Antimicrobial Resistance of Gram-Negative Bacilli Causing Infections in Intensive Care Units in Makkah Hospitals- Saudi Arabia

Atif H. Asghar

Department of Environmental and Health Research, The Custodian of The Two Holy Mosques Institute of Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia. P.O. Box: 6287, Makkah, Saudi Arabia. asghar1000@gmail.com

Abstract: The aim of the present study was to determine the incidence and antimicrobial susceptibility patterns of the most common gram-negative bacteria (GNB) causing infections in the intensive care units (ICUs) of Makkah hospitals. In addition to evaluate the production of extended spectrum- β -lactamases (ESBL) in *Klebsiella pneumoniae* and *Escherichia coli* as well as metallo- β -lactamases (MBL) in *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. A total of 509 gram-negative pathogens were isolated from clinical specimens of patients admitted ICUs of Makkah hospitals between September 2009 and March 2010. The specimens were microbiologically investigated by the routine methods, and antibiotic susceptibility was performed by using automated instruments. ESBLs and MBLs were detected by polymerase chain reaction. *A. baumannii* was the common bacteria (37%) isolated from ICUs, followed by *P. aeruginosa* (29.1%), *K. pneumonia* (22.8%) and *E. coli* (10.6%). *P. aeruginosa* and *A. baumannii* isolates were highly resistant towards the most antibiotic agents. ESBLs production was identified in 37.1% and 31.5% of *K. pneumonia* and *E. coli* isolates, respectively, and MBLs in 20.9% of *P. aeruginosa* and 68.6% of *A. baumannii* isolates. In conclusion, GNB cause several nosocomial infections in ICUs patients of Makkah hospitals with high resistant rate to antimicrobial agents.

[Atif H. Asghar. Antimicrobial Resistance of Gram-Negative Bacilli Causing Infections in Intensive Care Units in Makkah Hospitals- Saudi Arabia. J Am Sci 2012;8(11):720-725]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 101

Keywords: Gram-negative bacteria, antibiotic susceptibility, nosocomial infection

1. Introduction

Many studies have indicated that Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli are the most frequently isolated gram-negative bacilli (GNB) from intensive care units (ICU) [1,2]. Emerging antimicrobial-resistant strains of these pathogens included multidrug-resistant A. baumannii and P. aeruginosa, cephalosporin - or fluoroquinoloneresistant E. coli, and extended-spectrum betalactamase-producing Klebsiella pneumoniae and E. *coli* [3-5]. Among β -lactam antibiotics, carbapenems have been successfully used to evade bacterial resistance, but carbapenem resistance due to the production of metallo-*β*-lactamases (MBLs) has been increasingly reported, particularly for P. aeruginosa and Acinetobacter spp [6,7]. In recent years, carbapenem resistance in P. aeruginosa and Acinetobacter spp. has gradually increased in different parts of the world, and a significant proportion of these carbapenem-resistant isolates have been shown to produce VIM-2- or IMP-1-type MBL [8].

Extended-spectrum β -lactamases (ESBLs) clavulanate-susceptible enzymes that present a wide resistance to penicillins, aztreonam and cephalosporins (except cephamycins) have been previously detected in *K. pneumoniae* and *E. Coli*

[9,10]. ESBL production is often plasmid-mediated, with most being mutants of the classic TEM and SHV enzymes, with one or more amino acid substitutions around the active site. These changes allow the hydrolysis of extended-spectrum cephalosporins (e.g. ceftazidime, cefotaxime) and monobactams (e.g. aztreonam), which remain stable only against classic TEM and SHV enzymes [9,11]. However, it has been reported that the emergence of β -lactamases belonging to other families, such as PER, VEB, CTX-M and/or OXA derivatives, is increasing worldwide [9,12].

