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Abstract: The multi Depot multiple traveling salesman (MmTSP) is the normal status of multiple traveling 

salesman problem (mTSP) whereas there is more than one depot and multiple salesmen in each depot. The 
functional purpose of this problem includes minimizing all travels for each salesman as each salesman starts its own 
travel from one specific depot and returns to the same depot. Since this problem is related to NP-Hard, it is 
impossible to solve it in this real world. Thus; we used some Meta heuristic methods in order to achieve some 
approximate efficient results. We used Meta Heuristic standard genetic algorithm to solve this problem. Despite 
comparing the final results of limited problem with efficient result, the efficiency of parameters as well as the 
strategy of choosing are compared in large scaled in this Meta Heuristic method. In addition, the suggestive 
parameters (New-MX cross-over parameter) in genetic algorithm in an extremely large sizes (100 cities), large (150 
cities), and extra large scale (200 cities) are compared separately, the results show the better combinations of UX#2 
cross-over parameter and the selection strategy of elite parents in extra large scale, the combination of suggestive 
New-MX cross-over parameter, and the competitive binary strategy in large scale as well as the combination of 
PMX cross-over parameter with the binary selection strategy in an extremely large scale. 
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1. Introduction 

Today by the development of manufacturing 
industry, strong global competition among companies 
and corporations, the transient life cycle of goods, the 
necessary time for marketing as well as various needs 
of customers in different places with different 
distances from manufacturing place made some 
corporations in goods and raw material delivery or 
transiting companies promote their efficiency. These 
transiting and delivery systems must be able to 
deliver goods with the least cost in the least possible 
time to submit them to the customers on time. One 
more general form of the famous traveling salesman 
problem (TSP) is the multiple traveling salesman 
problems (mTSP) that consists of finding a collection 
of travels for m salesmen who start from one specific 
depot and return to it. In addition, the multi depots 
multiple traveling salesman problem (MmTSP) is the 
general form of single depot multiple traveling 
salesmen problem whereas despite multi depots, there 
should be multiple salesmen in each depot. The 
required problem of this research is determining 
some specific numbers of travels for each traveling 
salesman as that salesman is obliged to return to the 
depot where they stated their travel. This problem is 
known as fixed depot traveling salesman problem. 

Of the first heuristic methods for solving m travel 
in TSP was introduced by Russel [5] with some 
limitations. Although the method of solving was 

based on converting the problem to simple TSP and 
developing it on a graph, its algorithm was the 
expanded model of heuristic method which was given 
earlier by Lin and Kernighan [10] for TSP.  

The other heuristic method based on the exchange 
procedure for mTSP was introduced by Potvin et al 
[11]. The Parallelism Processing Approach for 
solving mTSP by the use of evolutionary 
programming was first framed by Fogel [12]. There 
are two salesmen wit one purpose traveling this 
approach that minimizes the variance between the 
undertaken travels for each salesman. Some problems 
by the limitation of 25 or 50 cities were solved by 
this improving method which showed some suitable 
responses approximate to optimum. Wachodler et al 
[13] expanded Hopfield-Tank ANN model for mTSP. 
But this model is considered complex due to the 
disability to guaranty the feasible solutions [14]. Hsu 
et al [15] offered one Neural networks Approach for 
solving mTSP based on solving m problems of 
standard TSP. These writers pointed out that they 
achieved better results comparing with what 
Wachodler et al mentioned. One self-organized 
approach to neural networks for mTSP is related to 
Wakhotinsky and Golden [16] which was offered 
based on Elastic Net approach for TSP problem. 
Recently, Modares et al [17] was well as Somhom et 
al [14] introduced one self-organized NN approach 
for mTSP with one minimizing purpose travel that 
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minimizes the cost of the most expensive travel 
among salesmen. 

Using genetic algorithm (GA) for solving mTSP 
was first offered by Zhang et al [1]. One recent uses 
of this is related to Tang et al [18] who used genetic 
Algorithm for solving the expanded model of mTSP 
to program hot rolling Scheduling. The solving is as 
follow: first, this problem is modeled in the form of 
mTSP. Then; this problem is converted to a simple 
TSP. Finally, one refined genetic algorithm is applied 
on it to find the respond. Yu et al [2] also used 
genetic algorithm for solving mTSP in designing the 
travels. Taboo search algorithm (TS) for mTSP was 
used by Ryan et al [3] by an open timing. These 
writers offered one Integer numerical programming 
formulation which was solved by TS algorithm in the 
format of discreet event stimulation. 

