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1. Introduction 

There are so many optimisation problems in 
various areas of science and engineering. For solving 
them, there exist twofold approaches; classical 
approaches and heuristic approaches. Classical 
approaches such as linear programming and non-
linear programming are not efficient enough in 
solving optimisation problems. Since they suffer 
from curse of dimensionality and also require 
preconditions such as continuity and differentiability 
of objective function that usually are not met. 
     Heuristic approaches which are usually bio-
inspired include a lot of approaches such as genetic 
algorithms, evolution strategies, differential evolution 
and so on. Heuristics do not expose most of the 
drawbacks of classical and technical approaches. 
Among heuristics, particle swarm optimisation (PSO) 
has shown more promising behavior. 
       PSO is a stochastic, population-based 
optimisation technique introduced by Kennedy and 
Eberhart (Kennedy and Eberhart, 1995). It belongs to 
the family of swarm intelligence computational 
techniques and is inspired of social interaction in 
human beings and animals (especially bird flocking 
and fish schooling).  
       Some PSO features that make it so efficient in 
solving optimisation problems are the followings: 
 In comparison with other heuristics, it has less 

parameters to be tuned by user. 
 Its underlying concepts are so simple. Also its 

coding is so easy. 
 It provides fast convergence. 
 It requires less computational burden in 

comparison with most other heuristics. 
 It provides high accuracy. 
 Roughly, initial solutions do not affect its 

computational behavior. 

 Its behavior is not highly affected by increase 
in dimensionality. 

 It is efficient in tackling multi-objectives, 
multi-modalities, constraints, discrete/integer 
variables. 

 There exist many efficient strategies in PSO 
for mitigating “premature convergence.” 
Thus, its success rate is so high. 

 
     Despite the fact that implementing theoretical 
analyses in PSO can lead to a more deep 
understanding of its behavior and characteristics and 
may quicken the improvement in its computational 
behavior, just in a few cases, theoretical analyses on 
PSO have been conducted. It is undeniable that this 
aspect should be paid more attention by PSO research 
community. In this paper, the aim is to review all the 
implemented theoretical analyses on PSO and 
propose some directions for future research.   
        The paper is organised as follows; in section 2, 
an overview of PSO is provided. In section 3, all the 
implemented theoretical analyses on PSO are 
reviewed. Finally, drawing conclusions and 
proposing some directions for future research is 
implemented in section 4.  
 
2. PSO Overview  
        PSO starts with the random initialisation of a 
population (swarm) of individuals (particles) in the n-
dimensional search space (n is the dimension of 
problem in hand). The particles fly over search space 
with adjusted velocities. In PSO, each particle keeps 
two values in its memory; its own best experience, 
that is, the one with the best fitness value (best fitness 
value corresponds to least objective value since 
fitness function is conversely proportional to 
objective function) whose position and objective 
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value are called �� and ����� respectively and the best 
experience of the whole swarm, whose position and 
objective value are called ��  and �����  respectively. 

Let denote the position and velocity of particle i with 
the following vectors:  
�� = (���, ���, … , ���, … , ���)  
  
 �� = (���, ���, … , ���, … , ���)  
  
     The velocities and positions of particles are 
updated in each time step according to the following 
equations: 
���(� + 1) = ��� (�) + �� ���(��� − ���)+��������� − ����     (1)  

���(� + 1) = ��� (�) + ��� (� + 1)                            (2)  
 
    Where ��and �� are two positive numbers and ��� 
and ���  are two random numbers with uniform 
distribution in the interval [0,1]. Here, according to 
(1), there are three following terms in velocity update 
equation:  

1) The first term this models the tendency of a 
particle to remain in the same direction it has 
traversing and is called “inertia,” “habit,” or 
“momentum.” 

2) The second term is a linear attraction toward 
the particle’s own best experience scaled by a 
random weight ����� . This term is called 
“memory,” “nostalgia,” or “self-knowledge.” 