Previously, many studies have recorded the prevalence and mechanism of resistance among GNB isolated from ICU patients, particularly for A. baumannii, P. aeruginosa, K. pneumoniae and E. coli. However, few studies have examined the prevalence of GNB in Saudi Arabia. No recent information is thus available regarding the prevalence and types of ESBL and MBL production among GNB in the Makkah region. Therefore, the current study aimed to determine the incidence and antibiotic resistance patterns among GNB (E. coli, K. pneumoniae, P. aeruginosa, A. baumannii) causing infections in patients admitted to ICUs of Makkah hospitals. In addition, the production of ESBLs and its types (TEM, SHV, CTX-m) in E. coli and K. pneumoniae was investigated. The production of MBLs and its types

(VIM, IMP) in *A. baumannii* and *P. aeruginosa* was also examined.

2. Materials and Methods

Study Design

This prospective study was carried out in the three main tertiary care hospitals in Makkah city: Al-Noor Specialist Hospital (560 beds), Hera General Hospital (276 beds) and King Abdulaziz Hospital (400 beds) between September 2009 to March 2010.

Patients and Clinical Isolates

A total of 509 non-duplicated clinical isolates of GNB (*P. aeruginosa, A. baumannii, K. pneumoniae, E. coli*) were collected from 313 patients hospitalised in ICUs during the study period. Data were recorded on individual sheet forms, including age, gender, nationality, etc. The clinical isolates were identified by routine microbiological methods. Antimicrobial susceptibility tests were performed for the all clinical isolates using automated instruments (Phoenix 100 BD, USA, and MicroScan Walkaway 96, Siemens, Germany). Minimum inhibitory concentration (MIC) using commercial E-test MIC strips for imipenem were used for *P. aeruginosa* and *A. baumannii*.

Determination of ESBL and MBL-producing isolates

In order to identify the suspected ESBLproducing isolates among E. coli and K. pneumoniae, the antimicrobial susceptibility disc diffusion method (according to CLSI) was used for cefotaxime, ceftazidime. cefotrixone (third-generation cephalosporins), cefoxitin (second-generation) and aztreonam [13]. E. coli ATCC25922 (susceptible strain) and K. pneumoniae ATCC700603 (ESBLproducing strain) were included as quality controls [13]. Double-disk synergy test (DDST) was used as a confirmatory method for suspected ESBL-producing isolates [14]. All P. aeruginosa and A. baumannii clinical isolates were examined for MBL production as previously described [15]. The detection of ESBL types (bla_{TEM} , bla_{SHV} , bla_{CTX-M}) in E. coli and K. pneumoniae and MBL types (VIM, IMP) in P. aeruginosa and A. baumannii was performed for suspected clinical isolates using the PCR amplification technique as described previously [16,17].

Statistical Analysis

All clinical and microbiological outcomes were analysed and assessed using the Statistical Package for Social Sciences IBM SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA).

3. Results

A total of 509 GNB (*P. aeruginosa*, 148; *A. baumanni*, 191; *K. pneumoniae*, 116; *E. coli*, 54) were isolated from clinical specimens obtained from the ICUs of Makkah hospitals. Gram-negative infections in the ICU were distributed among 30 different nationalities. The majority were Saudi individuals

(50.9%), followed by Pakistani (8.8%), Indian (5.9%), Egyptian (5.7%) and Yemeni (5.1%) individuals. The most age group affected by gram-negative infections was above 60 years old (Fig. 1). The majority of gram-negative strains were isolated from sputum (45.6%), followed by urine (13.6%), wound swabs (11.6%), tracheal aspirates (11.4%) and blood (10.4%). The majority of P. aeruginosa (47.3%) and A. baumannii (41.4%) were isolated from the Al-Noor Specialist Hospital. However, K. pneumoniae were mainly isolated from Hera General Hospital (42.2%). Most male patients were infected by A. baumannii (63.9%), followed by *P. aeruginosa* (56.1%). However, female patients were more infected by K. pneumoniae (55.2%) than males. A. baumannii, P. aeruginosa, and K. pneumoniae were the most pathogenic bacteria causing RTIs representing 77.5%, 67.6% and 49.1%, respectively; however E. coli most frequently caused UTIs (42.6%), (Table 1).

