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Abstract: Using the �� − norm and the concept of the non-dominated vector, this paper presents a method to find a 
well-dispersed subset of non-dominated vectors of a multi-objective integer linear programming (MOILP) problem. 
   In each iteration of the proposed algorithm only the right hand side of an integer linear programming problem is 
modified and then this problem is solved. With this approach, the optimal solutions of these single objective 
programming problems are the non-dominated vectors of the MOILP problem. The number of constraints and 
variables of these single objective problems are same, i.e. the iterations of the proposed algorithm do not increase 
the number of constraints and variables of these single objective problems, while the iterations of the previous 
approaches increase the number of the constraints and variables. Each iteration of the proposed algorithm finds at 
least one element of the well-dispersed subset of non-dominated vectors. The proposed algorithm is convergent and 
its applicability is illustrated by using a numerical example.  
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1. Introduction 
    Numerous algorithms have been designed to 
solve multi-objective integer linear programming 
(MOILP) problem. Pasternak and Passy (1973) 
conducted an earlier study on designing solving 
methods for Multi-objective integer linear 
programming (MOILP) problem. They used the 
concept of implicit enumeration to resolve 0-1 
bi-criterion linear programs. Bitran (1979) used 
relaxation techniques to generate non-dominated 
vectors. Bitran (1979) also reported some 
computational results. Deckro and Winkfsky (1983) 
reported computational results in terms of implicit 
enumeration compared to Bitran’s works. Liu et al. 
(2000) proposed a method using data envelopment 
analysis (DEA) technique to generate some 
non-dominated vectors of 0-1 MOLP. Liu et al. 
(2000) used BCC DEA model (Banker et al. (1984)) 
to evaluate the generated vectors. The existence of 
the convexity constraint in the BCC model may 
eliminate some non-dominated vectors of the 0-1 
MOLP problem. Liu’s method does not obtain all 
non-dominated vectors. Jahanshahloo et al. (2004) 
proposed a method for generating all non-dominated 
vectors of 0-1 MOLP. Corresponding to 
non-dominated vectors which obtain in a iteration, 
their method adds some constraints and variables to 
0-1 single objective problem of next iteration.  

If the number of objective functions of 0-1 
MOLP problem increase then, the constraints and 
variables which are added to 0-1 single objective 
problem will be increased, therefore solving problem 
needs more computational effort. This deficiency is 

studied in this paper.  
Sylva and Crema (2007) propose a method 

for finding a well-dispersed subset of non-dominated 
solutions based on maximizing the infinity norm 
distance from a set of known solutions. They claim 
that their approach originally provides a variant of the 
procedure by Sylva and Crema (2004). The major 
drawback of this approach is the difficulty of solving 
the constrained problems due to increasing number of 
constraints and binary variables.  
   In the current paper, authors develop a one-stage 
algorithm which determines at least one 
non-dominated vector in each iteration. The proposed 
method solves a single objective integer 
programming linear program in each iteration and 
iterations do not increase the number of constraints 
and variables of these single objective problems. The 
proposed algorithm reduces computational efforts for 
solving MOILP problem. For large problems, the 
improvement can be much more significant.  

The organization of this paper is as follows. 
Section 2 presents a background MOILP problem. 
Section 3 introduces the proposed method for finding 
a well-dispersed subset of the non-dominated vectors 
of an MOILP problem. Section 4 illustrates the 
procedure using a numerical example. Finally, 
conclusions are presented in Section 5.  
 
2. Background 
    Multi-objective programming is an important 
research area as many practical situations require 
discrete representations by integer variables and 
many decision makers have to deal with several 
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objectives. The Multi-Objective programming 
problem with �-objectives is defined as:  

max ���(�),… ,��(�)�  
  s.t.  � ∈ �  

 
(1) 

where ��,…, ��  are the objective functions and �  is 
a feasible region.  
 