3) The third term is a linear attraction toward the 
best experience of the all particles in the 
swarm, scaled by a random weight ����� . 
This term is called “cooperation,” “shared 
information,” or “social knowledge.” 

 
      The procedure for implementation of PSO is as 
follows: 

1) Particles’ velocities and positions are 
Initialised randomly, the objective value of all 
particles are calculated, the position and 
objective of each particle are set as its �� and 
�����  respectively and also the position and 
objective of the particle with the best fitness 
(least objective) is set as ��  and ����� 
respectively. 

2) Particles’ velocities and positions are updated 
according to equations (1) and (2). 

3) Each particle’s �����  and ��  are updated, that 
is, if the current fitness of the particle is better 
than its ����� , �����  and ��  are replaced with 
current objective value and position vector 
respectively. 

4)  �� and  ����� are updated, that is, if the current 
best fitness of the whole swarm is fitter than 
����� ,  �����  and ��  are replaced with current 

best objective and its corresponding position 
vector respectively. 

5) Steps 2-4 are repeated until stopping criterion 
(usually a prespecified number of iterations or 
a quality threshold for objective value) is 
reached. 

       It should be mentioned that since the velocity 
update equations are stochastic, the velocities may 
become too high, so that the particles become 
uncontrolled and exceed search space. Therefore, 
velocities are bounded to a maximum value ���� , 
that is (Eberhart, Shi and Kennedy, 2001):   
If |���| > ���� �ℎ�� ��� = sign(���)����               (3) 
 
  Where sign represents sign function. 
      However, primary PSO characterised by (1) and 
(2) does not work desirably; especially since it 
possess no strategy for adjusting the trade-off 
between explorative and exploitative capabilities of 
PSO. Therefore, the inertia weight PSO is introduced 
to remove this drawback. In inertia-weight PSO, 
which is the most commonly-used PSO variant, the 
velocities of particles in previous time step is 
multiplied by a parameter called inertia weight. The 
corresponding velocity update equations are as 
follows (Shi and Eberhart, 1998), (Shi and Eberhart, 
1999): 
V��(t + 1) = ωV�� (t) + C� r��(P� − X��)+C�r���P�� − X���    

���(� + 1) = ��� (�) + ��� (� + 1)              (4)  
 

     Inertia weight adjusts the trade-off between 
exploration and exploitation capabilities of PSO. The 
less the inertia weight is, the more the exploration 
capability of PSO will be and vice versa. Commonly, 
it is decreased linearly during the course of the run, 
so that the search effort is mainly focused on 
exploration at initial stages and is focused more on 
exploitation at latter stages of the run.    
 
3. Theoretical Analyses in PSO 
      Almost all the existing findings and conclusions 
on PSO are based on experimental observations. 
However, implementing theoretical analyses in PSO 
can lead to a more deep understanding of its behavior 
and characteristics and may quicken the improvement 
in its computational behavior. But due to some 
reasons, the implementation of theoretical analysis is 
so difficult and has been rarely undertaken in PSO 
literature. Some of the reasons are as proceed. 
 
 The forces among particles are stochastic that 

hinders utilising standard mathematical tools used in 
the analysis of dynamic systems. 
 The PSO’s performance is strongly dependent 

on the used fitness function, whereas there exist so 



Journal of American Science 2012;8(11)                                                    http://www.jofamericanscience.org 

 

