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Abstract: The purpose of this paper is to find out the electric and magnetic fields which exist in the medium by 
solving Maxwell's equations. The solution of this problem is facilitated by the introduction of the polarization 
potential. We shall now see that the whole electromagnetic field may be described by means of a single vector 

)(r


 or )(r

 . .If the potential is known the electric and magnetic vectors are readily calculated for both sources 

.The Hertizian vedror corresponding to the reflected wave is expressed in terms of a single integral over a finite 
interval. The resulting electromagnetic field in the air is determined, it consist of a reflected wave which is 
superimposed upon the given incident wave. This integral is written in which a form of its numerical evaluation 
which can be easily performed. 
[Adel A. S. Abo Seliem and Fathia Alseroury.  Radiation of the Transient Electromagnetic Field above a plane, 
Non – Conducting, Earth. J Am Sci 2012;8(10):275-282]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 
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1. Introduction 

      Historically, the problem of electromagnetic 
radiation from a vertical magnetic dipole situated at a 
certain height h above a plane earth, all field 
quantities are usually assumed to a vary harmonically 
in time .One of the them well – known method for 
solving this steady – states problem is due to   
Sommerfeld [1], calculated the electromagnetic 
radiation from an electric vertical dipole, located 
above the plane interface of two media. 

Many authors, Wait [2]; Moore [3] and Durrani 
[4] have considered this problem, the aim of the 
present work is to extend the study – state to transient 
excitation when no restrictions on the distance 
between receiving and transmitting ends are made. 
two integral transforms are applied to analyze the 
transient field of vertical electric dipole above a 
dielectric layer the distinction of different cases 
where the distance between the receiving and 
transmitting end are greater and lesser than the total 
reflection distance studied Abo Seliem [5 ] . 

The problem has been studied by Arutaki and 
Chiba [6] and Abo Seliem [7] .This Integral is 
estimated by using the steepest descent method, along 
the count our Γ and around the branch –cuts, from the 
obtained results the Saddle point method show that 
the reflected waves and integrals Abo Seliem [8], the 
component of electric field strength is also arbitrary 
for the excitation function F (t) = t at some fixed. 

The analyzes propagation of wideband 
electromagnetic (EM) wave in the ionosphere.  The 
influence of total electron contents (TEC) of the 
ionosphere on the propagation of EM wave is 

investigated numerically. Our attention is paid to very 
high frequency (VHF) band, which is dominant 
frequency band of EM waves emitted from lightning 
discharges. A one-dimensional model of the 
ionosphere is considered for simplicity. The 
ionosphere is treated as an anisotropic and dispersive 
medium. Particularly, the altitude distribution of 
electron density is taken into consideration. Variation 
of pulse width and difference in the arrival time 
between each frequency component due to the 
dispersion in the ionosphere are revealed. For our 
numerical investigation, group delay of the EM wave 
is found to be dependent on the altitude distribution 
of electron density by T. Kahan, G .Eckart, [9] and 
D.S. Jones, [10].  
 
2. Formulation of the problem  
When the electromagnetic field is a prescribed 
distribution of oscillatory electric dipole moments per 
unit volume and activated by an external source as 

given by the vector field )(rP


.We can write:- 

)()()( 0 rPrErD


                                (1) 

)()( 0 rHrB


                                          (2)     

where )(rE


is the electric field intensity (in 

volts/meter) , )(rH


is the magnetic field intensity ( in 

amperes/meter) , )( rB


is the magnetic induction, or 

the magnetic flux density ( in webers /meter2 ) and 
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)(rD


is the electric flux density or electric 

displacement ( in coulombs / meter2) . The source 

distribution of the electric polarization )(rP


is 

confined to a finite volume with in a finite distance 
from the arbitrary origin of coordinates. For our 
purpose, however, it is more convenient to introduce 

the electric current density )(rJ


in the medium (in 

amperes / meter 3 ) as defined by :- 

)()( rPirJ


                (3) 

Where,  is angular frequency, The Maxwell's 
equations are:- 

)()( 0 rHirE


                                                    

)()()()( 0 rJrEirH


           (4) 

0)( 


rH  

)(

)(.
)(

0 i

rJ
rE









 

Where  ,, , respectively, are the dielectric 

permittivity (in farads / meter), the magnetic 
permeability (in henries /meter), and electric 
conductivity (in mhos /meter) of the medium, where 

00 ,  are the dielectric permittivity and the 

magnetic permeability of vacuum, respectively are 
equal to 

0 = 8.85 10 -12 F / m., 0 = 4  10 –7H / m .The 

product 00  has the dimensions of (velocity)-2, its 

value is 
200

1

c
  

Where   
810998.2 c  m / s 

Thus the propagation constant k  for plane 
homogenous wave as given by :-

)(2  iik   2 i   (5)                                       

the quantity k  is called the complex wave number or 
the propagation parameter. Equations (4) are readily 
verified to admit the solution: -  

)()()( 2 rkrgraddivrE


    (6) 

)()(
0

2

rcurl
i

k
rH






                  (7) 

 In terms of the Hertz vector )(r


 or electric 

polarization that )(r


 satisfies the inhomogeneous 

Helmholtz vector equation. 