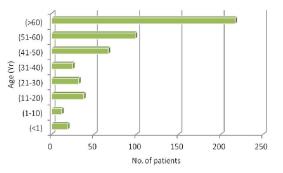


Figure 1. Distribution of common gram-negative bacteria isolated from Makkah hospitals according to patients age

P. aeruginosa and *A. baumannii* showed high resistance towards most antibiotics (Table 2). Some anti-pseudomonal agents showed moderate activity against *P. aeruginosa*, including piperacillin (43.8%), imipenem (43.9%), amikacin (46.7%) meropenem (53.2%) and gentamicin (55.1%). *A. baumannii* isolates were highly resistant to piperacillin (99.2%), ceftazidime (97.2%), ciprofloxacin (96%) and pipercaillin/tazobactam (94.5%). The susceptibility rate for *E. coli* and *K. pneumoniae* to imipenem was very high. Gentamycin showed a moderate activity against both *E. coli* and *K. pneumoniae* at 47.1% and 50.9%, respectively (Table 3).

A total of 60 isolates (*K. pneumoniae* 43/37.1%, and *E. Coli*, 17/31.5%) were confirmed as ESBLproducing strains by DDST. The most frequent β lactamase type present in *K. pneumoniae* was CTX-M (81.4%); however, *E. coli* showed an equal percentage of isolates harbouring TEM and CTX-M (58.8%), (Table 4). The MIC₅₀ and MIC₉₀ of imipenem against *P. aeruginosa* was 0.5 and 2, respectively. For *A. baumannii*, the MIC₅₀ and MIC₉₀ were above 32, indicating a high resistance rate to imipenem. Isolates that resistant to imipenem and/or meropenem were examined for MBL production. The results revealed that, 31 isolates (20.9%) of *P. aeruginosa* and 131 isolates (68.6%) of *A. baumannii* were MBL-producing isolates. All MBL-positive isolates for both organisms were multidrug-resistant, being resistant to

imipenem, meropenem, ceftazidime, piperacillin/tazobactam, ciprofloxacin and gentamycin.

The PCR results confirmed the presence of *bla*VIM and *bla*IMP in 6 and 7 out of 31 *P. aeruginosa* isolates, respectively. MBL genes were also found in *A. baumannii*, wherein the VIM and IMP types were represented in 22 and 26 isolates, respectively (Table 5).

Table 1. Distributioninfection.	of P. aeruginosa, A. baumannii, K. pneumoniae and E. coli isolated from ICUs according	g to type of
	Type of infection	

		Type of infection									
Isolated Organism		Septicemia RTI		TI	I UTI		Wound Infection		Genital Infection		Total
	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	
P. aeruginosa	16	10.8	100	67.6	13	8.8	18	12.2	1	0.7	148
A. baumannii	13	6.8	148	77.5	14	7.3	16	8.4	0	0	191
K. pneumoniae	18	15.5	57	49.1	20	17.2	19	16.4	2	1.7	116
E.coli	10	18.5	10	18.5	23	42.6	9	16.7	2	3.7	54

Antimiarchial agenta	P	A. baumannii				
Antimicrobial agents	Total	Ν	%	Total	N	%
Amikacin	135	63	46.7	168	156	92.9
Cefepime	132	91	68.9	154	143	92.9
Ceftazidime	116	73	62.9	176	171	97.2
Ciprofloxacin	97	58	59.8	149	143	96
Gentamycin	138	76	55.1	179	144	80.5
Imipenem	139	61	43.9	183	160	87.4
Meropenem	62	33	53.2	107	99	92.5
Piperacillin	89	39	43.8	120	119	99.2
Piperacillin/tazobactam	88	50	56.8	109	103	94.5