10 
 

many different types of fitness functions. 
Consequently, drawing conclusions applicable to all 
type of fitness functions is so challenging. 
 In PSO, the swarm consists of a large number of 

particles which understanding the dynamic of the 
whole is difficult. 
 The inherent stochasticity existent is a crucial 

factor in PSO that makes its analysis so difficult. 
 The memory that particles and swarm possess, 

makes the analysis more challenging. 
      Due to the above-mentioned reasons, some 
simplifying assumptions are used while conducting 
theoretical analyses in PSO. Some commonly used 
simplifying assumptions are ignorance of 
stochasticity, assuming swarm as a single isolated 
particle in one-dimension, assuming the coincidence 
of personal and neighborhood best, assuming search 
process in stagnation state, and also ignoring velocity 
clamping and inertia weight.  Needless to say, the 
less the simplifying assumptions are, the more is the 
validity and accuracy of drawn conclusions. So, 
researchers are attempting to model PSO’s 
characteristics as real as possible. In this paper, 
theoretical analyses undertaken in specialised 
literature are classified into two main groups; those 
which do not consider the stochasticity of PSO and 
those who consider it, which are called deterministic-
based (Ozcan and Mohan, 1998), (Shi and Eberhart, 
2001), (Clerc and Kennedy, 2002), (Van den Bergh, 
2002), (Brandstatter and Baumgartner, 2002), 
(Trelea, 2003), (Liang and Suganthan, 2005), 
(Yasuda and Iwasaki, 2003), (Blackwell, 2005), 
(Blackwell, 2003), (Campana, Fasano and Pinto, 
2006), (Campana, Peri and Pinto, 2006), (Zhao, and 
Mao, 2009), (Samal, Konar, 2007), (Bratton, and 
Blackwell, 2007) and stochastic-based analyses 
(Clerc, 2006), (Kadirkamanathan, Selvarajah, and 
Fleming, 2006), (Poli, et. , al, 2007), (Poli, and 
Broomhead, 2007), (Poli, 2007), (Zhang, Li, Zhao, 
and Wang, 2009), (Helwig, and Wanka, 2007), 
(Chen, and Jiang, 2010), (Ghosh, et. , al, 2012), 
(Pena, 2008), (Helwig and Wanka, 2008), 
(Veeramachaneni, Osadciw and  Kamath, 2007). 
They will be explained bellow. 
 
3.1 Deterministic-based Theoretical Analyses in 
PSO  
        In the first attempt for theoretical analysis in 
PSO, in a highly approximate paradigm, PSO has 
been modeled as a single, isolated, one-dimension 
particle in stagnation state, while inertia weight, 
velocity clamping are ignored. According to this 
modeling, the particle’s trajectories were determined 
(Ozcan and Mohan, 1998). This work was extended 
by modeling multiple particles in multi-dimension 
while �� and �� are not assumed to coincide (Shi and 