Recently, Song et al [19] suggested simulated 
Annealing Approach for mTSP with fixed costs for 
salesmen. This approach was applied for mTSP for 
400 cities and 3 salesmen that responded in a suitable 
time table. Gomes and Von Zuben [20] offered one 
method based on Neuro-Fuzzy system for solving 
mTSP used in capacitated VRP which is a network 
approach based on Fuzzy limitations. Sofge et al [21] 
performed and compared some developed algorithm 
for solving mTSP that consisted of neighborhood 
attractor schema, Shrink-Wrap algorithm for Local 
neighborhood Optimization, particle Swarm 
optimization, Monte-Carlo Optimization, Genetic 
Algorithm, and other developing strategies. Table 1 
illustrated various solving methods of mTSP: 

 
Table 1- mTSP Solutions 

Solving methods 
Problem 
approach 

Linear programming formulas [4], [5] 
Cutting planes [6] 

Branch and bound [8], [28] 
Lagrange's method with branch and 

bound [7] 

 
 

Exact solution 
methods 

Simple Heuristic methods [9], [11] 
Evolutional algorithms [12] 

Simulated Annealing (SA) [19] 
Taboo search (TA) [3] 

* Genetic algorithms (GA) [1], [2], 
[18] 

Neural networks (NN) [13], [14], 
[15], [16], [17]  

 
 
 

Heuristic 
methods 

Asymmetric mTSP to asymmetric TSP 
[22] 

Symmetric mTSP to symmetric TSP 
[23], [24], [25] 

MmTSP to TSP [26], [27] 

 
 

Converts 

 
2. Material and Methods  
Input parameters: 

cij: Distance between i and j cities 

N: the number of total locations 
M: The number of salesmen 
d: the number of depots 
Mk: the number of salesmen in k depot 
V: The total locations (cities) 
V': The total intermediate locations (intermediated 

cities) 
D: Total depots 
L: the maximum number if intermediate cities for 

each salesman to visit 
K: the minimum number of intermediate cities for 

each salesman to visit 
ui: The total visited cities for each salesman before 

arriving to i city (including depot) 
Statement of the problem 

Consider the complete directed 

graph ),( AVG  in which V is the total n points 

(vertices), A is the total arcs, and
)( ijcC 

is the 

cost matrix (distances) for each arc Aji ),( . The 
cost matrix C could be symmetrical, asymmetrical or 
Euclidean. The total set of points is divided as 
V=V'UD as d is the first point from V, makes the set 
of depots (D). At first, there are mk salesmen in k 
depot while the total set of salesmen is m. the total 
intermediated points (cities) includes: 

V'= {d+1, d+2… n} 
indicated the total points which exist along the 

travel from depot to i point for each salesman 
(concluding depot), and L is the highest number if 
points where a salesman must visit. Thus, for 

each 2i ; we have: 
Lui 1

 
k is also the least numbers of points where one 

salesman must visit. It means that if xijk = 1, 

LuK i 
 must be sustained. In figure 1, one 

mTSP problem with 5 cities and 2 salesmen is 
shown. Also in figure 2, one mTSP problem with 10 
cities and 4 salesmen, 2 depots, and 2 salesmen in 
each depot is illustrated which indicated one response 
with 4 travels (one travel for each salesman): 

 
 
 

 
 
 
 
 
 
 
Figure 1: mTSP with 5 cities and 2 salesmen   
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Figure 2: mTSP with 10 cities and 4 salesmen, 2 
depots, 
 
Formulation 

This formulation for some traveling salesmen with 
fixed depots and destinations are as follow:  

This formulation is valid in the case that 

 mnK /2 
 and KmnLK )1(  is 

feasible. Thus, one salesman can not leave one depot, 
visit only one city, and returns to the same depot. As 
the result, the number of cities one salesman must 
visit .without considering the depot, must be at least 2 
cities .The first limitation guarantees that mk 

salesmen exactly exist each DK  depot. The 
second limitation indicated that each point (city) is 
exactly visited once. 

