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Abstract: The most important aspect of any engineering material is its structure. The methods used to accurately 

determine the material microstructures is a very time-consuming process, causes operator fatigue, and it is prone to 

human errors and inconsistency. There are two computational approaches, a feature features and a neural network 

algorithm, are used separately for classifying and detection of surface textures in the field of remote sensing, 

science, medicine, journalism, advertising, design, education and entertainment. In this paper, a combination of the 

two approaches has been utilized to classify and to detect copper and copper alloys microstructure using image 

process, texture features and neural network. The overall average discrimination rate results from the combined 

approaches are about 97.6%. This paper offers a reliable basis for the classification and characterization of 

microscopic images by image processing and neural network. 
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1 Introduction 

The structure of a material is related to its 

composition, properties, processing history and 

performance. Therefore, studying the microstructure of 

a material provides information linking its composition 

and processing to its properties and performance. 

Recent researches towards development of a tool for 

detailed microstructure classification were studied by 

many researchers [1-9]. The main focus is put on 

microscale behavior, where advantages of digital 

material representation can be taken into account. 

Digital material representation allows classification of 

microstructures using image processing and neural 

network tools in an explicit manner. Incorporation of 

these digital microstructures into the numerical 

simulation methods provides the possibility to improve 

the quality of classification results.  

A computational methodology was proposed by 

Tschopp et al. [1], for automated detection and 3D 

characterization of dendrite cores from images taken 

from slices of a production turbine blade made of a 

heat-treated single crystal Ni-based super-alloy. A 

method has been developed by Horovistiz et al.[2], to 

obtain quantitative information about grain size and 

shape from fractured surfaces of ceramic materials. 

One elaborated a routine to split intergranular and 

transgranular grains facets of ceramic fracture surfaces 

by digital image processing. Madej et al.[3] proposed 

two methods to provide an exact and statistical 

representation of the real microstructure which are 

used as input data for the finite element analysis of the 

micro scale compression test. Two computational 

intelligence approaches, a fuzzy logic algorithm and a 

neural network algorithm, for grain boundary 

detection in images of superalloy steel microstructure 

during sintering ware presented by Dengiz et al.[4]. 

An attempt has been made by Venkataraman et al.[5], 

with image analysis to establish the individual 

constituent features of the complicated as sprayed 

microstructure. Statistical techniques such as 

correlation and discriminant analysis were also used to 

group the microstructural features based on the 

process parameters.  

A metallographic method for preparing samples 

produced by thermal barrier coatings and evaluating 

with the metallographic technique and digital image 

analysis for columnar grain size and relative 

intercolumnar porosity was proposed by Kelly et 

al.[6].A technique utilizing X-ray computed 

tomography for estimation of the orientation 

distribution of the fibers and pores with arbitrary 

shapes was developed by Dietrich et al.[7]. A 

methodology based on the processing of 

microstructure images with subsequent numerical 

simulation of the coating growth around the fibers is 

proposed for estimation of the local thickness of the 

coating. A series of image processing technologies 

and geometric measurement methods is introduced by 

Liu et al.[8], to quantify multiple scale microporosity 

in images. With the application of these methods, 

various basic geometric parameters of the pores can be 

computed automatically in the computer, such as area, 

perimeter, direction etc. 

A methodology has been proposed by Zhang et 

al. [9], for statistical characterization of transport 

behavior of a typical random fibrous medium. For any 

given digital images of fabric sample, statistical 

description of the random microstructure is employed 
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to evaluate the permeability field, in the framework of 

the statistical continuum approach.  

In addition, methods to analyze the texture of 

images such as fractional Brownian motion, box 

counting, and fractal dimension estimation from 

frequency domain, were used to numerically describe 

the surfaces of foods and the microstructure of potato 

cells, Quevedo et al.[10]. The image analysis method 

of Fourier shape description was implemented by 

Lorén et al.[11], to analyze shaped food 

microstructural entities, independent of their 

complexity, because entity shape is an important and 

nearly unexploited possibility for designing food 

material properties.  