Eberhart, 2001). According to this modeling, it is 
concluded that the particles’ trajectories change with 
�� and �� and the trajectories rely upon  � = �� + �� 
.      Under the same simplifying assumptions with 
(Shi and Eberhart, 2001), later on, the swarm was 
considered as a discrete-time linear dynamic system 
wherein the dynamics of the state of the particles are 
determined by finding eigenvalues and eigenvectors 
of the state transition matrix and it is concluded that 
the particles converge to equilibrium if and only if 
the eigenvalues are less than unity. Consequently, 
since eigenvalues are functions of PSO parameters, 
the parameters guaranteeing PSO’s convergence are 
determined (Clerc and Kennedy, 2002). 
      In a later work, under the same assumptions with 
(Shi and Eberhart, 2001), it is concluded that the 
particles are pulled toward the weighted some of 
personal and neighborhood best (Van den Bergh, 
2002). 
     In (Brandstatter and Baumgartner, 2002), an 
analogy between PSO considered as a one-dimension 
single particle in stagnation state and a damped mass-
spring oscillator is drawn, and notions of “damping 
factor” and vibrational frequency” were invoked to 
draw some guidelines for setting PSO’s parameters.  
      In (Trelea, 2003), in a work similar to (Clerc and 
Kennedy, 2002) and under the same assumptions 
with (Ozcan and Mohan, 1998), the dynamic 
behavior and the convergence of PSO are analysed 
with discrete time dynamic system theory. 
Consequently, some guidelines for setting PSO’s 
parameters are extracted. 
       In (Liang and Suganthan, 2005) and (Yasuda and 
Iwasaki, 2003), under the same assumptions with 
(Ozcan and Mohan, 1998), but considering inertia 
weight, eigenvalue analysis is invoked for 
determining PSO parameters which result in a stable 
dynamic system. 
       In (Blackwell, 2005), (Blackwell, 2003) the 
constricted PSO is modelled by a single multi-
dimensional particle and changes in spatial extent of 
a particle is explored over time and it is concluded 
that spatial extent is diminished exponentially over 
time.  
 In (Campana, Fasano and Pinto, 2006) and 
(Campana, Peri and Pinto, 2006) fully informed 
particle swarm (FIPS) under the same assumptions 
with (Ozcan and Mohan, 1998) is modeled as a 
dynamic system and eigenvalue analysis is invoked 
to determine  that each setting for PSO parameters 
leads to which type of computational behavior. 
Moreover, some guidelines for initialising positions 
and velocities are provided so that the most 
orthogonality in particles’ trajectories is guaranteed.   
       In (Zhao, and Mao, 2009), PSO flight equations 
are transformed into a linear difference equation and 
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the particle’s stability criteria as a function of PSO 
parameters are derived.  
     In (Samal and Konar, 2007) a closed-loop stability 
analysis of PSO dynamics is implemented by Jury’s 
test and root-locus technique. By Jury’s stability test 
proposes some settings for PSO parameters. An 
explicit modelling of nonlinearity in feedback path is 
presented. In this analysis, unlike previous analyses 
that combined acceleration coefficients in one term, 
their separate existence is considered and their 
suitable range for achieving stability is determined. 
In table 1.1 all different deterministic-based 
theoretical analysis in PSO, their pros, cons and their 
main findings are tabulated. 
 
3.2 Stochastic-based Theoretical Analyses in PSO  
        This group of analyses model the inherent 
stochasticity of PSO. However, there exists so limited 
number of these analyses in the literature. 
     In (Clerc, 2006), assuming a single particle in one 
dimension, during stagnation with considering the 
stochasticity of PSO, the distribution of particle 
velocity is analysed. It is showed that particle’s new 
velocity is the combination of three following terms. 
 
�(� + 1) = ���(�) − ���(� − 1) + ����� − ���   (5)  
 
     Where ���(�)  represents a forward force, 
−���(� − 1)  represents a backward force and also 

����� − ���  indicates the noise. �� , ��  and ��  are 

stochastic variables whose distribution models are 
determined. These distribution models depend on 
PSO parameters. It is proved that  �(��) = � −
��. Ln(2)  and �(��) = 2�. Ln(2) , where �  and � 
represent inertia weight and sum of acceleration 
coefficients respectively. By manipulating the 
distributions of ��, �� and �� some conclusions and 
guidelines has been drawn. 
      In (Kadirkamanathan, Selvarajah, and Fleming, 
2006), PSO is modeled as a single, one-dimension 
particle in stagnation state in ����� PSO with inertia 
weight considering the stochasticity and lyupanov 
stability analysis is invoked to investigate particle’s 
stability. The particle is represented as a nonlinear 
feedback system, its transfer function is determined 
and its observability and controllability are proved. A 
lyupanov function for the system is determined  and 
sufficient conditions on PSO parameters to guarantee 
convergence are derived. However, the derived 
conditions are so restrictive due to the conservative 
characteristic of lyupanov function. 