The unity of travels for intermediate points and 
depots are illustrated by the third and forth limitation 
respectfully. Limitations (5) and (6) apply the upper 
and lower limits of visited points to the travels. In 
general, if i is the first point in each travel, these 
limitations set ui equals to 1. The travels with only 
one intermediated point are prohibited by (7) 
limitation. Finally, (8) limitation is subtour 
elimination constraint (SEC) that avoids the existence 
of any sub-travels (under-travel) among 
intermediated points. These sub-travels are some 
blocked travels which are made without any depot as 
start or end point by intermediate points. These could 
appear in the case that there would be no suitable 
SEC in responses. It obviously appears that this 
problem is related to NP-Hard. There is some 

elimination in terms of the number of )( 2dnO  

binary variable as well as )( 2nO  in this formulation. 
One Genetic Algorithm for solving the Mathematical 
Model of MmTSP with Stable Depots and 
Destination  

The purpose is to formulate one mathematical 
model of MmTSP with stable depots and destinations 
based on specific Genetic Algorithm. Hence, there 
will be one almost efficient response for medium 
average problems and one suitable response in one 
logical time for larger problems since we are not able 
to find an optimum response. In addition, we studied 
and compared various parameters of genetic 
algorithm. Six basic parameters must be identified for 
each genetic algorithm at first. Each formulated 
requires its own parameters genetically. The major 
parameters for the genetic algorithm specified for 
MmTSP model with stable depots and destinations 
are considered as follow: 
The partially matched crosses over Parameter 
(PMX): 

In this parameter, two Childs are provided by two 
selected parents as one random place is chosen from 
two parents. Then, the genes related to the parents are 
substituted to be replaced in two Childs. The related 
number of this substituted gene in 1 parent as well as 
the related number of gene in the 2 parent is 
substituted with each other to be planted in saves. 
This practice is performed for almost half of the 
parents. 

As an example in figure 4, the permutation number 
4 was selected in the parent's chromosome and the 
related numbers of genes (7 and 9) are substituted. 
Then, number 9 in the first parent found to be 
substituted by number 7 in Second parent. 
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Paren
t #1 

 6 4 9 2 10 3 7 5 1 8 

 
 

Paren
t #2 

 3 1 10 8 6 2 9 4 7 5 

 
Paren
t #1 

 6 4 7 2 10 3 9 5 1 8 

 
Paren
t #2 

 3 1 10 8 6 2 7 4 9 5 

Figure 3- The partial matched crosses over Parameter 
(PMX) 

 
Union Cross-over #2 parameter (UX#2): 

In this parameter, one salve is produced by two 
parents as one sub-branch of the available genes in 
parent 2 is planted under the sub-branch S1 first. 
Then, the rest the parent genes are planted in sub-
branch S2 like the 1 parent. One of the sub-branches 
is chosen randomly. Next; the first available gene in 
the selected sub-branch is planted in the stable to 
delete it from sun-branch. This process is continued 
till all the available genes under these two sub-
branches would be planted in two Childs. As an 
example, we have the same process in figure 5: 

Parent 
#1 

 4 2 6 3 1 5 
 

Parent 
#2 

 5 1 3 2 6 4 
Sub-branch 
S1 

 3 2 6 
 

Sub-branch 
S2 

 4 1 5 
1- S2 Chose 

Child       5  S2 
: 

 4 1 

2- S1 Chose 
Child      6 5  S1 

: 
 3 2 

2- S2 Chose 
Child     1 6 5  S2 

: 
 4  

2- S1 Chose 
Child    2 1 6 5  S1 

: 
 3  

2- S1 Chose 
Child   3 2 1 6 5  S1 

: 
 Ø  

2- S2 Chose  
Child  4 3 2 1 6 5  S2 

: 
 Ø  

Final 
Child 

 4 3 2 1 6 5 
Figure 4- Union Cross-over #2 parameter (UX#2) 

 
Mutation Parameter: 

 Parameters 1 bit and 2-opt are used as mutation 
parameters for the production of generation randomly 
along with all cross-over parameters. The illustration 
of 1-bit and 2-opt parameters along the travels are 
provided in figure7. As you have noticed, in 1-bit 
method, two travels from two salesmen are chased 

randomly from one parent. Then, one point is deleted 
from the travel to be added to the other travel. In 2-
opt method, two travels from two salesmen are 
chosen from one parent randomly, and two points 
(cities) of two travels are chosen randomly to be 
substituted. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5- 1 bit and 2-opt Mutation Parameter 
 
3. Results  
Comparing the results of optimum solution by branch 
and bound methodology with Lingo v.8 software and 
the genetic algorithm result for the submission 
purpose of total distances is illustrated in table 3. The 
final column of the table shows the variance 
percentage between optimum solution and GA 
responses which is measured by equation (11). 

