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Abstract. Our method tracks the changing rate of the transform parameters and makes prediction on future values of 

the transform parameters to determine the initial searching point. More importantly, noises in the Kalman filter are 

effectively estimated in our approach without any artificial assumption, which makes our method able to adapt to 

various target motions and searching step sizes without any manual intervention. Simulation results demonstrate the 

effectiveness of our algorithm. With a dynamic measurement error covariance computed from these estimates, we 

attempt to produce an overall object tracking filter that combines each algorithm’s best-case behavior while 

diminishing worst-case behavior. This filter is intended to be robust without being programmed with any 

environment-specific rules. 
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1. Introduction 

     Object tracking has been widely applied to video 

retrieval, robotics control, traffic surveillance and 

homing technologies. A lot of object tracking 

algorithms have been reported in literatures, and 

among them the template matching algorithms has 

drawn much attention [1]-[6]. In such algorithms, 

target is modeled by a template, and is tracked in a 

video sequence by matching candidate image regions 

with the template through coordinate transforms. The 

set of transform parameters that yield the highest 

similarity between the template and the mapped 

image region of the current frame represents the 

geometric information of the target. 

     The performance of object tracking heavily 

depends on whether the search for the optimal 

transform parameters can be executed effectively. 

Many fast searching algorithms have been proposed 

in an effort to increase the accuracy of searching 

results while reducing computational complexity. 

Typical algorithms include Three Step Search (TSS) 

[7], 2D-Log Search (2DLS) [8], Block-based 

Gradient Descent Search (BBGDS) [9], and Lucas-

Kanade algorithm [1]. 

     For all the algorithms mentioned above, the 

distraction of local minima is always a serious 

problem frequently leading to the failure to find the 

real coordinate transform parameters. Ideally, the 

image region where real target occupies in the current 

frame should render the largest similarity measure 

and therefore unambiguously make itself stand out 

against the other parts of the frame. When 

background is cluttered, however, some nearby 

objects also generate comparable similarity measure 

and hence confuse tracking algorithms. When 

searching for optimal coordinate transform 

parameters, tracking algorithms frequently find 

themselves trapped into local maxima produced by 

background objects and other interferences. 

     Such a situation can be improved by predicting the 

initial searching point in the space of transform 

parameters for the next frame and reducing searching 

range to ensure unimodalilty of the similarity 

measure. Since most local maxima in the transform 

parameter space reside some distance from the global 

maximum where the target locates, the risk of being 

trapped into local maxima can be substantially 

reduced if the initial searching point is in the close 

vicinity of the global maximum. This requires a good 

prediction of the geometric status of the target in each 

frame. 

     In the realm of object tracking, Kalman filters 

have been used in literatures [6], [11], [12], but few 

of them serve the purpose of predicting the initial 

searching point and enhancing tracking performance 

for the next frame. Besides, the model noises are 

fixed and determined empirically. In this paper, we 

propose an approach which employs Kalman filter to 

track the changing rate of the transform parameters 

instead of directly filtering their values. Then we 
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select the predicted parameters as the initial searching 

point for the next frame. More importantly, after 

analyzing the cause of the model noises in the 

Kalman filter, we propose an effective method to 

estimate the power of those noises. As a result, the 

Kalman filter in our approach can automatically 

adapt to various target motions and searching step 

sizes. Experimental results indicate that the proposed 

method can achieve extremely high accuracy of 

predicting parameters and hence a significant 

decrease in the risk of being distracted by 

background interferences, as well as a considerable 

drop in computational burden. 

     The remainder of this paper is organized as 

follows. Section II focuses on the adaptive Kalman 

prediction of the initial searching point in the 

transform parameter space after a brief review of 

object tracking algorithms based on template 

matching. Experimental results are included in 

Section III. The paper is concluded in Section IV. 

 

 

2. Adaptive Prediction of the Initial 

Searching Point 

 

2.1 Object Tracking Based on Template 

Matching 

     The object (or target) to be tracked is 

characterized by an image called template which is 

generally extracted from the first frame of a video 

sequence. In subsequent frames of the video 

sequence, the template is mapped to the coordinate 

system of the frames by coordinate transforms. A 

searching algorithm tries various combinations of 

transform parameters to find a set of transform 

parameters that maximize the similarity between the 

template and the mapped region of the current frame: 

 

a =arg  max  sim{I[ (X;a),T(X))m
a

               (1) 

     where T(x) is the grey scale value of a template 

pixel located at x in the template coordinate system, 

I(y) is the grey scale value of a frame pixel located at 

y in the frame coordinate system, φ(x;a) is the 

coordinate transform with parameter vector a, 

sim{I,T} is a function that measures the degree of 

similarity between images I and T.  

     Typical examples of sim{I,T} include the 

normalized linear correlation or the inverse of SSD 

(sum of squared difference) between I and T [13]. am 

is the transform parameter vector that the searching 

algorithm assumes to be the one corresponding to 

correct geometric information of the target. 