       In (Poli, et. , al, 2007), a discrete markov chain 
model of bare-bones PSO assuming a single one-
dimensional particle is devised that can approximate 
it on arbitrary continuous problems to any precision. 
The objective function is discretised using finite 
element grid which produces corresponding distinct 
states in algorithm. Iterating the transfer matrix gives 
precise information about the behavior of  optimizer 
at each iteration. The experiments strongly support 
the findings of this theoretical analysis. 
       In (Poli, and Broomhead, 2007) and (Poli, 2007), 
considering all characteristics of real PSO but 
assuming it in a stagnation state, firstly, the exact 
dynamic equations for the moments of sampling 
distribution are devised, then according to the 
conducted statistical analysis, areas in parameter 
space leading to stability are identified. 
       In (Zhang, Li, Zhao, and Wang, 2009), based on 
dynamic characteristic analysis of eigenvalues in Z-
plane and control theory rules, new guidelines for 
setting PSO parameters are provided. The 
assumptions are a single one-dimensional particle in 
stagnation state. 
        In (Helwig, and Wanka, 2007) �����  PSO is 
modelled in high-dimensional constrained search 
spaces considering the stochasticity. Consequently, 
according the theoretical analysis, best fly back 
strategy for handling constraints in different type of 
problems are put forward. For modelling, PSO is 
modelled as multiple multi-dimensional particles. 
         In (Chen, and Jiang, 2010), the PSO’s particle 
interaction behavior is analysed. Firstly, a statistical 
interpretation of PSO is provided in order to capture 
the stochastic behavior of the whole swarm. Based on 
statistical interpretation, the effect of particle 
interaction is investigated by focusing on social-only 
PSO model and the lower bounds of the expected 
particle norm are derived. The assumptions of this 
analysis are multiple particles, one-dimension, 
stochastic acceleration coefficients. 
        In (Ghosh, et. , al, 2012) PSO has been modeled 
with multiple one-dimensional particles and � best 
neighborhood. A state-space model of the swarm 
dynamics is presented and the necessary conditions 
that assure stability and asymptotic convergence of 
the particles’ dynamics are determined by Jury and 
Blanchard’s stability tests. Its salient aspect is 
modelling � best neighborhood topology which had 
not conducted before. In table 1.2 all different 
stochastic-based theoretical analysis in PSO, their 
pros, cons and their main findings are tabulated. 
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Table 1.1: Different deterministic-based theoretical analysis in PSO, their pros, cons and main findings 
Reference 
Number 

Modeling Assumptions Main findings 

[5] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are assumed to coincide. 

The particle’s trajectories were determined 

[6] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are not assumed to coincide. 

The particles’ trajectories change with �� and �� and the trajectories rely upon  
� = �� + �� . 

[7] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are not assumed to coincide. 

Using eigenvalue analysis, the PSO parameters guaranteeing its s convergence 
are determined. 

[8] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are not assumed to coincide. 

It is concluded that the particles are pulled toward the weighted some of 
personal and neighborhood best. 

[9] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are not assumed to coincide. 

Using the analogy between PSO and a damped mass-spring oscillator, some 
guidelines for setting PSO’s parameters are derived. 

[10] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are assumed to coincide. 

Using discrete time dynamic system theory, some guidelines for setting PSO’s 
parameters are extracted. 

[11]- [12] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. ��  and ��  are assumed to coincide, but 

considering inertia weight. 

Eigenvalue analysis is invoked for determining PSO parameters which result in 
a stable dynamic system. 

[13]-[14] Constricted PSO by a single multi-dimensional particle. The changes in spatial extent of a particle is explored over time and it is 
concluded that spatial extent is diminished exponentially over time.  

[15]-[16] Fully informed particle swarm (FIPS), single, isolated, one-
dimension particle in stagnation state, without stochasticity. ��  
and ��  are assumed to coincide. 

Eigenvalue analysis is invoked to determine that each setting for PSO 
parameters leads to which type of computational behavior. Moreover, some 
guidelines for initialising positions and velocities are provided so that the most 
orthogonality in particles’ trajectories is guaranteed. 

[17] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. �� and ��  are assumed to coincide. 

       By solving linear difference equation, particle’s  stability criteria are 
derived as a function of PSO parameters. 

[18] Single, isolated, one-dimension particle in stagnation state, 
without stochasticity. ��  and ��  are assumed to coincide. But 

unlike previous analyses that combined acceleration 
coefficients in one term, their separate existence is considered. 