On the other hands, the microstructures of 

natural minerals provide information about their 

complex geological history. The key paradigm of 

digital rock physics ‘‘image and compute’’ implies 

imaging and digitizing the pore space and mineral 

matrix of natural rock and then numerically simulating 

various physical processes in this digital object to 

obtain such macroscopic rock properties as 

permeability, electrical conductivity, and elastic 

moduli, Andrä et al.[12]. The steps of this process 

include image acquisition, image processing (noise 

reduction, smoothing, and segmentation); setting up 

the numerical experiment (object size and resolution 

as well as the boundary conditions); and numerically 

solving the field equations. Yue et al.[13] presented a 

digital image processing based finite element method 

for the two-dimensional mechanical analysis of 

geomaterials by actually taking into account their 

material inhomogeneities and microstructures. Use of 

the scanning electron microscope with X-ray 

microanalysis allows study of clinker and cements; 

permitting measuring bulk phase abundance and 

surface areas of the phases, as well as bulk chemistry 

of constituent phases can be carried out, Stutzman 

[14].  

Recently, image processing techniques are 

widely used in several medical areas for image 

improvement in earlier detection and treatment stages, 

where the time factor is very important to discover the 

abnormality issues in target images, especially in 

various cancer tumors such as lung cancer, breast 

cancer, etc. Cancer detection in magnetic resonance 

images is important in medical diagnosis because it 

provides information associated to anatomical 

structures as well as potential abnormal tissues 

necessary to treatment planning and patient follow-up. 

Brain cancer detection and classification system has 

been designed and developed by Kothari [15]. The 

system uses computer based procedures to detect 

tumor blocks or lesions and classify the type of tumor 

using artificial neural network in magnetic resonance 

images of different patients with Astrocytoma type of 

brain tumors. After segmentation principles, an 

enhanced region of the object of interest that is used as 

a basic foundation of feature extraction is obtained by 

Al-Tarawneh [16]. Relying on general features, the 

main detected features for accurate images 

comparison are pixels percentage and mask-labeling. 

This paper aims to provide an automatic system 

to classify the microstructure of copper alloys using 

image processing, texture feature and neural network. 

This technique could be useful to in the field of image 

analysis applications from biomedical to remote 

sensing techniques. 

2 Microstructure 

A microstructure is the way a material comes 

together on a very small scale. The object’s 

microstructure determines the majority of its physical 

properties. There are four main categories that 

materials fall into based on their microstructure: 

ceramic, metallic, polymeric and composite. When 

describing the structure of a material, we make a clear 

distinction between its crystal structure and its 

microstructure. The term ‘crystal structure’ is used to 

describe the average positions of atoms within the unit 

cell, and is completely specified by the lattice type and 

the fractional coordinates of the atoms. The term 

‘microstructure’ is used to describe the appearance of 

the material on the nm-cm length scale. 

Microstructure can be observed using a range of 

microscopy techniques . 

The microstructural features of a given material 

may vary greatly when observed at different length 

scales. For this reason, it is crucial to consider the 

length scale of the observations you are making when 

describing the microstructure of a material. 

Microstructures are almost always generated when a 

material undergoes a phase transformation brought 

about by changing temperature and/or pressure (e.g. a 

melt crystallizing to a solid on cooling). 

Macrostructural and microstructural examination 

techniques are employed in areas such as routine 

quality control, failure analysis and research studies. 

In quality control, microstructural analysis is used to 

determine if the structural parameters are within 

certain specifications. It is used as a criterion for 

acceptance or rejection. Various techniques for 

quantifying microstructural features, such as grain 

size, particle or pore size, volume fraction of a 

constituent, and inclusion rating, are available for 

comparative analysis. 

3 Image Processing and Texture Features 

Today, image analysis with the aid of computer, 

becomes more and more substantial in all research 

fields. Image analysis involves investigation of the 

image data for a specific application. Normally, the 

raw data of a set of images is analyzed to gain insight 



Journal of American Science 2013;9(6)                                             http://www.jofamericanscience.org 

 

215 

 

into what is happening with the images and how they 

can be used to extract desired information. 