A	К.	pneumoni	E. coli			
Antimicrobial agents	Total	N	%	Total	Ν	%
Amoxicillin/clavulanic acid	102	72	70.6	51	34	66.7
Ampicillin	96	96	100	52	43	82.7
Aztreonam	55	40	72.7	29	15	51.7
Cefepime	90	54	60	38	21	55.3
Cefotaxime	99	62	62.6	50	27	54
Cefotriaxone	55	31	56.4	28	13	46.4
Cefoxitin	68	30	44.1	40	11	27.5
Ceftazidime	99	63	63.6	49	26	53.1
Cefuroxime	99	61	61.6	50	28	56
Cephalothin	46	36	78.3	32	29	90.6
Ciprofloxacin	92	49	53.3	40	23	57.5
Gentamycin	106	54	50.9	51	24	47.1
Imipenem	106	14	13.2	50	3	6
Meropenem	42	7	16.6	27	1	3.7
Nitrofurantoin	32	24	75	28	9	32.1
Norfloxacin	30	13	43.3	27	12	44.4
Piperacillin	45	38	84.4	22	20	90.9
Piperacillin/tazobactam	85	40	47.1	44	21	47.4
Tetracyclin	56	34	60.7	30	21	70
Trimethoprim/sulfamethoxazole	104	67	64.4	50	36	72

Table 4. ESBL types among E. coli- and K. pneumonia-ESBL producing isolates.									
Icolated ergenigme (N)]	ΈM	S	SHV	CTX-M				
Isolated organisms (N)	N.	%	N.	%	N.	%			
K. pneumoniae (43)	22	51.2	20	46.5	35	81.4			
E. coli (17)	10	58.8	4	23.5	10	58.8			

Table 5. Types of MBL in P. aeruginosa and A. baumannii clinical isolates

Isolated organisms (N)	bla	aVIM	bla	IMP	blaVIM and blaIMP		
Isolated organisms (N)	N	%	N	%	Ν	%	
P. aeruginosa (31)	6	19.4	7	22.6	2	6.5	
A. baumannii (131)	22	16.8	26	19.8	6	4.6	

4. Discussion

The current study's location was selected for its importance and relevance, since millions of Muslims travel to Makkah annually to perform Umrah and/or Hajj rituals. A mass gathering of so many people from different parts of the world in a limited area increases the susceptibility for infection [18]. In the present study, most patients infected by gram-negative bacteria were aged 60 years or above. The mean age of patients with infections in ICUs is known to be \sim 55.3 years [19]. The most common bacteria isolated in this study were A. baumannii followed by P. aeruginosa, K. pneumoniae and E. coli. In another local study, it was shown that A. baumannii remains the most common bacteria isolated from the ICU, followed by P. aeruginosa, E. coli and K. pneumonia [20]. The majority of *P. aeruginosa* and *A. baumannii* were isolated from the Al-Noor Specialist Hospital. This hospital is the largest hospital in Makkah with approximately 560 beds and includes many clinical wards including burns department. It has been reported that infection is one of the most serious complications in burn patients, with P. aeruginosa being the most important, resistant and dangerous organism in infections in burns patients [21]. However, K. pneumoniae were most frequently isolated from specimens from Hera General Hospital. Further studies are needed to investigate the cause of increased K. pneumoniae infections in this hospital.

In the current study, the maximum number of *E.* coli isolates were found in urine specimens (43%), followed by wound swabs (17%). In a related study, 54% of isolated *E. coli* have been observed in urine specimens [22]. Moreover, *A. baumannii*, *P. aeruginosa* and *K. pneumoniae* were the most pathogenic bacteria causing RTIs representing 77.5%, 67.6% and 49.1%, respectively. A study in China has previously demonstrated similar results, i.e. the most common pathogenic bacteria causing RTI were *A. baumannii*, *P. aeruginosa*, and *K. Pneumonia* [22]. *E. coli* was the causative organism most frequently causing UTIs in the present study, with identical findings being observed by the study in China [22].

P. aeruginosa and A. baumannii showed high resistance towards most antibiotics tested in this study. A lower susceptibility of P. aeruginosa and A. baumannii towards various antibiotics has been shown in a recent study in other regions of Saudi Arabia [20]. The susceptibility of strains isolated between 2004-2009 were compared, and it was concluded that antibiotic susceptibility was significantly decreased in many organisms including A. baumannii and P. Aeruginosa [20]. The study showed that E. coli and K. pneumoniae isolates had a high susceptibility to imipenem, while a moderate susceptibility to gentamycin. Aljohani et al. [20] observed that antibiotic susceptibility markedly decreased in E. coli between 2004-2009, reaching 50% for cefuroxime, ceftazidime, cefotaxime and cefepime. Similarly, another international study has shown that E. coli and *K. pneumoniae* is highly susceptible to imipenem [22].

