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Abstract: One important issue regarding the implementation of cellular manufacturing systems relates to deciding 
whether to convert an existing job shop into a cellular manufacturing system comprehensively in a single go, or in 
stages by forming cells one after the other taking the advantage of the experiences of implementation. In this paper two 
heuristic methods based on multi-stage programming and genetic algorithm are proposed for cell formation. The 
results show that the multi-stage programming solves small problems faster than exact algorithms such as branch and 
bound. A heuristic procedure based on genetic algorithm is developed on the multi-stage programming to test larger 
problem sizes.  
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1   Introduction 

Cellular manufacturing is an application of 
flexible manufacturing system. It is the result of a 
direct application of the group technology philosophy.  

The essential problem in Planning  of a cellular 
manufacturing system (CMS) is determination of 
machine-groups and part families popularly known as 
the machine cell formation (MCF), or also known as 
machine-component grouping (MCG) problem. 
Mahesh and Srinivasan [7] clustered a number of 
techniques and provided an overview of various 
algorithms that forms cells comprehensively in total. 
As pointed out by Mahesh and Srinivasan [7], 
Wemmerlov and Johnson [10] and several others, all 
the above methods aim at creating a comprehensive 
CMS in total in a single go. In practice, however, from 
the viewpoints of planning and implementation and 
also for capital investment reasons, it would be 
desirable to move progressively towards conversion of 
the existing system into cells one after the other.  

Adil and Ghosh [1] developed a mathematical 
model which forms cells based on greedy random 
adaptive search procedures.   

Balakrishnan and Cheng [2] proposed a model 
which considers cell formation over a multi-period 
planning horizon with demand and resource 
uncertainties. In this study, cell formation has been 
done where at each period the cell configuration can be 
changed; however, planning, implementation or capital 
investment issues have not been addressed. Many 
researchers have tried to compare CM, hybrid CM and 
job shop together  ( [9], [17], [24]).   

In this paper a new nonlinear integer 

programming model is designed to convert an existing 
functional layout to a cellular manufacturing system. 
Two methods based on multi-stage programming and 
genetic algorithm (GA) are applied for solving the 
model.   

The rest of the paper is organized as follows. 
Section 2 introduces the problem; this is done by 
giving problem description, assumptions, notations 
and a new mathematical model. Our proposed 
algorithm based on multi-stage programming 
approach, genetic algorithm are designed in Section 3, 
4 respectively. In Section 5, some experimentations 
and comparison are shown. Finally, Section 6 presents 
conclusions.  
 
2   Problem Formulation 
2.1  Problem description 

We focus on cell formation decisions. Hence, 
here a functional layout  is considered in the 
beginning of the planning horizon with the planning 
horizon being composed of multi periods. N parts are 
considered with each part visiting shops based on its 
requirements. Generally M machines are available in 
shops. The objective is to decide the number of cells 
formed in a period, and the assignment of machines to 
cells such that the total cost is minimized. The total 
cost consists of intra-cell and inter-cell material 
handling, intra-shop material handling, inter-shop 
material handling and material handling between cell 
and shop costs. 
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Assumptions 
1. The demand for each part type in each period 
is known.  
2. The number of cells formed in each period is 
limited. 
3. Each cell consists of a minimum and 
maximum number of machines. 
4. The unit cost of inter-cell movements, intra-
cell movements and movements between cell and 
shop are known and constant over time. 
5. The number of machines available is known 
and constant over time.     
Notations 
The following notations are used throughout the 
paper:  
c index for cells 
u , t  indices for periods 
m index for machines 
p index for parts 
s index for shops  
  intra-cell material handling cost 

  inter-cell material handling cost 

  cost of material handling between cell and 

shop 
  inter-shop material handling cost 

ptD  demand for product p in period t 

LB       minimum number of machines to be assigned 
to a cell 
UB      maximum number of machines to be assigned 
to a cell 
Cmax     maximum number of cells can be formed in a 
period 
M  Number of machines 
S Number of shops in the beginning of 
planning horizon 
P  Number of parts 
T  Number of periods 

jk  Number of members of set kj  
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2.2 Mathematical model  
The objective function and constraints can be 
formulated as follows:  

Min  (Ymcu,Xcu,Bpcu, pt ,Kmst, pst , pt ) 
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If cell c is formed in period u 