     The type of the coordinate transform is 

determined by its parameter vector a. For the 

coordinate transform that consists of translation, 

scaling and rotation, a has four components and 

φ(x;a) can be written as: 
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cos sin
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sin cos
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  (2) 

 

     Generally speaking, φ(x;a) can have arbitrarily 

large number of parameters and hence describe 

extremely complex object motions. Yet the model 

described by (2) is sufficient for most real-world 

tracking applications. 

 

2.2. Predicting the Initial Searching Point 

     In order to predict the initial searching point in the 

transform parameter space, possible value of each 

transform parameter in the next frame has to be 

predicted. Since the frame rate is relatively high, we 

can reasonably assume the changing rate of each 

parameter does not alter abruptly over adjacent frame 

intervals. What brings uncertainty to the changing 

rate is the influence of arbitrary motion of the target. 

Such an influence brings about fluctuation of the 

changing rate of the transform parameters, and thus 

can be regarded as noise. We employ an adaptive 

Kalman filter to track the changing rate of the 

parameters. Such a method is especially instrumental 

in predicting, not just smoothing, the geometric status 

of the target. Since different transform parameters 

describe independent aspects of target motion, they 

can be predicted separately. 

      The discussion below therefore focuses on one 

parameter alone and it can be applied to the other 

parameters trivially. The state transition equation and 

the measurement equation for the changing rate of a 

coordinate transform parameter a are: 

 

( ) ( 1) ( 1)v n v n u n                                     (3) 

( ) ( ) ( )mv n v n w n                                           (4) 

 

     where v(n) is the changing rate of the parameter 

defined as a(n)-a(n-1), vm(n) is the measured 

changing rate of the parameter, which is actually the 

increment of the result of parameter search in (1), 

u(n) is the cause of the fluctuation of v(n) and is 

white with the power of σu 
2
(n), and w(n) is the 

measurement noise resulting from the limit in the 

precision of the searching step size for the parameter 

a. It is also white, with the power of σw 
2
(n). 

     Suppose ˆ ( )pv n  is the prediction of v after the 

measurement up to frame n-1 is available, and 

ˆ ( )Ev n is the estimate of v after the measurement up 

to frame n is acquired. If e P (n) denotes the 
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prediction error of v and e E (n) represents the 

estimation error of v, the following equations hold: 

 

ˆ( 1) ( 1) ( 1)E Ev n v n e n                            (5) 

ˆ( ) ( ) ( )P Pv n v n e n                                           (6) 

 

Since the state transition coefficient in (3) is one, the 

estimate of v at frame n-1 serves as the prediction of 

v at frame n: 

 

ˆ ˆ( ) ( 1)P Ev n v n                                                  (7) 

 

From (3), and (5) to (7), the relationship between the 

prediction and the estimation errors can be derived: 

 

( ) ( 1) ( 1)P Ee n e n u n                                    (8) 

  

    As eE(n-1) is uncorrelated with u(n-1), the additive 

relationship remains for the power of the signals in 

(8): 

 
2 2 2( ) ( 1) ( 1)P E un n n                          (9) 

 

Where  σP 
2
 and σE 

2
 are the power of prediction error 

and estimation error, respectively. 

According to the theory of Kalman filtering [10], the 

optimal Kalman gain can be expressed as: 

 

2

2

1
( )

( )
1

( )
w

P

G n
n

n








                                 (10) 

Where the increase in the prediction error or the 

decrease in the measurement noise will lead to the 

rise in the Kalman gain. After the measured value of 

v is obtained at frame n, the estimated value of it can 

be calculated using its predicted value and the 

Kalman-gain-weighted innovation: 

 

ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( )]

ˆ ( ) ( ). ( )

E P m p

p

v n v n G n v n v n

v n G n n

  

 
         (11) 

 

Where, ˆ( ) ( ) ( )m pa n v n v n   is the innovation at 

frame n. 

     Updating the estimate of v leads to the renewal of 

estimation error as: 

 
2 2( ) [1 ( )]. ( )E Pn G n n                                 (12) 

 

  (7) and (9) to (12) form a complete iteration to 

update the prediction of v.  

     After the predicted value of v for frame n+1 is 

obtained by applying (7) after (11), the prediction of 

a at frame n+1 can be written as: 

 

ˆ ˆ( 1) ( ) ( 1)Pn m v n                               (13) 

 

where ˆ ( 1)Pa n   is the prediction of a at frame n+1, 

and am(n) is the searching result of a at frame n. 

ˆ ( 1)Pa n   is usually very close to the real value of 

a(n+1) and the initial searching point for a is 

therefore selected as ˆ ( 1)Pa n  . 

3. Experimental Results 
      In order to examine how the adaptive prediction 

of the initial searching point in the transform 

parameter space can improve the performance of 

object tracking, we compare the tracking results of 

two algorithms that are exactly the same in every 

other aspect except that the first algorithm selects the 

transform parameters predicted by our proposed 

method as the initial searching point for the next 

frame, and the other algorithm just takes the 

parameters found in the current frame as the initial 

searching point for the next frame. For simplicity, we 

denote the algorithm with adaptive prediction of 

initial searching point as Algorithm 1, and the other 

one is represented by Algorithm 2.  