3.1 Texture Features 

Texture is visual patterns with properties of 

homogeneity that do not result from the presence of 

only a single color such as clouds and water [17]. 

There are many techniques to measure texture 

similarity, the best-established rely on comparing 

values of what are known as second-order statistics 

calculated from query and stored images. Essentially, 

they calculate the relative brightness of selected pairs 

of pixels from each image. From these, it is possible to 

calculate measures of image texture such as the degree 

of contrast, coarseness, directionality and regularity 

[18], or periodicity, directionality and randomness 

[19]. Alternative methods of texture analysis for 

retrieval include the use of Gabor filters [20] and 

fractals [21]. Visual textures refer to the visual 

impression that textures produce to human observer, 

which are related to local spatial variations of simple 

stimuli like color, orientation and intensity in an 

image. The image analysis involves image 

segmentation, image transformation, pattern 

classification, feature extraction, texture synthesis and 

shape from texture [22]. Table 1 lists the most 

important image processes and analysis. 

 

3.2 GLCM and Haralick Texture Features 

In 1973, Haralick [23] introduced the co-

occurrence matrix and its texture features which are 

the most popular second order statistical features 

today. Haralick proposed two steps for texture feature 

extraction: the first is computing the co-occurrence 

matrix and the second step is calculating texture 

feature base on the co-occurrence matrix. This 

technique is useful in wide range of image analysis 

applications from biomedical to remote sensing 

techniques. The Grey level co-occurrence matrix 

(GLCM) is defined as:  

                      

 

   

 

   

 

One of the defining qualities of texture is the 

spatial distribution of gray values. The use of 

statistical features is therefore one of the early 

methods proposed in the image processing literature. 

Haralick suggested the use of co-occurrence matrix or 

gray level co-occurrence matrix. It considers the 

relationship between two neighboring pixels, the first 

pixel is known as a reference and the second is known 

as a neighbor pixel. Haralick extracted thirteen texture 

features from GLCM for an image. These features are 

extended to 22 texture features, Table 2. 

Table 1: Classification of image analysis. 
No. Process Description 

1 
Image 

segmentation 

It divides the input image into multiple segments or regions, which show objects or meaningful parts of 

objects. It segments image into homogeneous regions thus making it easier to analyze them. 

2 
Image 

transformation 

It is used to find the spatial frequency information that can be used in the feature extraction step. 

3 
Pattern 

classification 

It aims to classify data (patterns) based either on a priori knowledge or on statistical information extracted 

from the image. 

4 Feature extraction 
It is the process of acquiring higher level information of an image, such as color, shape, and texture. 

Features contain the relevant information of an image and will be used in image processing. 

5 Texture synthesis 
It is a common technique to create large textures from usually small texture samples, for the use of texture 

mapping in surface or scene rendering applications. 

6 
Shape from 

texture 
It reconstructs 3D surface geometry from texture information. 

 

4 Neural Networks [24] 

ANNs apply the principle of function 

approximation by example, meaning that they learn a 

function by looking at examples of this function. One 

of the simplest examples is an ANN learning the 

XOR function, but it could just as easily be learning 

to determine the language of a text, or whether there 

is a tumor visible in an X-ray image. If an ANN is to 

be able to learn a problem, it must be defined as a 

function with a set of input and output variables 

supported by examples of how this function should 

work. A problem like the XOR function is already 

defined as a function with two binary input variables 

and a binary output variable, and with the examples 

which are defined by the results of four different 

input patterns. 

However, there are more complicated problems 

which can be more difficult to define as functions. 