otherwise 

If machine  m is assigned to cell c  in period u 

otherwise 

If part  p needs machine  m 

otherwise 

If part p visits cell c in period u 
otherwise 

If part  p visits a cell in period t 

otherwise 

   If machine m belongs to shop s in period t 

  Otherwise  

If part p visits a shop in period t 

otherwise 

If part p visits shop s in period t 

otherwise 
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The objective function (1) represents the total 
cost. The total cost consists the costs of intra-cell 
material handling (first term in objective function 1), 
inter-cell material handling (second term), material 
handling between cell and shop (third term) and inter-
shop material handling (fourth term). Eq. (2) ensures 
the order of cell formation in a period. Eqs. (3) and (4) 
show that part p visits cell c, when at least one of the 
required machines to process the part is allocated to 
the cell. Eq. (5) is to ensure that a machine could 
belong to a shop if it was in that shop in preceding 
period. Eq. (6) represents that a machine can be 
allocated only to a cell or a shop in each period. Eqs. 
(7) and (8) show that part p visits shop s when at least 
one of the required machines to process the part is 
allocated to this shop. Eqs. (9) and (10) ensure that a 
part moves inter-cell if the part visits more than one 
cell in a period. Eq. (11) ensures that each machine 
can be allocated to at most one cell in each period. 
Eqs. (12) and (13) ensure that a cell is formed in a 
period if at least one machine is allocated to the cell. 
Eqs. (14) and (15) show that part p visits shop s, when 
at least one of the required machines to process the 
part is allocated to the shop. 

 
3      Multi-stage programming 

Multi-stage programming is a powerful 
optimization technique that is particularly applicable to 
many complex problems requiring a sequence of 
interrelated decisions. Here our proposed algorithm is 
based on a multi-stage approach. Therefore, before 
applying the algorithm, the number of cells, formed in 
each period, and the initial location of each machine 
should be known. We apply a forward recursive 

approach to solve the problem.    
The recursive relation defining the dynamic step is 
given by the following equation:  
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from period 1 to period i, when j cells are formed, and 
kj shows the machines in cell j.  (X) is the value of 

objective function based on the objective function (1) 
in current period and X is the vector of update values of 

decision variables in the period. k =   means that no 

cells is formed. The optimum solution is achieved as 
follows: 
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Algorithm  
Here, the steps of algorithm based on multi-stage 
programming are proposed. 
 
Step 1. Setting the initial value of decision variables  
According to the initial layout, in which all machines 
are assigned to shops before planning, no cells are 
formed. The decision variable values are set as follow: 

 0cuX  for c = 1,2..,,Cmax and u =1,2,..,T 

0mcuY  for m = 1,2,..,M , c = 1,2,..,Cmax and u 

=1,2,..,T 

0pcuB  for p = 1,2,..,P , c =1,2,..,Cmax and u 

=1,2,..,T 

0pt   for p = 1,2,..,P , t = 1,2,..,T 

 






0

1
0msK  

0mstK  for m =1,2,..,m , s =1,2,..,S and t =1,2,..,T 

0pt  for p = 1,2,..,P , t =1,2,..,T 

Set t=1 
 
 

If machine m belongs to shop s in initial layout. 

otherwise 
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Step 2. Combination of machines 
Here, all feasible sets of machines are 

constituted. A set of machines includes at least LB and 
at last UB machines and is feasible if the machines, 
belonging to the set has not been assigned to any cell 
in previous periods and belongs to the remaining 
shops.  

A machine can be assigned to no cell and 
remain in the shop and remainder shop is such a cell.  

 
Step 3. Cell formation 

Here, a set of machines is assigned to a cell. 
When the cell is formed in the current period, the 
related variables will be updated according to the 
following rules. Each cell contains a feasible set of 
machines.  

 
Rule 1: In period t a machine can be assigned to a cell 
if it has not been assigned to any cell in this and 
previous periods. In other worlds the machine should 
belong to reminder shop before period t. 
 
Rule 2: If machine m is assigned to cell c in period t 
then the decision variables are set as follow:  

1mctY  and 0mcuY  for u = t+1, t+2, ..., T and 

c= 1,2,..,Cmax. 

0mstK  for s= 1,2,..,S and t= t,t+1,..,T. 

Rule 3: If machine m belongs to cell c in period t 

( 1mctY ) and part p needs machine m then 

1pcuB  and 1pt . 

Rule 4: If machine m belongs to shop s in period t 

( 1mstK ) and part p needs machine m 

then 1pt .  

 
Rule 5: In period t a machine cannot be assigned to a 
cell and a shop at the same time. In other words, in 
each period the following relation should be satisfied:  

0 mctmst YK . 

Step 4. Completion a solution, when a solution is 
completed, all machines in the period are assigned to a 
cell or remainder shop.  
Step 5. Calculate the objective function with update 
variables.  
Step 6. Using the recursive relation (16) and the value 
obtained in Step 5, use a multi-stage programming to 
obtain a value for the current solution.  
Step 7. For all possible solutions in the current period 
repeat steps 3-6. 

Step 8. Set t= t+1 
Step 9. If tT then go to step 2 else go to step 10.       
Step 10. Determine the best programming. 
4     Genetic algorithm 
4.1   GA approach   

In this section a genetic algorithm for solving 
the problm is introduces. The components of genetic 
algorithm are selected based on Jans and Degraeve [6] 
study which review metaheuristic algorithm in a 
dynamic environment. The proposed GA consists of 
following steps: 

 
4.1.1  Representation  

In the increment cell formation problem, each 
solution is presented by a T × M matrix which rows 
show periods and columns show machines. The values 
of cells are set between zero and Cmax, each value 
demonstrates the position of a machine in a period.  

