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Abstract: In the context of oil production optimization, finding the well parameters that maximize an objective 
function such as recovery factor or cumulative oil production is an important issue. Reservoir simulation which is 
coupled with automated optimization algorithms are often employed for this work. However, determining the 
optimal well design is a complex and challenging problem due to the reservoir heterogeneity, economic criteria and 
technical uncertainty. Therefore, it is necessary for the development of a powerful and trusted optimization 
algorithm that can detect best production variables with a minimum required number of simulation runs. This study 
presents a hybrid approach that employs experimental design and genetic algorithm to determine the optimum well 
parameters in different models. In this approach, experimental design is used to establish the initial population of 
solution vectors. The performance of hybrid method has been compared with a standalone genetic algorithm. Results 
show that the proposed method is a quick and precise approach for the optimization problems compared to the 
standalone genetic algorithm. 
[Yazdanpanah A, Hashemi A. Production Optimization Using an Experimental Design and Genetic Algorithm. 
J Am Sci 2012;8(11):629-634]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 93 
 
Keywords: Production optimization; genetic algorithm; experimental design; hybrid methodology. 
 
1. Introduction 

Production optimization is a crucial stage in 
integrated reservoir management which considerably 
affects the efficiency of an oil reservoir. Several 
parameters such as optimum number, type, 
production rate and location of wells should be 
optimized in an optimization project. In addition, this 
problem is substantially more complicated if different 
engineering, geological and economic variables are 
included. Thus, traditional optimization methods 
must be evaluate hundreds or even thousands 
potential scenarios for searching for the optimal 
solution using numerical reservoir simulations. For 
this reason, intelligent optimization algorithms are 
commonly used for this nonlinear and high 
dimensionally problems that usually contains local 
optima. The computational algorithms employed for 
this major divided into two main groups: gradient 
free or stochastic algorithms and gradient based 
algorithms.  

In gradient based methods, the derivative, or 
gradient, of the objective function with respect to the 
control variables is calculated. The most common 
gradient based optimization algorithms for 
production optimization are simultaneous 
perturbation stochastic approximation (Bangerth et 
al., 2006), finite difference gradient algorithm 
(Bangerth et al., 2006) and adjoint-based gradient 
algorithms (Zandvliet et al., 2008). The broad 
advantage of gradient based methods is that 
convergence is faster than the gradient free approach. 
One of the main problems of the gradient based 
methods is that it often converges to a local optimum 

of the objective function instead of the global optima.  
In contrast to gradient based methods, the 

gradient free methods do not require the computation 
of cost function derivatives and use just the objective 
function values determined by performing function 
evaluations. Gradient-free methods suitable for use in 
production optimization can be classified into two 
categories. The first category consists of 
deterministic methods such as generalized pattern 
search (Ciaurri et al., 2011), Hooke-Jeeves direct 
search (Aliyev, 2011) and Nelder-Mead simplex 
method (Siemek and Stopa, 2006). The second 
category including stochastic or global methods such 
as simulated annealing (Beckner and Song, 1995), 
genetic algorithm (Bittencourt and Horne, 1997; 
Montes et al., 2001; Emerick et al., 2009; Morales et 
al., 2010), particle swarm optimization (Onwunalu 
and Durlofsky, 2010), harmonic search algorithm 
(Afshari et al., 2011), ant colony optimization 
(Razavi and Farahani, 2010) and covariance matrix 
adaptation evolution strategy (Ding, 2008). The first 
category is generally very robust, search locally and 
thus requires fewer function evaluations. Though 
they are very sensitive to initial guess of variables 
and can get trapped in local optima. The second 
category can, in theory, avoid this problem but has 
the disadvantages of not increasing objective function 
at each iteration and requiring many forward 
reservoir simulations (Zandvliet et al., 2008).  

Conventionally, reservoir and production 
engineers perform many simulations for different 
values of each uncertain parameter. This method, 
though exact, generally does not take into 
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consideration the possible interactions that exist 
between the parameters as is common in oil and gas 
systems. Experimental design overcomes this major 
limitation and provides a robust approach to 
assessing uncertainty. The concept of experimental 
design refers to the process of defining a set of 
experiments or simulations in a systematic, 
predefined and statistically correct way (Purwar, 
2008). 