)()()(
2
022 rJ

k

i
rk






             (8)   

Where 
2  is the Laplace operator, Equation (8) 

exhibits the prescribed electric current density 

distribution )(rJ


 as the sole source of the 

electromagnetic field. We can write the solution of 
(8) for an unbounded homogenous medium in the 
form 





V

iR

dVrJ
R

e

k

i
r )(

4
)(

2
0




     (9)  

 Where )(rJ


denotes the impressed current density 

vector .Similarly, it can be shown that the fields 

associated with the vector )(
*

r


 is set up by a 

distribution of the magnetic polarization and is known 

as the Fitzgerald vector. From the density )( r




and )(
*

r


  we can write Maxwell's equations in the 

form:- 

0)(

)(
)(

)()()(

)()()(

0

0

0



















rE

i

rM
rH

rEirH

rMrHirE







          (10) 

Which is readily  verified to admit the solution 

)()(
*

0 rirE


                             (11) 

)())(()(
*

2
*

rkrrH


      (12)  

     A previously mentioned, the Hertz vector satisfies 
equation (2.8), but in addition, we can assert 
Fitzgerald vector or magnetic polarization Helmholtz 
vector equation 

         (13) 
0

*
22 )(

)()(


rM
rk


 


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 Equation (13) exhibits the prescribed magnetic 

current density distribution )(rM


as the sole source 

of the electromagnetic field .We can write the 
solution of (13) for infinite homogenous medium in 
the form 





V

iR

dVrM
R

e
r )(

4

1
)(

0

*


       (14) 

Where )(rM


 is the distribution of the impressed 

magnetic current density enclosed by the volumeV , 
In an isotropic and homogeneous medium , the 
physical properties in the neighborhood of an interior 
point are same in all directions and are constant from 
point to point , respectively . In this medium:- 



 ED 0 ,                                       (15)             



 HB 0                                                          (16)               

These are the basic equations for the propagation of 
electric and magnetic field vectors in an isotropic, 
homogeneous medium with physical properties

),,(  . 

Maxwell's equations are coupled first – order 
differential equation which are difficult to apply when 
solving boundary- value problems . The difficulty is 
overcome by decoupling the first –order equation , 
thereby obtaining the wave equation ,a second-order 
differential equation which is useful for solving 
problems .To obtain the wave equation a linear , 
isotropic , homogeneous , source – free medium (

0J  , 0v  ) .The time – varying 

electromagnetic fields are governed by physical laws 
expressed mathematically as : 

t

B
E









                                                   (17) 

t

D
JH









                                              (18) 

0


B                                                               (19) 

vD 


                                                         (20) 

Where v  is the volume charge density (in coulombs 

/ meter 3) .We take the curl of both sides of equation 
(17) this gives:- 

).(






 H

t
E                  (21) 

Where  


 HB   , from (18) 

t

E
H









                                               (22) 

Where


 ED    
From equations (21) and (22) we get:- 

                     (23) 

Applying the vector identity in equation (23) 

2

2
2)(

t

E
EE









                     (24) 

Since  = 0, 0


E  we obtain:- 

0
2

2
2 









t

E
E                               (25) 

Which is the time - dependent vector Helmholtz 
equation or simply wave equation .If we had started 
the derivation with equation (18), we would obtain 

the wave equation for 


H as :- 

0
2

2
2 









t

H
H                             (26) 

Equations (25) and (26) are the equations of 
propagation of electromagnetic waves in the medium 
under consideration .These wave are represented by 

the coupled 


E  and 


H  fields. The velocity of wave 
propagation is:- 



1
v                                                      (27) 

 
3 -Boundary Conditions 

The material medium in which an 
electromagnetic field exists is usually characterized 
by its constitutive parameters  ,  and    . The 

medium is said to linear if  , and  are 

independent of  and 


H or nonlinear otherwise. It 
is homogeneous if  , and  are not function of 

space variables or inhomogeneous otherwise. It is 
isotropic if  , and   are independent of direction 