Both blaIMP and blaVIM genes have been reported worldwide in clinical isolates of gramnegative pathogens [23,24]. Many previous studies have reported that IMP- and VIM-producing Pseudomonas isolates are distributed worldwide [21,25]. The clinically important MBL families are located in horizontally transferrable gene cassettes and can be spread among gram-negative bacteria [25]. In the present study, 73.8% of P. aeruginosa isolates were identified as MBL-producing isolates, 48.4% of these isolates harbouring MBL genes; blaVIM and blaIMP were distributed in 19.4% and 22.6% of the isolates, respectively, Regarding A. baumannii, only 16.8% and 19.8% possessed the blaVIM and blaIMP genes, respectively. In contrast, a recent study in Saudi Arabia showed that all P. aeruginosa MBLproducing isolates harboured a VIM-like gene [26]. Similarly, P. aeruginosa strains isolated from a hospital in Iran possessed blaVIM gene, although no blaIMP gene was detected [25]. Studies reporting VIM are more numerous than those involving IMP; in some studies. IMP has not been detected in isolated MBL-producing Pseudomonas strains [27,28].

The results in the present study demonstrated that certain isolates presented positive results for MBL

production but did not harbour either blaVIM or blaIMP genes. This could be explained by the presence of putative proteins belonging to MBLs other than IMP- and VIM-predominant MBLs. Many MBLproducing isolates in this study were multidrugresistant, which is a major problem in choosing antibiotic therapy. The multidrug resistance of these isolates plays an important role in the colonization or infection of chronically hospitalised patients [21]. For efficient treatment of nosocomial infections caused by such multi-resistant isolates, clinicians often have to choose the most effective fluoroquinolones or combinations of different antibiotics [21]. Over the last several decades, many β-lactamases have emerged due to the extensive use of β -lactam antibiotics in clinical practice.

Gram-negative bacilli can also produce ESBLs, which are enzymes that have the capability to hydrolyse β -lactam antibiotics containing an oxyimino group (third-generation cephalosporins and aztreonam); these are inhibited by β -lactamase inhibitors such as clavulanic acid, sulbactam and tazobactam [29]. ESBLs are usually plasmid-mediated β -lactamases, most commonly found in K. pneumoniae. E. coli and other gram-negative bacilli [30]. ESBL enzymes are classified into nine families based on their amino acid sequences, wherein TEM, SHV and CTX-M enzymes form major families [30]. In the current study, 170 clinical isolates (K. pneumoniae, 116; E. coli, 54) were isolated from ICUs and assessed for ESBL production based on CLSI guidelines. Of these, 60 isolates (K. pneumoniae, 37.1%; E. coli, 31.5%) were identified as ESBL-producing strains. A previous studies in Saudi Arabia have demonstrated a moderate to high rate of ESBL production (24.4% - 55%) by K. Pneumoniae [31]. In contrast, another Saudi Arabian study has reported a low rate of ESBL production in K. pneumoniae (7.5-10.4%) and E. coli (8%) in the eastern region [32,33]. In India, a high prevalence of ESBL production has been reported, ranging from 41.0% to 63.6% in E. coli and from 40% to 83.3% in K. pneumoniae [34-36]. The present results reveal a lower incidence of ESBL production than that reported in Turkey, India and Korea for K. pneumoniae [34,37,38]. However, the antibiotic resistance among E. coli isolates in the present study was similar or higher than that reported in other countries [37,38]. The most common β -lactamase type presented in this study was CTX-M, followed by TEM and SHV in K. pneumoniae, while E. coli isolates showed an equal percentage of strains harbouring TEM and CTX-M (58.8%) with a low frequency for SHV B-lactamase genes. These results support the hypothesis that CTX-M is emerging as the dominant ESBL type in clinical isolates [29].