In order to provide a better explanation and 
presentation of this research work the paper is 
divided into the six parts. The second part contains a 
brief description of the genetic algorithm. In the third 
part, experimental design methodology is explained. 
In the fourth part, combination of experimental 
design and genetic algorithm is described. Then, the 
hybrid procedure is applied to different case studies 
including both synthetic and numerical cases, and the 
result of hybridized method is compared to that of 
standalone genetic algorithm. The final section 
summarizes the results of the present work. 
2. Genetic Algorithm 

The genetic algorithm (GA) is a stochastic 
computation technique based on the principles of 
natural evolution and selection which developed by 
John Holland and his co workers in 1975. GA uses a 
set of candidate solutions at every iteration. Each of 
these candidate solutions is called an individual and 
the collection of individuals is called the population. 
Conventionally, GA starts its search from the seed 
(initial population) which generated randomly. GA 
evaluates the fitness of each individual by obtaining 
its objective function and the selection operator 
chooses the individuals with the highest objective 
function values in the population to be parents, which 
will produce the next generation of populations. The 
selection operator simulates the survival of the fittest 
evolution strategy in nature. After selecting the best 
individuals as parents, the crossover operator is 
applied randomly to paired parents to form new 
population of individuals for the next generation. The 
crossover operator mimics the mating process that 
occurs in genetic chromosomes during reproduction. 
Crossover propagates features of good surviving 
designs from the current population into the future 
population, which will have a better fitness value on 
average. Another major GA operator is the mutation 
operator. It is analogous to biological mutation. In 
mutation, a specific element of an individual or 
solution vector is probabilistically changed to a new 
value. The purpose of mutation in GA is preventing 
the algorithm from get stuck in local optima and 
inserting diversity. GA uses mentioned operators to 
generate new population from existing individuals. 
The computations are terminated when the stopping 
criteria (maximum number of generations, etc.) is 

satisfied. 
2.1 Objective Function 

The objective function in this study is 
undiscounted net present value (NPV) in. The 
objective function is given by: 
NPV =po

prodQo
prod(x) - pw

prodQw
prod(x) - Cdrill         (1) 

here po
prod indicates the price of oil, pw

prod is the 
cost of produced water, Qo

prod and Qw
prod are the 

cumulative oil and water produced (these 
quantities are obtained from the reservoir 
simulation output) and Cdrill is the drilling and 
completion cost. The economical parameters used 
to calculate NPV are shown in Table 1.  
 
Table 1. Economic parameters used to calculate the 

NPV 
Economic parameter Value 

Oil selling price ($/STB) 80 
Water production cost ($/STB) 20 

Drilling and completion cost ($) 5×106 
3. Experimental Design Methodology 

Experimental design methodology is able to 
select the effective uncertain parameters and to study 
their effect on the reservoir production with the 
minimum number of simulator runs (Moeinikia, 
2012). A series of design of experiments has been 
proposed, which aim at maximizing the amount of 
information from a minimum number of runs. In 
general, the design of experiments techniques can be 
classified as classical and space filling design of 
experiments techniques. The classical techniques 
were developed for laboratory and field experiments 
while the space filling design methods relate to 
deterministic computer simulations. In this study we 
apply a Latin hypercube design as an efficient space 
filling design method to generate the initial 
population of solution vectors. 

Latin hypercube sampling (LHS) was 
introduced by McKay et al., in 1979. Whereas other 
methods either choice values at limits or predefined 
levels or produce very large numbers of designs, LHS 
guarantees that the entire parameter space is 
represented and the number of experiments is kept 
intelligently low. The basis of this method is random 
number generation, which works well with 
cumulative distribution function (CDF). The CDF of 
a random variable x can be defined in terms of its 
continuous probability distribution function f as 
follows: 

CDF(x) = ∫ f(t)dt
�

�∞
                                         (2) 