Definition 1: � ∈ �  is said to be an non-dominated 
vector of problem (1) if and only if there does not 
exist a point �� ∈ � , such that:  

(��(�
�),…, ��(�

�)) ≥ (��(�),…,��(�)) 
and inequality holds strictly for at least one index. If 
all variables are restricted to be integer and all 
objective functions and constraints are linear then, 
problem (1) is called multi-objective integer linear 
programming.  
    When all of the constraints and the objective 
functions are linear the model is as follows:  

 

max {���,⋯ ,���}

s.t. ��� ≤ ��,∀�

� ∈ ��
�

 (2) 

where, �� = (���, …, ���)(� = 1,…, �), �� =
(���, …, ���)(� = 1,…, �),  ��

� = {(��,…, ��)|�� ∈

{0,1,2,…},� = 1,… ,�} and � = (��,…, ��)
�. 

The set � , which is defined as follows:  
� = {� | ��� ≤ ��,� ∈ ��

�,� = 1,…, �}, 
is called the set of feasible solutions of problem (2). 
Let �  be bounded. Corresponding to each � ∈ �  
the vector � is defined as follows (Jahanshahloo et 
al. (2004)):  

� = (��,… ,��)
� = (���,…,���)�. 

 
Definition 2: It is said that the vector � =
(�� …, ��)

�  dominates the vector �� =  
(��

�,…,��
�)�  if for each �(� = 1,…,�), �� ≥ ��

� 
and there is at least one � such that �� > � �

�.  
 
Definition 3: The set �, which is defined as  

� = {� | � = (���,…,���)�,��� ≤ ��,�
= 1,… ,�,� ∈ ��

�}, 
is called the values space of the objective functions in 
problem (2).  
Let �� = ����

∗(� = 1,…, �) where ��
∗  is the 

optimal solution of the ���(� = 1,… ,�) problem 
from the following problems:  
 
�� = max ��� 
s.t. ��� ≤ ��,∀� 
    � ∈ ��

�  

 

(3) 

Definition 4: The vector �, which is defined as  
� = (��,… ,��)

� = (����
∗,…, ����

∗)�, 
is called the ideal vector (2004).  
 
Theorem 1: For each � ∈ � , the vector � =

(��,…,��)
�  dominates the vector 

� = (���,…,���)� ≠ � .  
Proof: The proof is similar to that of Theorem 2.3 in 
(Jahanshahloo et al. (2004)) and is not repeated here. 
□  
3. Non-dominated vectors of MOILP problem 
    As noted by Jahanshahloo et al. (2004), to find 
the non-dominated vectors of problem (2), we can 
specify � ∈ �  such that � − � = (� � −
���,…,�� − ���)�  is minimized. To this end, the 
following problem may be solved: 
min {�� − ���,�� −
              ���,… ,�� − ���}  
  s.t.  ��� ≤ ��,∀i 

 
(4) 

       � ∈ ��
�. 

    As there is no preference between the objective 
functions of problem (4) the sum of the absolute 
value of deviations (that is ∑ |�

��� �� − ���|) is 
minimized. Since for each � ∈ �,�� ≥ ��� (� =
1,…,�), hence:  
 
min�∈� ∑ |�� − ���|�

��� = min�∈� ∑ (�� −
�
���

���)  

= ∑ ��
�
��� + min�∈� ∑ (−���)�

���   

= ∑ ��
�
��� − max�∈� ∑ ���

�
��� .  

 
Therefore, problem (4) is converted to the following 
integer linear programming problem:  
 

 

��
∗ = max ∑ ���

�
���

s.t. ��� ≤ ��∀�

� ∈ ��
�.

  (5) 

 
Theorem 2: Each optimal solution of problem (5) is 
a non-dominated vector for problem (2).  
 