Conclusion

The present study thus highlights the high rates of antibiotic resistance in *P. aeruginosa*, *A. Baumannii*, *E. coli* and *K. pneumoniae*. More intensive infection control measures are required to prevent the further spread of resistant strains. Several ESBL and MBL types exist among clinical isolates in the Makkah region, indicating the importance of accurate and timely laboratory detection of ESBL- and MBL-producing isolates for optimal treatment of patients and for controlling the nosocomial spread of such strains. Continuous monitoring of antimicrobial susceptibility is recommended for reducing antibiotic resistance in the future.

Acknowledgments

I am grateful to The Institute of Scientific Research and Revival of Islamic Heritage for funding and supporting this study. I thank Mr. Ahmad H. Alharbi, Mr. Basem H. Alharthi, Mr. Hassan H. Alfahimi, MR. Jameel A. Alryhani and Mr. Rayan N. Zolali a 4th year medical science students for their help in specimen collection and practical work. I would also like to thank the staff of the Makkah hospitals involved in this study, Al-Noor Specialist Hospital, Hera General Hospital and King Abdul-Aziz Hospital; without their help, this work could not have been accomplished.

Corresponding author

Atif H. Asghar

Department of Environmental and Health Research, The Custodian of The Two Holy Mosques Institute of Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia. P.O. Box: 6287, Makkah, Saudi Arabia.

asghar1000@gmail.com

References

- Hadadi A, Rasoulinejad M, Maleki Z, Yonesian M, Shirani A, Kourorian Z. Antimicrobial resistance pattern of Gram-negative bacilli of nosocomial origin at 2 university hospitals in Iran. Diagn Microbiol Infect Dis 2008; 60:301-5.
- Kucukates E. Antimicrobial resistance among Gram-negative bacteria isolated from intensive care units in a Cardiology Institute in Istanbul, Turkey. Jpn J Infect Dis 2005; 58:228-31.
- Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn JP, Doern GV. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol 2007; 45:3352-9.
- Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer beta-lactamases in gramnegative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol 2006; 44:3318-24.
- Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum betalactamases (ESBLs) in the community. J Antimicrob Chemother 2005; 56:52-9.

- Livermore DM. The impact of carbapenemases on antimicrobial development and therapy. Curr Opin Investig Drugs 2002; 3:218-24.
- Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-betalactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18:306-25.
- Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, Lee K, Chong Y. Increasing prevalence and diversity of metallo-betalactamases in *Pseudomonas* spp., *Acinetobacter* spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother 2006; 50:1884-6.
- Du Bois SK, Marriott MS, Amyes SG. TEM- and SHV-derived extended-spectrum beta-lactamases: relationship between selection, structure and function. J Antimicrob Chemother 1995; 35:7-22.
- Livermore DM. Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8:557-84.
- 11.Knox JR. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995; 39:2593-601.
- 12. Kim J, Lim YM, Rheem I, Lee Y, Lee JC, Seol SY, Lee YC, Cho DT. CTX-M and SHV-12 beta-lactamases are the most common extended-spectrum enzymes in clinical isolates of *Escherichia coli* and *Klebsiella pneumoniae* collected from 3 university hospitals within Korea. FEMS Microbiol Lett 2005; 245:93-8.
- M'Zali F, Rajgobal A, Dave j, Wilcox M. A Simple Test for the Detection of Metallo-Beta-Lactamase Producing Bacteria. Antimicrob Agents Chemother 2003; 43:14-7.
- Jarlier V, Nicolas M. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10:867-78.
- Pitout J, Thomson K. Beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in *Klebsiella pneumoniae, Escherichia coli,* and *Proteus mirabilis* isolates recovered in South Africa. Antimicrob Agents Chemother 1988; 42(6): 1350-4.
- 16.Lee S, Kim J. Discriminatory detection of extended-spectrum beta-lactamases by restriction fragment length dimorphismpolymerase chain reaction. Lett Appl Microbiol 2000; 31:307-12.
- Pitout J, Gregson D, Poirel L, McClure J. Detection of *Pseudomonas aeruginosa* producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43:3129-35.
- Memish Z. communicable and non-communicable health hazards and current guidance for pilgrims. Euro Surveill 2010; 30:1-4.
- Sligl W, Taylor G, Brindely P. Five years of nosocomial Gramnegative bacteremia in a general intensive care unit: epidemiology, antimicrobial susceptibility patterns, and outcomes. Inter J Inf Dis 2006; 10:320-5.
- 20. Aljohani S, Akhter J, Balkhy H. Prevalence of antimicrobial resistance among gram-negative isolate in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med 2010; 30:364-9.
- Altoparlak U, Aktas F, Celebi D. Prevalence of metallo-betalactamase among *Pseudomonas aeruginosa* and *Acinetobacter baumannii* isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns 2005; 31:707-10.