For a discrete distribution, the CDF can be expressed 
as: 
CDF(x) = ∑ f(i)�

���                                             (3) 
LHS method divides the CDF into a number of equal 
sections. The same number of sections is applied to 
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each parameter CDF. The sampling process is forced 
to pick each section with the same frequency. Repeat 
selections are allowed after all sections have been 
selected once. In other words, second visit of the 
section is not permitted until all sections have one 
visit. For this reason, LHS is considered to be more 
efficient. The LHS procedure ensures that all parts of 
the distribution are sampled uniformly. 
4. Hybrid Methodology 

Hybrid method is a coupled optimization 
process using a LHS for the initial iterations and a 
genetic algorithm starting from an automatically 
selected set of the best cases, i.e., initial population. 
The Figure 1 shows the generic workflow diagram of 
this method. A space filling sampling is used to select 
and simulate N (initial ensemble size) cases. The best 
L cases are used as starting points for the 
optimization process. Then, they will be written in a 
text file to be supplied to reservoir simulator 
(Eclipse). In the next step, reservoir simulator is run 
with the supplied settings. Once the simulation run is 
finished, the GA reads the simulated parameters, i.e. 
cumulative oil production and cumulative water 
production in this problem, and calculates the 
objective function. These steps are repeated for each 
individual in the population before the selection 
process takes place. Once all individuals are 
simulated, the GA sorts these individuals based on 
their objective function values and then selects the 
individuals that will contribute to the creation of the 
next generation. GA operators such as crossover and 
mutation are applied to the selected individuals to 
form the next generation. The whole process is 
repeated for the next generations until termination 
criteria are met. 
5. Results 

In this part, the algorithms described in the 
previous sections are applied to different examples. 
Results for standalone and hybrid algorithms are 
presented. 
5.1 Numerical Test Example 

In this section, the performance of the 
standalone GA and hybridized method are evaluated 
using a multi dimensional benchmark optimization 
problem that contains multiple local optima. This 
problem is a minimization problem. The optimization 
problem (Griewangk function) is specified as 
follows:  

�(�) = ∑
��
�

����

�
��� −∏ (

���(��)

√�
)�

��� (4)   

Subject to: -10 ≤ xj ≤ 100, i = 1, 2, 3… 8, the global 
minima: x* = (0… 0), J(x*) = 0 

First, in order to show the effect of the initial 
population on the optimization procedure, the GA is 
run (Table 2 summarizes the genetic algorithm 
parameters) with four different (random) initial 

population. Each curve illustrates the average 
convergence for 900 separate runs of a GA. As 
shown in Figure 2, the differences in the best 
objective function values are quite significant. This 
indicates that the initial population has a phenomenal 
effect on the performance of a GA. For hybrid 
algorithm, the space filling design is used to select 60 
cases (initial ensemble size). The best cases in the 
ensemble are then used as an initial population in GA 
search. It is also obvious that the hybridized GA with 
experimental design (GA-ED) gives better results 
compared with a standalone GA. 

 
Figure 1. Flowchart for combination of experimental 

design and genetic algorithm 
 

Table 2. Genetic algorithm parameters 
Economic parameter Value 
Population size 30 
Crossover probability 0.9 

Mutation probability 0.05 
Selection scheme Rank based 

 
Figure 2. The performance of a genetic algorithm for 

Griewangk function 
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5.2 Injection Well Location Optimization in a 
Homogenous 5-Spot Pattern 

The reservoir model used for this problem is 
shown in Figure 3. The model contains 50×50 grid 
blocks, with each block of dimensions 20×20×50 
ft3.The properties of the reservoir are shown in Table 
3. Four oil production wells are located in the four 
corners of the reservoir. Standalone GA and 
hybridized GA with experimental design 
methodology are used to find the optimum location 
of one injection well in this model. So, each 
individual in the GA consist of 2 variables as x and y 
to indicate the two dimensional location of the 
injection well. After each individual is simulated, the 
relevant objective function (NPV) can be calculated. 
Economic parameters used to calculate NPV have 
been summarized in Table 1. For standalone runs, the 
GA population size is 5 and the number of iterations 
is also 30, so the total number of function evaluations 
is 150. The GA is run (Table 4 summarizes the 
genetic algorithm parameters) with four different 
initial population. For hybrid algorithm, the 
maximum number of function evaluations is also set 
to 150. For hybrid algorithms, the space filling design 
is used to select 40 cases (initial ensemble size). 
Simulator is run for 40 function evaluations and the 
best cases in the ensemble are then used as an initial 
population in GA search. The global optimum well 
location occurs at x=25 and y=25. The corresponding 
optimal NPV is $7×107. 

