt zzz ,11,2121,111,1      (9) 

tttt zzz ,21,2221,121,2      (10) 

In matrix notation, let: 

     

 
22

12

21

11

2221

1211
,2,1

,2,121,2,1

)(,,,

,,,,,,





















t
T

ttt

T
tttt

TT
ttt

V

zzdzaaaddd
 

Then, eq. (6), (7) can be expressed as: 

ttt dad   1    (11) 

Eq. (9), (10) can be expressed as: 

ttt zz   1     (12) 

4.4 Bullwhip effect calculation: Joint demand 
equations will be substituted in the order model, then 
the covariance matrix for separate and aggregate 
BWE will be calculated.  

The covariance matrix of joint demand 
)( tqV can be easily obtained from Yule-Walker 

equations for a vector autoregressive first order 
VAR(1) time series process. 
Re-arranging eq. (11): 

add ttt   1    (13) 

By taking variance for both sides of eq. (13): 

 )()( t
T

t dVdV     (14) 

Demand for the number of future time units’ 

,....)2,1(k could be considered as demand for 

period  1t  multiplied by the demand correlation k 

times and the sum of the associated errors for period 
k.  
By sub. in eq. (12), therefore: 

 
 

1
0 111

k
j jkt

j
t

k
kt             (15) 

The above expression shows future demand 
given observed demand history and can be 
decomposed into MMSE joint demand forecasts and 
their associated errors:  

11
ˆ

  t
k

kt ZZ      (16) 

1
1
0111

ˆˆ 

  jkt

jk
jktktkt ZZe   (17) 

Eq. (4) could be written as: 

tiq , 1,1 


 titt dDD    (18) 

Where,   


n

tit dD   1,   (19) 

By sub. eq. (8) in (19), therefore: 

nD kt
n
kt   11

ˆˆ    (20) 

By sub. eq. (16) in (20), therefore: 

11
ˆ

 t
kn

kt ZnD     (21)  

 
Assume: 

nn
k

k
n     2

1   (22) 

Which is a geometric series with common ratio  , 

and its sum is: 























1

1 n

 

By sub. eq. (22) in (21), therefore: 

1
ˆ

 tnt ZnD     (23) 

By sub. eq. (23) in (18), therefore: 

   121 ttntnt ZZZq   (24) 

Taking 1tZ as a common factor: 

   21)( tntnt Iq   (25) 

By sub. eq. (12) in (25) for 1tZ , therefore: 

   212 ))(( tnttnt Iq  (26) 

From eq. (22):  

  1
12 .... 

  n
n

n I   (27) 

By sub. eq. (27) in (26), therefore: 
   211 )()( tnntnt Iq  (28) 

  


 2
1

1)( t
n

tnt Iq   (29) 

By taking variance for both sides of eq. (29): 
Tn

t
nT

nnt dVIIqV ))(()()()()( 11    (30) 

By sub. eq. (14) in (30) repeatedly: 

     Tiin
oi

T
nntt IIdVqV   )()( (

31) 
By summing eq. (31): 

T
nntt dVqV   )()(   (32) 

By applying definitions for separate and aggregate on 
eq. (32): 

    T
nntt dVqVBWE    (33) 

By sub. the matrix of n  and  in eq. (33): 
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 (34) 

By solving the matrix in equation (34), the 
diagonal elements represent separate BWE for 
retailers 1 and 2 respectively, while the sum of the 
off-diagonal elements represent the pooling factor 
resulting from the synergistic effect between retailers.  
Separate BWE for retailer 1: 












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
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M  (35) 

Separate BWE for retailer 2: 
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Aggregate BWE for the two retailers: 

factor pooling21  MMM  
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(37) 
 
5. Implementation: 

Matlab simulation is run for the equations 
calculating separate and aggregate for a supply chain 
consisting of a supplier feeding two retailers in 
batches. Random demand variables are assumed for 
each retailer (demand autocorrelation, and demand 
cross-correlation). In each case, demand forecasting 
is done to determine future demand after n time units. 
Minimum demand interaction between retailers is 
concluded, such that, aggregate BWE of the two 
retailers is less than the sum of separate BWE for 
each retailer. Output graphs show the effect on 
demand parameters and demand forecasting on 
separate and aggregate BWE.  
 
7. Case study: 

Using the equations for the calculation of 
separate and aggregate BWE, a sample case study is 
run by assuming demand values. In each case, Matlab 
simulation is run at different forecasting times to 

select the optimum batch size based on demand 
parameters (demand autocorrelation, demand cross-
correlation, and demand interaction), such that 
aggregate BWE of the two retailers is less than the 
sum of separate BWE.  

Assume the two retailers are symmetric, 
resulting in: 21122112 ,   ; 2211,  

represents the variance (error) in each demand stream 
and is considered equal to one (no error). 

