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Abstract. In this article, we study an approximation of a system of differential equations when it has a noise. We 
use the Taylor method and we model the organization of such systems. In a system of differential equations, we set a 
scalar multiplication with a function and we saw that this system can be in chaotic mode. We used a method to omit 
the noises and chaos in this system.     
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1.  Introduction 
         In many natural and real phenomenon, a system 
of differential equations can be seen. These systems 
may have different behavior in different 
qualifications [4]. One of these cases is chaotic 
qualification. A system in chaotic qualification may 
have many stable and/or unstable points. This system 
in bounded space have many iterates around several 
strange attractors. A system of differential equations 
can be chaotic when we add a function to it. H. 
Poincare proved that we cannot solve three mass 
models, about 150 years ago. We can solve this 
problem with Poincare section [1]. In this paper we 
want to study these systems and controlling the 
dynamic of those systems in chaotic qualification. 
We use control parameters for a system of 
differential equations when we add a matrix function 
to it. We introduced Chaos in Section 2, and explain 
about a system of differential equations in Section 3 
and set several term and definition about this. Some 
numerical examples are given in Section 4. 
 

2. Chaos 
           A dictionary definition of chaos is a 
disordered state of a collection; a confused mixture. 
This is an accurate description of dynamical systems 
theory today or of any other lively field of research. 
(Morris W. Hirsch). 
             When a system in nature is mathematically 
modeled, we find that their graphical representations 
are not straight light lines and the system behavior is 
not so easy to predict. After researches on complex 
systems, now we know that noise is actually 
important information about the experiments. When 
noise is inserted in to the result graph, the graph no 
longer appear as straight line, neither its point are 
predictable. Once, this noise was referred to as the 
chaos in an experiment. For chaos applications we 
can mention, much like physics, chaos theory 
provides a foundation for the study of all other 
scientific disciplines. It is actually a toolbox of 
methods for incorporating non-linear dynamics for 
the study of science. 
 

3. A System of Differential Equations 

Let  be a function, for . Also let ' be the derivative operator   .  

For , consider the following system of differential equations: 
 

 

 

(3.1) 
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where for .  is a function of t.  

Definition 3.1. Let f be a scalar function or an operator, also  be a vector. We define 

 as follows 
  

      
We can rewrite the system of differential equations (3.1), as follows:  

 
where . The function F(X, t) is satisfied the Lipchitz condition 
with Lipchitz constant L  if for any two points (X, t)   and (Y, t)    we have: 

 
Definition 3.2. Let  and  be two vectors. We define a direct 

product,  as follows: 

 
for the purpose of solving  (3.1) numerically by using Euler method we have: 

 
where  and  is a direct product. 

Theorem 3.3. Let  be a sequence of real numbers such that  and there exist two constant  and  , such 
that for any k we have [2] 

 
Therefore for any k we have: 

 

Theorem 3.4. Let  be a vector obtained from Euler method in step k, and for  we have 

, where . Suppose that  be the exact vector in step k. Thus we have 

 
              Proof. when know that 

 
From Euler method we have 

 
Let   be the exact vector in step , thus 

 
where  .Therefore 

 
Also we know that   so we have: 

 
From Lemma 3 we have 

 
 
 

Corollary 3.1. From Theorem 4 we have: 

 
  Now let we add a function to this system of differential equations. In lots of natural and real phenomenon, we need 
to do such work. For example when an airplane goes through a storm, or when a robot faces a snag or any one has a 

(3.2) 

(3.3) 

(3.4) 

(3.6) 

(3.5) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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epilepsy. Another example is the case when we have an artificial moon between the real moon and earth. All of this 
phenomenon and other example are satisfied by this term. 

Let  be a function. Now consider the new system of differential equations: 

 
  The functions F(X, t) and G(X, t) are satisfied in Lipchitz condition with Lipchitz constants L and , respectively. 

So for   we have: 

 
Lemma 3.1 Let  be a vector obtained from Euler method in step k, and  for  , we have , 

 where  and . Suppose that be the exact vector in step k. 
Thus we have: 

 

                Proof. It is a corollary of Theorem 4. 
Corollary 3.2. From Lemma 3.1 we have: 

 

  This Corollary shows that the maximum error is affected by the added function. Therefore the system can be 

unstable if  is unbounded or has a large bound, for some of indexes i. 

We use a parameter  for G(X; t), to control the behavior of the system. So we consider a system as: 
 

 
 

The functions F(X; t) and G(X; t) are satisfied in Lipchitz condition with Lipchitz constants L and , respectively. 

So for  we have: 

 
Theorem 3.5. By assumptions of Lemma 3.1 and Corollary 2, we have: 
 

 

If we use vector  as a control array parameter, we will have: 
 

        
  Theorem 3.6. By assumptions of Lemma 3.1 and Corollary 2, we have: 
 

             

 
4. Numerical exampel 
Example 1 
              Consider the following system of differential equations 
 

 

We surveyed this system with Euler method. Let  varies from 0 to 14. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are 

. (Figure 1) 

Now let , the answer of above system in a 3-dimensional space is shown in the following figure for all 
2000 iterations. (Figure 2) 
 
 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.17) 

(4.1) 
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Figure 2:  in 3-dimensional space 
all 2000 iterations when  

Example 2 
               
   Consider the following system of differential equations 

 
 

There we have . We surveyed this system with Euler method. Let  and  varies from -5 

to 5. In the following figure the values of  are shown for the last 100 iterations, when we have 1000 
iterations. In this case our parameters are a = 4, b = 1.  (Figure 3) 
 

Now let   and . The answer of above system in a 2-dimensional space is shown in the 
following figure for all 2000 iterations. (Figure 4) 

We surveyed this system with Euler method. Let  varies from -5 to 5. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are a = 4, 

b = 1 and . (Figure 5) 
 

As you see the system affects is better than the systems with immovable parameter of .  

This system will be dynamic when  is more than about 1.5. Now let , the answer of above system in 
a 2-dimensional space is shown in the following figure for all 2000 iterations. (Figure 6) 
 
 
Example 3 
               
   Consider the following system of differential equations 

 

 

We surveyed this system with Euler method. Let  varies from -7.7 to -4.9. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are 

. (Figure 7) 
 

Now let , the answer of above system in a 2-dimensional space and 3-dimensional space is shown in 
the following figure for all 2000 iterations. (Figure 8) 

let  In the following figure we map the points  for 2000 iterations. (Figure 9) 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1:  for the last 100 iterations 

when  

(4.2) 

(4.3) 
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Figure 5:  for the last 100 iterations when  and  
 

 

Figure 4:  in 3-dimensional space all 2000 iterations when  and  

Figure 3:  for the last 100 iterations when  
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  in 3-dimensional space all 2000 
iterations when  
 

 
 
 
 
 

 
 
 

 

 
 
Figure 7:  for the last 100 iterations when 
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Figure 8:  in 2-dimensional and 3-dimensional space all 2000 iterations when  

 
 
 
 
 
 
 
 
 
 
 
 Figure 9: The points  for 2000 iterations when  
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