Proof:The proof is similar to that of Theorem 1.3 in 
(Jahanshahloo et al. (2004)) and is not repeated here. 
□  
    Let �� = {��

∗,…,��
∗} be the set of the optimal 

solutions of problem (5) and �� = {1,…, �}. As can 
be seen, if � ≠ � , then �� ≠ � . Suppose that 
�� = (��

�,… ,��
�) = (����

∗,…, ����
∗)�,� ∈ �� . We 

consider the following set.  

�� = {�|� ≤∑ ���∈��
��,∑ ���∈��

= 1,�� ∈ {0,1},� ∈

��}.  
 

   It can be seen, for � = � − � � we have,  
 
min�∈� ∑ |�� − ���|�

��� > ∑ �� + ��
∗�

���   
⟹∑ ��

�
��� + min�∈� ∑ (−���)�

��� > ∑ ��
�
��� + ��

∗ 
⟹ min�∈� ∑ (−���)> ��

∗�
���   
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   Therefore, we have the following Theorem.  
 
Theorem 3: There is no non-dominated vector for 

(2), say �� ∈ � , with ∑ ��
�
��� �� ≥ ��

∗.  
 
   To find another non-dominated vectors of 
problem (2), we determine a non-dominated vector of 
problem (2), say ����

∗ ∈ � , such that ����
∗  is an 

optimal solution of the model 
min�∈� ∑ �� − ���|�

��� .  
     Therefore, ���� = (����

� ,…,����
� ) =

(������
∗ ,… ,������

∗ )� ∉ �� . That is the following 
inequalities are not satisfied simultaneously.  
 

����
� ≤ ∑ ���∈��

��
�  

����
� ≤ ∑ ���∈��

��
�  

⋮  
����
� ≤ ∑ ���∈��

��
�  

 
where ∑ ���∈��

= 1  and �� ∈ {0,1}. In other words, 
we have  

����
� > ∑ ���∈��

��
�  or   

����
� > ∑ ���∈��

��
� or

⋮                                or
����
� > ∑ ���∈��

��
�.

        (6) 

 
where ∑ ���∈��

= 1  and �� ∈ {0,1}. That is, there 

exists �(� ∈ {1, …, �}) such that ����
� > ∑ ���∈��

��
�. 

Therefore, there exists �(� ∈ {1, …,�}) such that 

����
� > max �∈��

{ ��
�} = ��

�, �� = 1,�� = 0,� ∈ ��,� ≠

�. Therefore, using (6) we can consider the following 
constraints:  
 
����
� > max �∈��

{��
�} = ��

� or 

����
� > max �∈��

{ ��
�} = ��

� or

⋮
����
� > max �∈��

{ ��
�} = ��

� .
                            (7) 

 

In other words, ∃� ∈ {1,…, �} such that ����
� >

max�∈��{ ��
�}. Let � be a large positive real number 

and �� ∈ {0,1} for � ∈ {1, …, �}. Instead of (7) we 
consider the following constraints which are satisfied 
simultaneously. 
  

 

����
� > max�∈��{��

�}− ���

����
� > max�∈��{��

�}− ���
⋮
����
� > max �∈��

{ ��
�} −���

∑ ��
�
��� ≤ �− 1

�� ∈ {0,1},�= 1,… ,�.

  (8) 

 
   Therefore, to obtain another non-dominated 

vector of problem (2) we consider the following 
model: 
  
��
∗ =  

max ∑ ���
�
���

s.t. ��� ≤ ��,∀�
∑ ��
�
��� � < ��

∗                                 (9)

��� > max �∈��
{ ��

�} −���,∀�

∑ ��
�
��� ≤ �− 1

��,� ∈ ��
�,∀�.

 

 

 
    Note that, if �� = 1 , then the constraint 
��� > max �∈��

{ ��
�} −���  is redundant. The 

constraint ∑ ��
�
��� ≤ � − 1  implies that at least one 

of the constraints ��� > max �∈��
{ ��

�} −���, 

� = 1,…,� is not redundant (we can choose 
max�����{∑ |���|

�
��� } as a lower bound for �).  