(scalar) or anisotropic otherwise. The boundary 
condition at the interface separating two different 

media with parameters ),,( 111  and 

),,( 222  as shown in Fig. (1) 

2

2

t

E
E











v



E
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Fig. (1) Interface between two media. 
 
is easily derived from the integral form of Maxwell's 
equations. They are:- 



E t1=


E t2or(


E t1-


E t2)an12=0                          (28) 



H t1-


H t2= or(


H t1-


H t2)an12=                 (29) 



D n1–


D n2=or(


D n1–


D n2).an12= S                    (30) 



B n1–


B n2=0or(


B n1–


B n2).an12=0                     (31) 

where an12 is a unite normal vector directed from 
medium 1 to medium 2 subscripts 1 and 2 denote 
field in region 1 and 2, and subscripts t  and n
respectively denote tangent and normal component of 
the fields .The physical meaning of Equations (.28) 

and (.31) is that the tangential components of  


E  

field as well as of normal components of 


B are 
continuous at the boundary. Equations (.29) states 

that the tangential component of 


H  is discontinuous 
by the surface current density  on the boundary  

Equation (.30) states that the discontinuity in the 

normal component of 


D  is the same as the surface 

charge density S  on the boundary. In practice, only 

two of Maxwell's equations are used equations (.17) 
and (18) when a medium is source - free. Also, in 
practice, it is sufficient to make the tangential 
components of the fields satisfy the necessary 
boundary conditions since the normal components 
implicitly satisfy their corresponding boundary 

conditions, isotropic media in this text. 
L.M.Brekhovsikh, [11]  
 
4-The scalar wave generated by an impulsive line 
source Inside the Ionosphere (in two dimensional). 
Let zyx ,,  be Cartesian coordinates in three-

dimensional space .A point in space will be located 
by either its Cartesian coordinates, its cylindrical 

coordinates zr ,, defined through. 

zzryrx  ,sin,cos      (32) 

with 

  zr ,20,0  , 

or its spherical polar coordinates defined through 

 cos,sinsin,cossin RzRyRx        (33) 

with 

 20,00   R  

The two dimensional wave function );,( tyxuu 
due to the presence of two–dimensional line source 

acting at 0x , 0y satisfies of two– dimensional 

scalar wave equation 

)(),(
1

2

2

22

2

2

2

tfyx
t

u

vy

u

x

u















        (34) 

Where ),( yx denotes the two – dimensional delta 

function and v  is the wave velocity  . f (t) is the 

function which determines the strength of line source 

as a function of time ; it is assumed that f (t) = 0 

when 0t . Further , it is assumed that the medium 

is at rest prior to the instant 0t and that 

everywhere outside the source );,( tyxuu   is 

continues and has continues partial derivatives of the 

222 ,,   

Medium (2)  

111 ,,   

Medium (1)  
  

12na  
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first and second order .Follow Canard, all functions 
of time are subjected to a one-sided Laplace 
transform with respect to time . 

Definition 1.Let f (t) is a function on [0, ∞]. The 

Laplace transform of ƒ is the function F defined by 
the integral 

)(sF =                       (35) 

The domain of F ( s ) is all the values of s  for which 
the integral in (34) exists.  The Laplace transform of ƒ 
is denoted by both F and L {ƒ}. 
We treat s  as real valued out in certain applications 
s  may be a complex variable. 

),,( syxu =       (36) 

Where s  is real ,positive, number large to ensure the 
convergence of the integral (34) and (35) it is 

assumed that the behavior of f (t) and ),,( tyxu as 

t such that such a number s can be found since 

u and 
t

u




 are continues, );,( syxu satisfies the 

differential equation . 

)(),(
2

2

2

2

2

2

sFyxu
v

s

y

u

x

u










            (37) 

In order to solve (36) we introduce the Fourier 

transform of );,( syxu with respect to x  let 

 (x,y;s)= dxsyxuxis );,()exp(




            (38) 

where 1i and the factor s in the argument  
exponential  function has been included for 
convenience with (38) the following equation for 

);,( syx  is obtained 

)()(22

2

2

sFys
dy

d
 


                        (39) 

)0(Re)
1

()(
2

2  
v

                      (40) 

 
As indicated in (40),  is defined as that branch of 

the square root at the right-hand side of (40) for 
which Re   ≥ 0.  The solution of (39) that is 

bounded as │ y │→ ∞ is given by 

)exp(
2

)(
);,( ys

s

sF
syx 


                       (41) 

with the aid of Fourier's inversion theorem we then 

obtain for ),,( syxu the expression 







dysxis
sF

syxu 





2

1
)exp(

2

)(
);,(        (42) 

In the right – hand side of (12) we write ip
and consider p as a complex variable in the p -plan. 