In the following graphs, random values are 
assumed for demand autocorrelation and demand 
cross-correlation, demand interaction between 
retailers is concluded based on the desired batch size : 

 X-axis represents the degree of demand 
interaction between the two streams. 

 Y-axis represents BWE measure. 
 The solid line represents the aggregate BWE 

( M ). 
 The dotted line represents the sum of 

separate BWE ( 21 MM  ). 

1) Both, demand autocorrelation and demand 
cross-correlation are positive. 

Fig. 1: BWE for ( 1,5.0,5.0 1211  n ) 

 
In Fig. 1, 5.0,5.0 1211   , if forecasting is 

done for one time unit (n=1, no batching), interaction 
between the two streams should be less than   (-0.25), 
for the aggregate BWE to be less than the sum of the 
separate BWE. 

Fig. 2: BWE for ( 10,5.0,5.0 1211  n ) 
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In Fig. 2, if forecasting is increased to 10 time 

units, pooling factor is always positive, M is always 
greater than 21 MM  , so it is not preferred to do 

batching for such conditions. 
From Fig.1 and Fig.2, we conclude that it is not 

preferred to do order batching when  
5.0,5.0 1211   . It is clear that if the number of 

forecasting time units’ n is even, aggregate BWE is 
always larger than the sum of the separate BWE. 
2) Demand autocorrelation is positive and demand 

cross-correlation is negative. 

Fig. 3: BWE for ( 1,5.0,5.0 1211  n ) 

 
In Fig. 3, 5.0,5.0 1211   , if forecasting 

is done for one time unit (n=1, no batching), 
interaction between the two streams should be less 
than   (0.25), for the aggregate BWE to be less than 

the sum of the separate BWE. 

Fig. 4: BWE for ( 10,5.0,5.0 1211  n ) 

 
In Fig. 4, when forecasting is extended for 10 

time units, interaction between the two streams 
should be less than (0.13) for the aggregate BWE to 
be less than the sum of the separate BWE. 

From the above we conclude that by increasing 
forecasting time units, demand interaction between 

retailers should be decreased to keep  21 MMM  . 

3) Demand autocorrelation is negative and demand 
cross-correlation is positive. 

Fig. 5: BWE for ( 1,5.0,5.0 1211  n ) 

 
In Fig. 5, 5.0,5.0 1211   , if forecasting is 

done for one time unit (n=1, no batching), interaction 
between the two streams should be less than   (0.25), 
for the aggregate BWE to be less than the sum of the 
separate BWE. 

Fig. 6: BWE for ( 10,5.0,5.0 1211  n ) 

 
In Fig. 6, if forecasting is extended for 10 time 

units, interaction between the two streams should be 
less than (-0.13) for the aggregate BWE to be less 
than the sum of the separate BWE. 
4) Both, demand autocorrelation and demand 

cross-correlation are negative. 

Fig. 7: BWE for ( 1,5.0,5.0 1211  n ) 

 
In Fig. 7, 5.0,5.0 1211   . if forecasting 

is done for one time unit (n=1, no batching), 
interaction between the two streams should be less 
than (-0.25) for the aggregate BWE to be less than the 
sum of the separate BWE. 
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Fig. 8: BWE for ( 10,5.0,5.0 1211  n ) 

 
In fig. 8, if forecasting is extended for 10 time 

units, interaction between the two streams should be 
less than (-0.37) for the aggregate BWE to be less 
than the sum of the separate BWE. 
6. Conclusion: 

This paper considered a supplier feeding more 
than one retailer simultaneously in batches to cover 
demand for n future time units based on MMSE 
forecasting. Synergistic effect exists due to demand 
interaction between retailers. Equations are reached 
that relate both, separate and aggregate BWE to 
demand parameters (demand autocorrelation, demand 
cross-correlation, and demand interaction) and the 
number of forecasting time units based on the desired 
batch size. Matlab simulation is run for different 
demand conditions, in each case, based on the desired 
batch size, critical demand interaction that dampens 
the aggregate BWE is concluded. 

The following recommendations are concluded: 
1) For high demand interaction between 

retailers, net BWE is amplified due to the 
increase of demand forecasting update error, 
so it is preferred that demand interaction is 
as low as possible. 

2) For large batch sizes, as the number of 
forecasting time units n is increased, 
forecasting error is aggregated, so demand 
interaction between retailers should be low 

to keep  21 MMM  . 

3) For large batch sizes (n=10,20,…), critical 
demand interaction between retailers to keep 

 21 MMM   is almost constant. 

Forecasting is done by aggregating demand 
correlation for n future time units in a 

geometric series  n  ...2 , since 

correlation ranges between -1 and 1, the sum 
will not vary largely at high forecasting time 
units. 
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