 

 
Figure 3. Reservoir model 

 
Figure 4 presents results for standalone GA 

and Figure 5 represents the results for hybrid method 
and the arithmetic averages of the different 
standalone GA runs. As it can be observed in Figure 
5, On average ,GA has found the optimum location 
for the injection well after 150 function evaluations, 
yielding the well coordinate at x=25 and y=25 (i.e., 
center of reservoir) and hence confirming the 
maximum performance of five spot pattern.  
 

Table 3. Basic reservoir properties 
Economic parameter Value 
Initial pressure (psi) 4800 
Porosity 0.2 
Permeability (milli Darcy) 200 
Oil density (lb/ft3) 55 
Water density (lb/ft3) 62.43 
Injection well pressure (psi) 5000 
Production well pressure (psi) 1000 
Simulation time (day) 100 

Table 4. Genetic algorithm parameters 
Economic parameter Value 
Population size 5 
Crossover probability 0.9 

Mutation probability 0.05 
Selection scheme Rank based 

 
As shown in Figure 5, it can be seen the 

hybrid method perform better than standalone GA in 
terms of the number of function evaluations required 
to attain the optimum solution. In this example, in the 
76th function evaluations, the GA-ED solution 
achieves the global optimum, while the GA 
achievement of this optimum after the 150th function 
evaluations. This example demonstrates the 
importance of running GA after experimental design. 

                

 
Figure 4. The performance of a genetic algorithm 

with different initial population 

Figure 5. The progress of optimization process 
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5.3 Single Well Model 
The single well model used in this case is 

shown in Figure 6. Porosity varies from cell to cell; 
the average porosity is 0.14. The objective function is 
maximized by determining the completion interval 
(1-50) in Z-coordinates and bottomhole pressure 
(BHP) (100<BHP<initial pressure) of the production 
well. For standalone runs, the GA population size is 5 
and the number of iterations is 30, so the total 
number of function evaluations is 150. The GA is run 
(the algorithmic settings are the same as in the 
previous case) with three different initial population. 
For hybridized method, the maximum number of 
function evaluations is also set to 150. For hybrid 
algorithms, the space filling design is used to select 
50 cases (initial ensemble size). The simulator is run 
for 50 function evaluations and the best cases in the 
ensemble are then used as an initial population in GA 
search.  

Figure 7 presents results for standalone GA. 
Figure 8 represents the results for hybrid method and 
the arithmetic averages of the different standalone 
GA runs. It is apparent from Figure 8 that the hybrid 
method outperforms the standalone GA in terms of 
both efficiency and the quality of the final solution. 
This validates the hybridization idea of starting with 
a robust space filling design for initial exploration of 
the solution space and then using a more efficient 
global search algorithm to quickly converge to an 
optimal solution. 

      
Figure 6. Single well model 

Figure 7. The performance of a genetic algorithm 
with different initial population 

 
Figure 8. The progress of optimization 

 
6. Conclusions 

Based on the results obtained from this study 
the GAs are seed dependent algorithms. Fitter initial 
population are more possible to generate superior 
solutions and also the optimization processes require 
less function evaluation.  

Space filling design methodology covers the 
whole uncertainty available in the system with the 
minimum number of simulation runs. Actually, this 
method, as an unbiased approach, has the potential of 
adding valuable information to the reservoir 
development plan and also, of saving considerable 
time.  

In this study, a novel hybrid method which 
consists of two parts, first part with space filling 
design and the second phase with the genetic 
algorithm were investigated for optimization 
problems. The results of this study shows that by 
direct employment of experimental design 
methodology with genetic algorithm, one can get the 
precise results with the least number of simulation 
runs instead of running the simulator several times in 
a genetic algorithm with randomly initialization. This 
increase in GA performance occurs because it directs 
the search toward the global optimum.  
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