This leads to:- 

dpypxs
i

sF
syxu

i

i









 2

1
)](exp[

2

)(
);,(      (43) 

In which 

=     Re  0                      (44) 

The only singularities of the integrand in (43) are 

branch points at
v

p
1

 , and
v

p
1

 . In view of 

subsequent deformations of the path of integration we 
take Re    0, everywhere in the p -plane   .  This 

implies that branch cuts are introduced along   Im p  

= 0, < │Re p │< ∞. 

The next step towards the solution of the transient 
problem is to perform the integration in the p -plane 

along such a path that the right - hand side of (43) can 
be recognized as the Laplace transform of a certain 
function of time. The analysis which follows will 
show that the path has to be selected such that 
px  +   │y│=                                                 (45) 

Where  is real and positive? If < < ∞, 

equation (45) represents the branch Γ of a hyperbola, 
where Γ is given through. 

p = τ± i ( <τ<∞)          (46) 

In which the square root is taken positive. It is easily 
verified that by virtue of Cauchy's theorem and 
Jordan's lemma [54] ,the integral along the imaginary 
p -axis is equal to the integral along Γ . Along Γ we 

have :- 

)/( 222

22
vr

r

x
i

r

y
                    (47) 

0

exp ( ) ( )st f t dt




0

exp( ) ( , , )st u x y t dt






 2

2

1
( )p
v



1

v




r

v


2

x

r
2 2 2

2
( / )

y
r v

r
 

r

v
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 and 

2

1
222 )/( vr

ip













                               (48) 

In (46) , (47) and (48) the upper and lower signs 
belong together . Taken into account the symmetry of 
the path of integration with respect to the real axis 
and introducing  as variable of integration we 
obtain 




dvrs
sF

syxu
vr






/

2

1
222 )/)(exp(

2

)(
);,(      (49) 

This expression is of the general form:-  





0

);,()exp()();,(  dyxgssFsyxu           (50) 

where , in our case , 















)()(
2

1

)0(0

),,(
2

1

2

2
2 










v

r

v

r

v

r

yxg

             (51) 

Application of the shift rule for Laplace transform to 

the function           )(sF exp(- s ) directly yields 

the function );,( tyxu We obtain 

),,( tyxu =  
t

dyxgtf
0

),,()(  (t>0)          (52)  

 While, from our assumptions, );,( tyxuu  = 0 

when t < 0.In our case we have 



















t

v

r

t
v

r
d

v

r
tf

v

r
t

tyxu
)())((

2

1

)0(0

),,(
2

1

2

2
2 






   (53)  

Form the final result (53) it is clear that ),,( tyxg
can be regarded as the wave function corresponding 
to a delta function time dependence of the source. 
5-The scalar wave generated by an impulsive point   
source Inside The Ionosphere. (in three-
dimensional) 

The three-dimensional wave function 

);,,( tzyxuu  due to the presence of a point 

source acting at 0,0,0  zyx  satisfies the 

three-dimensional wave function 

)(),,(
1

2

2

22

2

2

2

2

2

tfzyx
t

u

vz

u

y

u

x

u



















  (54)              

Where   ),,( zyx denotes the three – dimensional 

delta function. Again, we assume that, outside the 
source, u  are continuous and have continuous partial 
derivatives of the first and second order. Further   , 

0)( tf  when 0t and 0u  when 0t  .The 

following one – sided Laplace transforms with 
respect to time are introduced 

)(sF =

0

exp( ) ( )st f t dt


                               (55) 

and 

);,,( szyxu =

0

exp( ) ( , , , )st u x y z t dt


     (56) 

Since u  and 
t

u




 are continues , );,,( szyxu

satisfies the differential equation 

)(),,(
2

2

2

2

2

2

2

2

sFzyxu
v

s

z

u

y

u

x

u















  (57)     

   In order to solve (57) we introduce the two-

dimensional Fourier transform of );,,( szyxu with 

respect to x    and  y . Let 

 








 dxszyxuyxisdysz );,,()](exp[);,,(    (58) 