100
)(

)()(
% 




fitnessLingo

fitnessLingofitnessGA
Gap   

 
Table 3- Comparing the results of optimum solution 
and the genetic algorithm 

Gap% 
GA results Real results 

ID 
Time 
(s) 

Quantity Time 
(s) 

Quantity 

0.74 124 546 223 542 S1 
1.25 127 648 70 639 S2 
3.07 161 772 317 749 S3 
2.97 165 797 451 774 S4 
4.06 227 896 137 861 S5 
4.37 241 930 242 891 S6 

 
Considering the results of table 3, it is clarified that 
we can achieve to some results quite approximate to 
optimum results in medium scale problems by the 
help of genetic algorithm in a shorter time though this 
contiguity of responses will eliminate by increasing 
the problem scale (figure 8). Moreover, the 
comparing of the time of solving problems by genetic 
algorithm and optimum solution by branch and bound 
is illustrated in figure 9. 
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Figure 8- Comparing the GA's propriety function vs. 
optimum solution in average scale problems 
 

 
Figure 9- Comparing the GA's time vs. optimum 
solution in average scale problems 
 
In this section, we were able to compare the results 
achieved by GA and optimum solution by the 
capability of Lingo in solving the problems in this 
scale. For larger sale problems, the most important 
effective parameters in the explained genetic 
algorithm such as cross-over parameters as well as 
selections of parents are compared. According to the 
results of genetic algorithm, these two parameters 
(cross-over parameter and selection strategy of parent 
selection), were more effective comparing with other 
parameters in GA. Any changes in them resulted 
some more changes in the algorithm responses. 
 
Comparing Cross-over parameter and Parent 
selection strategy in GA 
In this section, the results of the performing GA by 
cross-over parameters and selection strategy of 
different parents are offered. The considered cross-
over parameters include: 
 
New-MX, OX, PMX and UX#2.  
The parent selection strategy also includes: 
Elitism strategy, Roulette wheel and Tournament 
Selection strategy 
Comparing the results generally with all cross-over 
parameters and selection strategies for the problems 
with one similar scale, the mean propriety for the 
problems in largish scale, large scale, and extra large 
scale are shown in 10,11 and 12 graphs based on the 
kind of cross-over parameter and parent selection 
strategy. 

 
Figure 10- Comparing the propriety function of 
parameters with 
Various selection strategies in largish scale problems 
(n=100) 

 
Figure 11- Comparing the propriety function of 
parameters with 
Various selection strategies in large scale problems 
(n=150) 

 
Figure 12- Comparing the propriety function of 
parameters with 
Various selection strategies in extra large scale 
problems (n=200) 
 
Considering figure 10, it is shown that cross-over 
parameter UX#2 with elitism parent selection 
strategy has the best mean propriety submission in 
largish scale problems (problems with M1, M2 and 
M3 indicators). As the result, the best function of GA 
explained in largish scale problems is UX#2 cross-
over parameter and elitism parent selection strategy 
along with other shared parameters described in the 
sixth part. Similarly, figure 11 can depot the New-
MX cross-over parameter with tournament parent 
selection strategy has the best mean propriety in large 
scale problems (problems with L1, L2 and L3 
indicators).Thus, The best performance of GA in 
terms of large scale problem is New-MX cross-over 
parameter and tournament parent selection strategy 
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along with other shared parameters described in part 
six. Figure 12 also illustrates that PMX cross-over 
parameter with tournament selection strategy has the 
best mean propriety in extra large scale problem 
(problems with E1, E2 and E3 indicators). As the 
final result, the best performance of GA in terms of 
extra large scale problems is PMX cross-over 
parameter and tournament parent selection strategy 
along with other shared parameters described in part 
six. 
 
conclusion 
In this chapter, Genetic algorithm was first 
introduced as one of randomly search methods. These 
algorithms search the sample problems by the help of 
performing its parameters on group of possible 
solutions for finding approximate optimum solutions. 
The important parameters in creating GA are the 
mode of chromosome illustrations based on the given 
model, the method of designing the parameters as 
well as parent selection strategy. Then, the models 
related to MmTSP with fixed depots and destinations 
are offered. The purpose of this model is finding the 
possible travels for each salesman as to minimize the 
total undertaken distances by each salesman. Then, 
one heuristic genetic algorithm was offered for 
solving this problem. We noticed that evaluating the 
achieved results, Performing GA comparing with 
optimum results by branch and bound methodology 
had a small difference in small and medium scale 
problem. The time was also better than the achieved 
time of optimum solution. Although this exact 
method is not able to achieve to optimum result 
gently by increasing the scale of the problem, the 
presented genetic algorithm can achieved some 
acceptable results for problems with the scale of 350 
cities. 
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