The input variables to the problem of finding a tumor 

in an X-ray image could be the pixel values of the 

image, but they could also be some values extracted 

from the image. The output could then either be a 

binary value or a floating point value representing the 

probability of a tumor in the image. In ANNs this 

floating-point value would normally be between 0 

and 1, inclusive.  
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Table 2: Texture features parameters 

No. Definition Formula 

1 

Contrast (CON) 

Contrast is a measure of the amount of local variation in the image. A 

low value results from uniform images (if the grey levels of each pixel 

pair are similar) whereas images with greater variation produce a high 

value. 

                    

   

   

   

   

 

2 

Dissimilarity (DIS) 

Dissimilarity is similar to the contrast. It will be high when the local 

region has a high contrast. This feature is sensitive to both grey level 

spatial variability and tone of the input image. 

                 

   

   

   

   

 

3 

Homogeneity HOM/inverse difference moment (IDM) 

The homogeneity (or inverse difference moment) is expected to be 

large if the grey levels of each pixel pair are similar. This occurs when 

the image is locally homogeneous in the scale of the length of spatial. 

      
      

        

   

   

   

   

 

4 
Similarity (SIM) 

Similarity is a first-degree measure of homogeneity. 
      

      

       

   

   

   

   

 

5 

Angular second moment (ASM) 

ASM is a measure of the homogeneity of an image. ASM is sometimes 

defined as energy or uniformity and it can be considered as the 

opposite of entropy. This feature is sensitive to the grey level of 

homogeneity within the texture field. 

             

   

   

   

   

 

6 

Entropy (ENT) 

Entropy measures the randomness of a grey level distribution. It is 

expected to be high if the grey levels are distributed randomly 

throughout the image. For homogeneous or simple patterned data, 

Entropy is very small, i.e. inhomogeneous scenes have low order 

entropy, while a homogeneous scene has high entropy. 

                         

   

   

   

   

 

7 

Mean (sum mean) (µ) 

The GLCM mean is not simply the average of all the original pixel 

values in the image. It is expressed in terms of the GLCM. The pixel 

value is weighted not by its frequency of occurrence by itself (as in a 

regular mean equation), but by the frequency of its occurrence in 

combination with a certain neighbor pixel value. 

           

   

   

   

   

 

8 

Variance and standard deviation (VAR and SD) 

Variance tells how spread out the distribution of grey levels is. The 

variance is expected to be large if the grey levels of the image are 

spread out greatly. Variance uses the GLCM, not the greys in the 

original images. 

                  
 

   

   

   

   

 

where 

            

   

   

   

   

 

9 

Maximum probability (MaxP) 

The maximum probability calculates grey-level, which has the 

maximum probability in the GLCM. It is expected to be high if the 

occurrence of the most predominant pixel pairs is high. 

         
     

        

10 

Correlation (COR) 

Correlation is a measure of grey level linear dependence between the 

pixels at the specified positions relative to each other. When the scale 

of local texture is much larger than the distance of spatial, correlation 

is typically high and vice versa. 

      
                    

    

   

   

   

   

 

where µy is the mean for every column,    is 

the standard deviation for every row, and    

is the standard deviation for every column. 

11 

Diagonal moment (DM) 

The DM measures the differences in correlation for high and low grey 

levels. 

                          

   

   

   

   

 

12 

Second diagonal moment (SDM) 

The SDM measures the second moment of the differences in 

correlation for high and low grey levels. 
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13 

Coefficient of variation (CVAR) 

The coefficient of variation is a measure of the dispersion of grey level 

transitions calculated in relation to the average value. 

     
 

 
 

14 

Sum entropy (SENT) 

The sum entropy is a measure of the sum of micro (local) differences 

in an image. 

                          

  

   

 

15 

Sum variance (SVAR) 

The sum variance reveals spatial heterogeneity (dissimilarity) of an 

image. 

                       

  

   

 

16 

Difference entropy (DENT) 

The difference entropy is a measure of the variability of micro (local) 

differences. 

                          

   

   

 

17 
Difference variance (DVAR) 

The difference variance is a measure of the local variability. 
                       