     Let {����
∗ , …,����

∗ } be the optimal solutions 

of problem (9). Using �� = �� ∪ {� + 1,…, � + �}=
{1, …,�,� + 1,…,� + �} we can obtain another 
non-dominated vector of problem (2). Therefore, 
  
��
∗ =  

max ∑ ���
�
���

s. t. ��� ≤ ��,∀�                                         (10)
∑ ��
�
��� � < ��

∗

��� > max �∈��
� ��

�� − �� �,∀�

∑ ��
�
��� ≤ � − 1

��,� ∈ ��
�,∀�.

  

 
Theorem 4: The optimal solutions of problem (9) are 
the non-dominated vectors of problem (2).  
 
Proof: Let �∗ be an optimal solution of problem 
(9) and by contradiction, suppose that �∗ is not 
non-dominated vector of problem (2). Hence, 
problem (2) has a feasible solution, say ��, so that:  

 
���

� ≥ ���
∗,� = 1,… ,� and 

∃�,�∈ {1,… ,�}; ���
� ≥ ���

∗. 
(11) 

 
Since�∗  is feasible solution of problem (9),  

 
���

∗ > max�∈��{��
�}− ���,� =

1,… ,�.  
(12) 

 
   From (11) and (12) we conclude that, ���

� >
max�∈�����

�� − �� �,� = 1,…, �. 

   Therefore, �� is a feasible solution of problem 
(9). By summing inequalities (11), we will have 
∑ ���

��
��� > ∑ ���

∗�
���  which is a contradiction. 

□ 
   
   To illustrate the proposed method, let we consider 
Figure 1, in which �  is ideal vector and � = 2. 
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Using model (5) we have,  
∑ �� + ����∈�
�
��� ∑ (−��� )�

��� =
∑ �� −
�
��� ∑ ���

∗�
��� = ∑ �� +

�
��� ��

∗ = �� + �� � , 
where �∗  is an optimal solution of the model (5), 
and �� = (���

∗,���
∗)  is its objective vector. 

Therefore, �∗  is a non-dominated vector of the 
model (2) and in the first iteration, model (9) finds 
�� ∗  as second non-dominated vector with �� =
(����

∗,����
∗). Because,  

∑ �� −
�
��� ∑ (−����

∗)�
��� = ∑ �� +

�
��� ��

∗ = �� +
���  &  �� +��� > �� + �� �.  

 
Figure 1: The objectives values space with � = 2 

 
3.1 The Proposed Algorithm 
Step 0: Solve problem (5) and suppose that �� is the 
indices set of its optimal solutions,   
Step 1: Solve the following model:  
��
∗ =  

max ∑ ���
�
���

s.t. ��� ≤ ��,∀�
∑ ��
�
��� � < ����

∗                           (13)

��� > max �∈��
{ ��

�} −���,∀�

∑ ��
�
��� ≤ �− 1

��,� ∈ ��
�,∀�

 

 

and suppose that �� is the set indices of the optimal 
solutions of model (13).  
 
Step 2: If ��  is empty, stop. Otherwise, put 

�� = ���� ∪ ����, where �� = {}, and go to step 1.   

 
Theorem 5: The optimal solutions of problem (13) 
are the non-dominated vectors of problem (2).  
 
Proof: The proof is similar to that of Theorem 4 and 
is omitted. □  
 
   Let �� = {��

∗,…,��
∗}  be the set of the 

non-dominated vectors of problem (2) which have 
been generated by iterations 1 trough �  of the 
proposed algorithm. 
   
Theorem 6: The proposed algorithm is convergent.  
 
Proof: The feasible region of problem (2) is 
bounded. Therefore, the number of its feasible 

solutions and the efficient solutions are finite. On the 
other hand, the proposed algorithm finds a subset of 
the efficient solutions. Therefore, the proposed 
algorithm is convergent. □ 
 
4. Numerical Example 
Let us consider the following 0-1 MOLP:  
 

 
 
This problem is an adaptation of an example from 
Liu et al. (2000).   
 