08/11/2012

- 22. Wang H, Chen M. Surveillance for antimicrobial resistance among clinical isolates of Gram-negative bacteria from intensive care unit patients in China, 1996 to 2002. Diagn Microbiol Infect Dis 2005; 51:201-8.
- Jacoby G, Munoz-Price L. The new beta-lactamases. N Engl J Med 2005; 352:380-91.
- Livemore D, Woodford N. Carbapenemases: A problem in waiting? Curr Opin Microbiol 2000; C3:489-95.
- Bahar M, Jamali S, Samadikuchaksaraei A. Imipenem-resistant *Pseudomonas aeruginosa* strains carry metallo-beta-lactamase gene blaVIM in a level I Iranian burn hospital. Burns 2010; 36(6):826-30
- Shibl A, Tawfik A, Radwan H. High prevalence of metallo-betalactamases- producing *Pseudomonas aeruginosa* from Saudi Arabia. Int J Antimicrob Agents 2009; 34:S32.
- Huang Y, Chang S, Lauderdale T. Molecular epidemiology of carbapenem-resistant *Pseudomonas aeruginosa* carrying metallo-beta-lactamase genes in Taiwan. Diagn Microbiol Infect Dis 2007; 59:211-6.
- Pitout J, Revathi G, Chow B. Metallo-beta-lactamase-producing *Pseudomonas aeruginosa* isolated from a large tertiary centre in Kenya. Clin Microbiol Infect 2008; 14:755-9.
- Bradford P. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14:933-51.
- Emery C, Weymouth L. Detection and clinical significance of extended-spectrum beta-lactamases in a tertiary-care medical center. J Clin Microbiol 1997; 35:2061-7.
- Paterson D, Bonomo R. Extended spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18:657-86.
- Al-Agamy M, Shibl A, Tawfik A. Prevalence and molecular characterization of extended-spectrum beta-lactamaseproducing *Klebsiella pneumoniae* in Riyadh, Saudi Arabia. Ann Saudi Med 2009; 29:253-7.
- 33. Kader A, Kumar A, Krishna A. An accelerated method for the detection of extended-spectrum beta-lactamases in urinary isolates of *Escherichia coli* and *Klebsiella pneumoniae*. Saudi J Kidney Dis Transpl 2006; 17:535-9.
- 34. Ahmad S, Al-Juaid N, Alenzi F. Prevalence, antibiotic susceptibility pattern and production of extended-spectrum beta-lactamases amongst clinical isolates of *Klebsiella pneumoniae* at Armed Forces Hospital in Saudi Arabia. J Coll Physicians Surg Pak 2009; 19:264-5.
- 35. Goyal A, Prasad K, Prasad A. Extended spectrum β-lactamases in *Escherichia coli & Klebsiella pneumoniae* & associated risk factors. Indian J Med Res 2009; 129:695-700.
- 36. Grover S, Shama M, Chattopadhya D. Phenotypic and genotypic detection of ESBL mediated cephalosporin resistance in *Klebsiella pneumoniae*: emergence of high resistance against cefepime, the fourth generation cephalosporin. J Infect 2006; 53:279-88.
- Jain A, Roy I, Gupta M. Prevalence of extended-spectrum betalactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J Med Microbiol 2003; 52:421-5.
- Lal P, Kapil A, Das B. Occurrence of TEM & SHV gene in extended spectrum beta-lactamases (ESBLs) producing *Klebsiella* sp. Indian J Med Res 2007; 125:173-8.