   

   

 

18 

Cluster shade (CSH) 

The cluster shade is a two-dimensional version of the gray-level 

histogram skewness, which is a measure of the degree of asymmetry of 

a distribution. 

                       

   

   

   

   

       

19 

Cluster prominence (CPR) 

The cluster prominence is a two-dimensional version of the gray-level 

histogram kurtosis, which is a measure of how peaked is a distribution. 

                       

   

   

   

   

       

20 

Sum average (SAVR) 

The sum average is a measure of the relation between clear and dense 

areas in an image. 

              

   

   

 

where 

                  

   

   

   

   

 

21 

Mean correlation 1 (MCOR1) 

The mean correlation 1 feature is also known as information measure. 

In this feature, two derived arrays from the GLCM must be used. The 

first array represents the summation of rows in the GLCM, while the 

second array represents the summation of columns. 

      
        

          
 

where 

                              

   

   

   

   

 

             

   

   

 

             

   

   

 

HX and HY are the entropies of Px(i) and 

Py(j), respectively. 

22 
Mean correlation 2 (MCOR2) 

This is another form for calculating the mean correlation. 

                         

where 

                                

   

   

   

   

 

G is the normalized GLCM, i, j are the row and column of each element in the GLCM and n is the number of the 

GLCM elements, then the following texture features can be calculated from the GLCM. 

 

4.1 Texture Features 

Basic knowledge of how the human brain 

operates is needed to understand how ANNs work. 

The human brain is a highly complicated system 

which is capable to solve very complex problems, 

Fig. 1 (a). The brain consists of many different 

elements, but one of its most important building 

blocks is the neuron, of which it contains 

approximately 1011. These neurons are connected by 

around 1015 connections, creating a huge neural 
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network. Neurons send impulses to each other 

through the connections and these impulses make the 

brain work. The neural network also receives 

impulses from the five senses and sends out impulses 

to muscles to achieve motion or speech. The 

individual neuron can be seen as an input/output 

machine which waits for impulses from the 

surrounding neurons and, when it has received 

enough impulses, it sends out an impulse to other 

neurons. 

 
(a)The human brain 

 

 
(b)The neural network 

Fig. 1. Basic knowledge of ANN. 

 

4.2Artificial Neural Networks 

Artificial neurons are similar to their biological 

counterparts, Fig. 1 (b). They have input connections 

which are summed together to determine the strength 

of their output, which is the result of the sum being 

fed into an activation function [25]. Though many 

activation functions exist, the most common is the 

sigmoid activation function, which outputs a number 

between 0 (for low input values) and 1 (for high input 

values). The resultant of this function is then passed 

as the input to other neurons through more 

connections, each of which are weighted. These 

weights determine the behavior of the network. In the 

human brain the neurons are connected in a 

seemingly random order and send impulses 

asynchronously. If we wanted to model a brain this 

might be the way to organize an ANN, but since we 

primarily want to create a function approximator, 

ANNs are usually not organized like this [26]. 

When we create ANNs, the neurons are usually 

ordered in layers with connections going between the 

layers. The first layer contains the input neurons and 

the last layer contains the output neurons. These input 

and output neurons represent the input and output 

variables of the function that we want to 

approximate. Between the input and the output layer 

a number of hidden layers exist and the connections 

(and weights) to and from these hidden layers 

determine how well the ANN performs. When an 

ANN is learning to approximate a function, it is 

shown examples of how the function works and the 

internal weights in the ANN are slowly adjusted so as 

to produce the same output as in the examples. The 

hope is that when the ANN is shown a new set of 

input variables, it will give a correct output. 

Therefore, if an ANN is expected to learn to spot a 

tumor in an X-ray image, it will be shown many X-

ray images containing tumors, and many X-ray 

images containing healthy tissues. After a period of 

training with these images, the weights in the ANN 

should hopefully contain information which will 

allow it to positively identify tumors in X-ray images 

that it has not seen during the training. 