 
             Table 1. Problem representation-chromosome 

  M1       M2 M3 M4 M5 M6 
P1 0 0 0 0 0 0 
P2 0 1 0 0 1 0 
P3 2 1 2 3 1 3 
P4 2 1 2 3 1 3 

 
4.1.2   Initialization and evaluation  

The initialization process is executed with a 
randomly generated solution space. An initial 
population size (popsize) is set 50. The objective 
function is transformed fitness function infinite cost is 
attached to this for infeasible solution. (Dellaert et al. 
[4]): 

f i(t)= 

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Where f i(t) is the fitness value of solution i, g i(t) is the 

objective function with penalty cost and ifmax  is the 

largest objeve function value in the current solution.  
 
4.1.3  Selection strategy  
In this study, we use the roulette wheel and elitist as 
selection strategies.  
 
4.1.4 Genetic operators: crossover and mutation  
Here, the one column cross-over (Dellaert and Jeunet 
[3]) the matrixes of the two parents are cut in two at 
some random point and are recombined into one new 
solution. The crossover operator is given in Fig.1 

  
 
 
 

6 Machines  

4 Periods  
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 M1       M2 M3 M4 M5 M6  M1       M2 M3 M4 M5 M6 
P1 0 0 0 0 0 0  1 0 0 1 0 0 
P2 0 1 0 0 1 0  1 2 2 1 0 0 
P3 2 1 2 3 1 3  1 2 2 1 0 0 
P4 2 1 2 3 1 3  1 2 2 1 3 3 

 M1       M2 M3 M4 M5 M6 
P1 0 0 0 0 0 0 
P2 0 1 0 0 0 0 
P3 2 1 2 0 0 0 
P4 2 1 2 3 3 3 

          Figure 1. Crossover operator 
 

The mutation operator changes the 
value of a cell randomly, for example Fig.2 
shows the mutation operator.  

 
 M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0 
P2 0 1 0 0 0 0 
P3 2 1 2 3 0 0 
P4 2 1 2 3 3 3 
 
 

M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0 
P2 0 1 0 0 0 0 
P3 2 1 2 3 0 0 
P4 2 1 2 3 3 3 

Figure 2. Mutation operator 
 

5    Some experiments and comparisons 
In this section a number of numerical examples 
are solved using the multi-stage programming 
and genetic algorithm. Results along with the 
computational times and quality solutions are 

compared with branch and bound algorithm. 
The results are shown in Fig. 3.  
 
6   Conclusion  

This paper addresses a nonlinear 
programming model for Planning  a cellular 
manufacturing system. The proposed 
algorithms based on multi-stage programming 
approach and genetic algorithm are applied to 
20 experimental data.  
The multi-stage method provides the optimal 
solutions in lesser number of iterations and 
number of levels for small size problems and 
hence the computational time is the least. For 
large size problems genetic algorithm is applied 
which produce good solutions in a reasonable 
time. Thus the proposed methods have the 
advantage of fast and accurate computations and 
have the ability to handle large-scale industrial 
problems.  

 

Example 

Number of 
Parts 

Number of 
Machines 

Number 
of 

Periods 
Cmax 

Multistage Programming Genetic Algorithm 
Best 

solution 
Computational 

time 
Best solution 

Computational 
time 

1 4 4 2 2 3050 0:0:10 3050 0:0:0 
2 6 6 3 2 19560 0:0:50 19560 0:0:1 
3 6 8 3 2 30284 0:1:00 30284 0:0:5 
4 6 10 3 2 43452 0:5:00 43452 0:1:0 
5 6 10 3 3 35641 0:8:00 35641 0:0:48 
6 6 10 3 4 28377 0:7:00 28377 0:0:59 
7 8 10 4 3 78743 0:9:00 78743 0:1:30 
8 8 10 4 4 66858 0:10:20 66858 0:1:57 
9 10 10 4 4 85070 0:6:30 87624 0:2:08 
10 10 12 4 3 129144 0:7:25 129177 0:2:18 
11 10 12 4 4 110646 0:30:56 110646 0:2:25 
12 10 12 5 3 156921 0:45:35 156921 0:2:35 
13 10 15 5 3 232758 1:0:34 229798 0:2:22 
14 10 15 5 4 367189 1:35:25 367189 0:2:59 
15 10 20 5 4 252894 2:5:45 274937 0:3:00 
15 10 20 8 4 528386 2:35:33 542615 0:2:31 
17 15 20 8 4 ___ ___ 949276 0:4:45 
18 20 20 8 4 ___ ___ 1129510 0:5:56 
19 20 20 10 4 ___ ___ 1921456 0:7:12 
20 20 30 10 4 ___ ___ 2134862 0:8:0 

Figure 3. Comparative analysis (Computational time (hour : minute : second)) 
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