Step 0: Initially, we solve the following 0-1 linear 
problem and form the set ��  
 

 
 
where, ∑ (�

��� − ���) = −14� � − 10� � − 17� � +
3�� + 2��.  ��

∗ = (1,1,1,0,0)�  is an optimal 
solution to this problem and ��

∗ = −41  is its optimal 
value. Therefore, ��

∗ = (1,1,1,0,0)�  is a 
non-dominated vector, �� = (14,17,10)

�  and 
�� = �� = {1}.   
 
Iteration 1  
Step 1: To obtain a new non-dominated vector we 
solve the corresponding problem to ��  with 
� = 100   
 

 
 
We have an optimal solution to this problem for 
��

∗ = (1,1,1,1,1)�, which is a non-dominated vector 
and ��

∗ = −36.   
 
Step 2: Using ��

∗ = (1,1,1,1,1)�, we have  
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�� = �15,12,9)�,�� = {2}≠ �,�� = �� ∪ �� =
{1,2},max�∈{�,�}{��

�� = max {14,15}= 15,  

max�∈{�,�}{��
�}= max {17,12}= 17, and 

max�∈{�,�}{��
�}= max {10,9}= 10.  

 
Iteration 2  
Step 1: Using �� = {1,2} we have the following 0-1 
linear problem: 
 

  
          By solving this problem, we obtain 
��

∗ = (1,0,1,0,0)�, and ��
∗ = −31.  

 
Step 2: By ��

∗ = (1,0,1,0,0)� We have,  
 
�� = (8,10,15),�� = {3}≠ �,�� = �� ∪ �� =
{1,2,3},max�∈{�,�}{��

�}= max {8,15}= 15,  

max�∈{�,�}{��
�}= max {17,10}= 17, and 

max�∈{�,�}{��
�}= max {10,13}= 13.  

 
Iteration 3  
Step 1: The corresponding problem to ��  is as 
follows: 
 

  
By solving the above problem, we have ��

∗ =
(1,0,1,0,1)�,��

∗ = −29.   
 
Step 2: Using ��

∗ = (1,0,1,0,1)� we have,  
�� = (11,2,16),�� = {4},�� = �� ∪ �� =
{1,2,3,4},max�∈��{��

�}= max {15,11}= 15,  

max�∈��{��
�}= max {17,2}= 17, and 

max�∈��{��
�}= max {13,16}= 16.  

 
Iteration 4  
Step 1: The corresponding problem to ��  is as 
follows:  

 

 
 
Step 2: The above problem is infeasible. Hence, the 
algorithm has terminated and ��

∗ = (1,1,1,0,0)�, 
��

∗ = (1,0,1,0,1)�,��
∗ = (1,1,1,1,1)�  and 

��
∗ = (1,0,1,0,0)�  are the elements of the 

well-dispersed subset of the non-dominated vectors.   
 
5. Conclusion 
     The major drawback of the previous 
approaches is the difficulty in solving the constrained 
problems due to the increasing number of constraints 
and binary variables with an increase in the number 
of the non-dominated vectors, and therefore they 
increase computational efforts to find the 
non-dominated vectors of an MOILP problem. This 
paper presented a convergent algorithm to find a 
well-dispersed subset of the non-dominated vectors 
of an MOILP problem using �� − norm. In each 
iteration of the proposed algorithm, at least one 
non-dominated vector is found, and it does not 
increase the number of constraints and binary 
variables of the constrained problems. In each 
iteration, the proposed method modifies only right 
hand side of some constraints of a single objective. 
Therefore, proposed algorithm reduces the 
computational efforts for solving an MOILP problem. 
A modified version of this algorithm can be used for 
solving a multi objective mixed integer linear 
programming problems. 
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