ANNs are machine learning programs based on 

neuron like building blocks similar to the neurons in 

the human brain, Fig. 2. Most of the research and 

applications of neural networks involves feed-

forward networks trained by the back-propagation 

algorithm. These ANNs usually undergo a training 

phase by feeding it a set of inputs with known 

outcome, and then back-propagating the known 

results to adjust the weights among the neural 

elements. After many iterations of training, called 

epochs, the NN is able to detect subtle patterns in 

large data sets and make predictions based on what it 

has learned through past observations. Feed forward 

neural network architecture was selected based on the 

flexibility and applicability of the approach in a 

variety of problems. 

 

 
Fig. 2. An ANN with six input neurons, a hidden 

layer and two output neurons. 

 

5. Material and Methods 

Interpretation of microstructures requires an 

understanding of the processes by which various 

structures are formed. Microstructural features, such 

as grain size, inclusions, impurities, second phases, 

porosity, segregation or surface effects, are a function 

of the starting material and subsequent processing 

treatments. Microstructural analysis is used in 

research studies to determine the microstructural 

Inputs Hidden layer Outputs 

Inputs Outputs 

Artificial 

Neural Network 

(ANN) 

Inputs Outputs 
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changes that occur as a result of varying parameters 

such as composition, heat treatment or processing 

steps. 

According to Fig. 3, the following procedures 

were applied to classify copper alloys microstructure 

using image processing, texture feature and neural 

network as: 

1. Eighteen cases of copper and copper alloys were 

collected in order to apply the proposed method 

of microstructure classification  [27]. These 

cases are illustrated in Fig. 4. 

2. Each image has the same size which is 768×512 

pixels. Each image was divided into 7 images (5 

were used for training and 2 for validation). Each 

one of the new image has a size of 100×100 

pixels. 

3. Each image was converted to gray scale image. 

Twenty two texture features were calculated and 

stored in a file to be used as input data, Table 3. 

The input dataset is an array of 90×22 (90 image 

× 22 texture feature parameter). 

4. The output array was created so as each case was 

represented in one row. For example, case one 

‘Aluminum bronze, 6-7.5Al(C61300)’is defined 

as: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. The 

output dataset is an array of 90×18 (90 image × 

18 case) as follows: 

  

 
 
 
 
 
 
 
 
 
   
   
    

     
     
    

     
     
    

    
   
   

    
     
     

    
     
     

    
    
   

    
    
     

    
    
      

 
 
 
 
 
 
 
 

 

5. A feed forward neural network with error back 

propagation algorithm was adopted for the NN 

system. Here it is used to classify copper alloys 

microstructure through microstructure images. 

6. Input/output datasets were used to train the 

network. A procedure was employed to optimize 

the hidden layer neurons and select the transfer 

function for which a program was generated in 

MATLAB software. 

7. About 100 training process were performed and 

the best net was extracted and saved for later use. 

The best net was selected as the results of its 

output have the heist percentage value of 

successful prediction. 

8. A program was built especially for the 

classification of microstructure named 

Microstructure Classification Program 

“MSCProg”. This program was built using 

Matlab Software Packages. Fig. 5 (a) shows the 

main interface of the program and Fig. 5 (b) 

shows the details of microstructure. 

 

 
Fig. 3. Block diagram of microstructure classification 

of copper and copper alloys. 

 

Resizing images 

Loading images 

Convert images to gray scale  

Applying texture features algorithms 

Prepare Input array 

Prepare Target array 

n < 100 

Apply neural network 

Save net 

Select the best net 

Simulate net and classify 

microstructure  
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(1) Aluminum bronze, 6-

7.5 Al (C61300) 

(2) Aluminum bronze, 6-

7.5 Al (C61300) 

(3) Nickel-aluminum 

bronze, 9.0-11.0 Al, 4.0-

5.5 Ni (C63000) 

(4) Guilding, 95% 

(C21000) 

    
(5) Commercial bronze, 

90% (C22000) 

(6) Cartridge brass, 70% 

(C26000) 

(7) Cadmium copper 

(C16200) 

(8) Cadmium copper 

(C16200) 

    
(9) Cadmium copper 

(C16500) 

(10) Copper-5 Ni-2.5 Ti (11) Copper-nickel, 10% 

(C70600) 

(12) ETP (C11000) 

    
(13) High leaded tin 

bronze, 6-8 Pb (C93200) 

(14) Medium leaded brass, 

62% (C35000) 

(15) Nickel-silver, 72-18 

(C73500) 

(16) Nickel-silver, 59-12 

(C76200) 

 

 
Fig. 4. Eighteen cases of copper and copper alloy’s 

microstructure. 