     The model of object motion includes translation 

and scaling. In both algorithms, the searching step 

size is 1 pixel for horizontal location and vertical 

location, and 0.05 for scale. Both algorithms select 

the inverse of SSD as the similarity function [2], and 

use gradient descent search algorithm to look for 

optimal transform parameters. Adaptive Kalman 

appearance filter is employed to update the template. 

     Figs. 1 to 3 illustrate how well our proposed 

method predicts the coordinate transform parameters 

in the next frame. We apply Algorithm 1 to a video 

sequence where the target undergoes much motion 

both in spatial locations and scales. Both actual and 

predicted values of the coordinate transform 

parameters for every frame are plotted in the same 

figure. It can be seen from the figures that our 

method gives a very precise prediction of what the 

parameters are going to be in the next frame. The 

average distance between the initial searching point 

and the actual point in transform parameter space 

reduces from 2.7398 to 0.9632 when we use 

Algorithm 1 instead of Algorithm 2. Such a 

significant drop in the searching distance is extremely 

beneficial to tracking algorithms in terms of 

enhancing tracking stability and decreasing 
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computational burden, as will be demonstrated in the 

following experimental results. 

     Fig. 4 and Fig. 5 exemplify considerable 

improvement of tracking stability when using the 

adaptive prediction of the initial searching point. 

When the initial searching point is much closer to the 

actual point in transform parameter space, tracking 

algorithms are less likely to be distracted by local 

maxima resulting from cluttered background, similar 

objects, or other interferences. This fact is confirmed 

by our experiments in which we deliberately choose a 

video sequence that has a vehicle running on a dark 

road at night. Due to the darkness, the vehicle is 

blurred and is 

     Somewhat, similar to the road When we apply 

Algorithm 2 to track the vehicle, it is not long before 

the algorithm loses the target because of being 

distracted by interferences from the road, as is shown 

in Fig. 4. Algorithm 1, however, successfully locks 

on the target throughout the sequence as is 

demonstrated in Fig. 5. The region in the lower right 

corner of each frame is the overlapped template. 

     Computational burden can also be greatly saved 

by the adaptive prediction of the initial searching 

point. Since the distance between the initial searching 

point and the final result point is substantially 

reduced, it takes searching algorithms in (1) much 

fewer trials to reach a final status, and computational 

complexity is therefore considerably reduced. Fig. 6 

shows the parameter searching trial times of both 

algorithms. The right chart of Fig. 6 demonstrates the 

case where target has relatively high motion. The 

saving of computational burden is as high as 66.8%. 

Even in the case where target has low motion that is 

illustrated in the left chart of Fig. 6, Algorithm 1 can 

still lower computational complexity by 27.1%. Since 

only scalar calculations are involved in the adaptive 

Kalman prediction of the initial searching point, the 

proposed algorithm can be implemented real time at a 

rate of 30fps using C codes on a Pentium-4 1.7GHz 

PC. 

 

 
Fig. 1. Curves of the horizontal location of the 

target. The curve with circles represents the 

actual horizontal target location of every frame, 

and the curve with crosses depicts the predicted 

horizontal target location before every new frame 

is input. 

 
Fig. 2. Curves of the vertical location of the target. 

The meanings of different types of curves are the 

same as in Fig. 1. 
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 Fig. 3. Curves of the target scale. The meanings 

of different types of curves are the same as in Fig. 

1. 

 

 
Fig. 4. Algorithm 2 fails to keep track of the vehicle when facing strong interferences from the background. 

Frame 1, frame 23 and frame 50 are displayed from left to right. 

 
Fig. 5. Algorithm 1 tracks the vehicle perfectly all the time in spite of the existence of strong interferences 

from the background. Frame 1, frame 23 and frame 50 are displayed from left to right. 

 
Fig. 6. Curves of parameter searching trial times over frame indices. The curves with circles show the result 

of Algorithm 2, and the curves with crosses illustrate the result of Algorithm 1. The left chart demonstrates 

the case where target has low motion, and the right chart, high motion. 

 

4. Conclusion 

      In this paper we propose an algorithm which 

adaptively predicts possible coordinate transform 

parameters for the next frame and selects them as the 

initial searching point when looking for the real 

transform parameters. By doing so, tracking 

algorithms have less risk of being distracted by local 

maxima resulting from interferences, and tracking 

performance is thus improved. We use an adaptive 

Kalman filter to achieve this purpose, but instead of 

directly filtering the values of transform parameters, 

we apply the Kalman filter on the changing rate of 

those parameters to effectively predict their future 

values. Moreover, we quantitatively analyze the 

cause of the model noises in the Kalman filter and 

derive their analytical expressions, so that the 
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Kalman filter in our algorithm is automatically and 

correctly tuned when the characteristics of target 

motion change over time, or the searching algorithm 

uses different searching step sizes. 

Experimental results show that our proposed 

algorithm considerably promotes tracking stability 

while substantially decreasing computational 

complexity. 
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