     A closed-loop stability analysis of PSO dynamics is implemented by Jury’s 
test and root-locus technique. Jury’s stability test proposes some settings for 
PSO parameters. An explicit modelling of nonlinearity in feedback path is 
presented. Also, suitable range of ��  and ��  for achieving stability is 
determined. 

 
Table 1.2: Different stochastic-based theoretical analysis in PSO, their pros, cons and main findings 

Reference 
Number 

Modeling Assumptions Main findings 

[20] A single particle in one dimension, during 
stagnation with considering the stochasticity. 

The distribution of particle velocity is analysed. It is showed that particle’s new velocity is 
the combination of three stochastic terms; a forward force, a backward force and a noise. 
The distribution models of static variables are determined. Consequently, some guidelines 
for tuning PSO parameters are provided. 

[21] A single, one-dimension particle in stagnation 
state in �����  PSO with inertia weight 
considering the stochasticity. 

Lyupanov stability analysis is invoked to investigate particle’s stability. The particle is 
represented as a nonlinear feedback system, its transfer function is determined and its 
observability and controllability are proved. Sufficient conditions on PSO parameters to 
guarantee convergence are derived. 

[22] Bare-bones PSO assuming a single one-
dimensional particle. 

A discrete markov chain model of bare-bones PSO is devised that can approximate it on 
arbitrary continuous problems to any precision. The objective function is discretised using 
finite element grid which produces corresponding distinct states in algorithm. Iterating the 
transfer matrix gives precise information about the behavior of optimizer at each iteration.  

[23]-[24] All characteristics of real PSO but assuming it 
in a stagnation state. 

Firstly, the exact dynamic equations for the moments of sampling distribution are devised, 
then according to the conducted statistical analysis, areas in parameter space leading to 
stability are identified. 

[25] Single one-dimensional particle in stagnation 
state. 

Based on dynamic characteristic analysis of eigenvalues in Z-plane and control theory rules, 
new guidelines for setting PSO parameters are provided.  

[26] �����  neighborhood, multiple high-dimensional 
particles in constrained search space, 
considering the stochasticity. 

According the theoretical analysis, best fly back strategy for handling constraints in 
different type of problems are put forward.  

[27] Multiple particles, one-dimension, stochastic 
acceleration coefficients, considering 
interaction among particles, ignoring cognitive 
part of flight equation. 

     PSO’s particle interaction behavior is analysed. Firstly, a statistical interpretation of PSO 
is provided. Based on it, the effect of particle interaction is investigated by focusing on 
social-only PSO model and the lower bounds of the expected particle norm are derived.  

[28] Multiple one-dimensional particles and � best 
neighborhood. The salient aspect is modelling 
� best neighborhood topology which had not 
conducted before. 

    A state-space model of the swarm dynamics is presented and the necessary conditions 
that assure stability and asymptotic convergence of the particles’ dynamics are determined. 
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4. Conclusions and Future Research Directions 
        In this paper, theoretical analyses implemented 
on PSO are reviewed. The aim of theoretical analysis 
is to model PSO as real as possible. But, to date, this 
aim has not been approached as desired. A few 
researches have been done on theoretical analysis in 
PSO and it should be paid more attention. In 
particular, the following aspects are highlighted as 
promising directions for future research on this area. 
 
 Devising more efficient approaches for 

modelling stochasticity of PSO. 
 Implementing theoretical analysis with 

assuming swarm in stagnation state. 
 Implementing theoretical analysis on PSO with 

different neighborhood topologies like wheel, 
ring,…, etc. 

 Implementing theoretical analysis on PSO with 
multi-objective objective function. 

 Implementing theoretical analysis on PSO with 
multi-modal objective function. 

 Implementing theoretical analysis on PSO with 
dynamic objective function. 

 Implementing theoretical analysis on PSO in 
constrained environments. 

 Implementing theoretical analysis on PSO with 
discrete/binary/integer variables. 

 Implementing theoretical analysis on 
computational time of PSO. 
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