Then );,,( sz satisfies the differential equation 

)()(22

2

2

sFzs
dz

d
 


                   (59) 

where 

γ=  (α,β)= 2 2

2

1
( )

v
   ,(Re  0)                (60) 

the solution of (3.28) that is bounded as │ z │→ ∞ is 
given by 

).exp(
2

)(
);,,( zs

s

sF
sz 


            (61) 

with the aid of Fourier's inversion theorem we obtain 

the following expression  for );,,( szyxu  

 








 





dzsyxisd
ssF

szyxu
2

1
])(exp[

4

)(
);,,(

2

 (62) 


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 Again , we shall try to cast the integral on the right-
hand side of (62) in such a form that 

);,,( tzyxuu  can be found more or less by 

inspection .It will be advantageous to transform the 
exponential function into a form which resembles the 
one occurring in the two dimensional problem . 

Now , if ( ), - plane is rotated by angle  ,this 

introduces new variables of integration   and q  

through 

 cossin,sincos qq      (63) 

since dqddd    we obtain :- 

 








 





dzsridq
ssF

szyxu
2

1
]exp[

4

)(
);,,(

2

 (64) 

Where ryx                          (65) 

In which ,as 

  
2222 q                              (66) 

where :- 

=
2/1

2

22 )
1

(
v

q  ,Re ≥0                (67) 

In order to bring the right-hand side of (63) in a form 
which is analogous to the two dimensional case , we 

introduce the variable  ip   and regard p as a 

complex variable in the p – plane , while q is kept  

real .the result  is 

 









i

i

dpzprsdq
i

ssF
szyxu




 2

1
)](exp[

4

)(
);,,(

2

  (68) 

In which 

2

1
2

2

2 )
1

( p
v

q  ,Re ≥0                          (69)     

    From now on , the procedure is similar to the one 
outlined in III.1 by virtue of Cauchy's theorem and 
Jordan's lemma the integration along the imaginary 
p -axis can be replaced by an integration along the 

branch Γ of a hyperbola, where Γ is given through 

,)]
1

([ 2/1

2

222

22 v
qR

R

z
i

R

r
p     

))/1(( 2/122   vqR .  (70) 

Along Γ we have 
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1

2

222

22
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1
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v
qR

R

r
i

R

z
               (71) 

and 

2

1

2

222 )]
1

([
v

qR

ip













       (72)            

In (70), (71) and (72) the upper and lower signs 
belong together. Taken into account the symmetry of 
the path of integration with respect to the real axis 
and introducing   as variable of integration we 
obtain that:- 

 (73) 

Now we interchange the order of integration , which 
leads to 

 
 
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





vR

vR

vR

dqvqRds
ssF

szyxu

/

)/1/(

)/1/(
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)exp(
4
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/

 


                              (74) 

or 

R

vsR
sFszyxu

4

)/exp(
)();,,(


            (75) 

Where  vRt /  , R denotes the spherical 
distance between the source and the point of 
observation. 
 
6- Numerical results  

We define a normalized time    , which means 
that the beginning of the  axis coincides with the 
arrival time of the spherical wave originating directly 
from the source; clearly this normalization depends 
upon the point of observation. Includes the potential 
theory, the Hertz vector, the Fitzgerald vector, wave 
equations, boundary conditions, classification of EM 
problem, classification of solution region and 
classification of EM methods one result is given in 
the form of a definite integral over a finite integral 
can easily be computed numerically. In Fig.[2-5]  

 

 
Fig. (2)  Z-component of primary electric field 
strength as a function of normalize time    , R= 5 
km , s = 100  MHz  
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Fig. (3)  Z-component of primary electric field 
strength as a function of normalize time    , R= 5 
km, s = 300 MHz.  

 

Fig. (4)  Z-component of primary electric field strength 

as a function of normalize time   , R= 5 km , s = 400  

MHz . 

 

 

 

 

 

Fig.( 5)  Z-component of primary electric field strength 

as a function of normalize time   ,  R= 5 km , s = 500  

MHz 

.we have studied Cagniard's method , the scalar wave 
generated by an impulsive line  source.( in two- 
dimensional and in three-dimensional ) .The 
application of  Cagniard's method in obtaining exact 
solution of the three – dimensional pulse problems 
leads to complicated expression for the components 
of the displacement vector in the ionosphere. 
 
8.  Conclusion 
           The author try to give the exact solution of the 
electric field strength above a two layer medium .The 
integral represent of the physical point of view; also, 
the integral is evaluated by two mathematical 
methods: Residue and Saddle point method. A 
disadvantage of the method is not it cannot be used to 
calculate the potential in the dielectric half – space 
outside the layer in similar   manner   . 
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