 

  
(17) Phosphor bronze, 

1.25% E (C50500) 

(18) Phosphor bronze, 

1.25% E (C50500) 
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Table 3: Classification of image analysis. 

No. Texture features Value 

1 Autocorrelation (AUTOC) 26.93347 

2 Contrast (CONTR) 1.27684 

3 Correlation (CORRM) 0.41265 

4 Correlation (CORRP) 0.41265 

5 Cluster Prominence (CPROM) 27.94876 

6 Cluster Shade (CSHAD) -2.61098 

7 Dissimilarity (DISSI) 0.79622 

8 Energy (ENERG) 0.09638 

9 Entropy (ENTRO) 2.70866 

10 Homogeneity (HOMOM) 0.67090 

11 Homogeneity (HOMOP) 0.64941 

12 Maximum probability (MAXPR) 0.17622 

13 Sum of squares - Variance (SOSVH) 27.30146 

14 Sum average (SAVGH) 10.29276 

15 Sum variance (SVARH) 72.73104 

16 Sum entropy (SENTH) 1.94643 

17 Difference variance (DVARH) 1.27684 

18 Difference entropy (DENTH) 1.11464 

19 Info. measure of correlation (1) (INF1H) -0.07479 

20 Info. measure of correlation (2) (INF2H) 0.43626 

21 Inverse difference normalized (INDNC) 0.91659 

22 Inverse difference moment normalized 

(IDMNC) 
0.98135 

 

6. Results 

The results of the testing processes are shown in 

Table 4. The average discrimination rate shows that 

15 cases can be completely classified and only 3 

cases have a discrimination rate of 85.7%. This 

means that these three cases failed in one image from 

7 images (5 for training and 2 for validation). The 

overall average discrimination rate is about 97.6%. 

 
(a) Main interface of the program. 

 
(b) Detailed information of the classified image. 

Fig. 5. MSCProg, Microstructure Classification 

Program. 

Table 4: Classification of image analysis. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 % 

1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

2 0 85.7 0 0 0 0 0 0 0 0 0 14.3 0 0 0 0 0 0 85.7 

3 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

4 0 0 0 85.7 0 0 0 0 0 0 0 0 0 0 0 0 14.3 0 85.7 

5 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

6 0 0 0 0 0 85.7 0 0 0 0 0 0 0 0 0 14.3 0 0 85.7 

7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 

8 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100 

9 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 

10 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 

11 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 100 

12 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 100 

13 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 100 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 100 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 100 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 100 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 100 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 

Average discrimination rate 97.62 

  



Journal of American Science 2013;9(6)                                             http://www.jofamericanscience.org 

 

222 

 

7. Conclusion and Recommendations 

Since there is no universal approach for 

obtaining accurate image classification, almost all 

techniques use only one approach: texture features or 

neural network. This is way a classification based on 

the criterion used by each technique is almost not 

enough. Instead, a combination of both methods is 

proposed to achieve a good classification results and 

is helpful for better use of existing method and for 

improving their performance as well as for designing 

new ones. As a general tendency, we can conclude 

that a new technique use a combined texture features 

and neural networks were applied and seemed to 

provide stable and accurate classification results. The 

overall average discrimination rate results from the 

combined approaches are about 97.6%. This 

technique can be expanded to cover many areas of 

interest such as: remote sensing, medicine, science, 

journalism, advertising, design, education and 

entertainment. 
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