
Journal of American Science 2012;8(9)                                                  http://www.jofamericanscience.org 

 

http://www.jofamericanscience.org           editor@americanscience.org 261 

Structural and In-Plane Buckling Analysis of Two-Hinged Ogee Arches 

 

Ghada M. El-Mahdy 

 

Housing and Building National Research Center (HBRC), 87 El-Tahrir St., Dokki, Giza, PC 11511, Egypt 

ghadaelmahdy@yahoo.com, 

 

Abstract: The ogee arch consists of a pair of two tangential circular arcs making an arch shape.  The geometry of 

the arch depends on several interrelated variables including the angles subtended by the arcs, the ratio of the radii of 

the two arcs, and the height of the arch.  This paper provides curves for designing the geometry of ogee arches and 

outlines the structural analysis of two-hinged ogee arches under different cases of loading.  A parametric study of 

the buckling behavior of ogee arches is presented using a finite element eigenvalue buckling analysis for several 

cases of loading.  The results of the buckling analysis are verified through a nonlinear finite element analysis with 

initial imperfections.  It is found that the buckling load is a function of the height-to-base radius of the arch. 

[El-Mahdy GM. Structural and In-Plane Buckling Analysis of Two-Hinged Ogee Arches. J Am Sci 

2012;8(9):261-271]. (ISSN: 1545-1003). http://www.jofamericanscience.org.  38 

 

Keywords: Arches; buckling analysis; finite element analysis; geometry; ogee shaped arch 

 

1. Introduction 

An arch is a planar structure that spans a 

space and supports a load. The significance of the 

arch is that it provides an aesthetically pleasing 

shape, as well as, theoretically provides a structure 

which eliminates tensile stresses in spanning a great 

amount of open space.  The forces are mainly 

resolved into compressive stresses.  By using the arch 

configuration significant spans can be achieved. 

However, one downside is that an arch pushes 

outward at the base, and the horizontal reaction force 

(or thrust) needs to be restrained in some way.  

Arches can be fixed, hinged, or have 3 hinges, as 

shown in Figure 1.  Arches can take several shapes 

consisting of a combination of lines, arcs of circles, 

and other curves as shown in Figure 2.  

Three-hinged arch Two-hinged arch Fixed-fixed arch
 

Figure 1. Statical System of Arches. 

 

Semi-circular arch Segmental arch Lancet arch

Three-foiled cusped

Eliptical arch

Inflexed arch

Parabolic arch

Tudor arch Ogee arch Reverse ogee
arch arch  

Figure 2. Common Shapes of Arches. 

 

As part of a pilot project on sustainable or 

green construction at the Housing and Building 

National Research Center (HBRC) (El-Mahdy and 

Zaki, 2010), it is proposed to cover the open patio 

space at the ground floor of HBRC’s main building 

with a self-supporting skin skylight.  The HBRC logo 

consists of an ogee shaped arch with a symbolic sun 

behind it, hence the new skylight under consideration 

could take the shape of an ogee arch.  The sun 

symbolizes renewable energy and light, and the arch 
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itself being symbolic of HBRC’s leading role in 

Egypt in sustainable construction.  As there is very 

little data on ogee arches, the subject of this research 

is the structural and in-plane buckling analysis of 

two-hinged ogee shaped arches.   

Ogee is a curved shape somewhat like an 

“S” consisting of two arcs that curve in opposite 

senses, so that the ends are tangential.  In 

architecture, the term ogee is used for a molding with 

a profile consisting of a lower concave arc flowing 

into a convex arc.  The ogee arch dates back to 

ancient Persian and Greek architecture (Boyd, 1978) 

and is also found in Gothic style architecture.  Ogee 

is also a mathematical term meaning “inflection 

point”.  In fluid mechanics, the term is used for ogee-

shaped aerodynamic profiles, a good example of 

which is the wing of the Concorde aeroplane.  As the 

upper curves of the ogee arch are reversed, it cannot 

bear a heavy load.  However for the purpose of a self-

supporting skin skylight that will only be exposed to 

its own weight and wind loads, the ogee arch is a 

suitable solution.  

 An extensive bibliography on the stability of 

arches prior to 1970 is given by DaDeppo and 

Schmidt (1970).  The Handbook of Structural 

Stability (Hayashi, 1971) gives an overview of 

results of stability research of arches in which either 

the equations or graphs of the quoted literature are 

reproduced.  An extensive state-of-the-art report on 

elastic and inelastic stability of arches is given in 

Fukumoto (1996).  Singer et al. (1998) provide a 

chapter on experimental research that has been 

conducted on arches.  King and Brown (2001) 

present a comprehensive study for the practical 

design of steel curved beams and arches. 

 Early papers on arch stability devoted to linear 

stability problems where no bending moments were 

induced in the arch before buckling were summarized 

by Austin (1971), Austin and Ross (1976), and 

Timoshenko and Gere (1961).  More recent results 

on the stability of tapered arches are reported by 

Wolde-Tinsaie and Foadian (1989).  Nonlinear 

elastic stability where bending moments are induced 

in the arch before buckling is handled by Austin and 

Ross (1976).  The problem of unsymmetrical loading 

was studied by Kuranishi and Lu (1972), Chang 

(1973), and Harrison (1982).  For the same dead and 

live load intensities, it was found that 

unsymmetrically distributed load always governs.   

 The limit analysis of stocky arches was first 

presented by Onat and Prager (1953).  A more 

recent theoretical method for calculating the plastic 

collapse load of stocky arches is given by 

Spoorenburg et al. (2012).  The behaviour of slender 

arches in pure compression is very much like that of 

a column and it is common to express the buckling 

strength of such arches in terms of the axial thrust at 

the quarter point of the arch using the Euler load 

(Ziemian, 2010).  Pi and Trahair (1999) and Pi 

and Bradford (2004) studied the in-plane inelastic 

stability of hinged and fixed circular arches with I-

shape cross sections with different load cases and 

subtended angles.  Other nonlinear buckling studies 

on arches were made by Pi and Trahair (1998), Pi et 

al. (2007), and Yau and Yang (2008). 
 International building standards are compared 

with each other in Stability of Metal Structures, a 

World View (Beedle, 1991).  The Eurocode 3, Part 

2 (2006) provides charts with effective length factors 

for the elastic in-plane buckling of circular, parabolic, 

and catenary arches with unmovable supports and 

several articulations.  For tied arches with vertical 

hangers, effective lengths are also given, as is a 

criterion which indicates if the arch is prone to snap-

through buckling.  AASHTO (2004) provides 

effective-length factors for fixed, two-hinged and 

three-hinged arches with rise-to-span ratios of 0.1 to 

0.4. 

 

2. Geometry of Ogee Arch 

 
Figure 3. Geometry of Ogee Arch. 

 

The ogee arch is composed of a pair of two 

discrete circular arcs with independent radii.  Hence, 

there are many geometrical variables to be 

determined namely, the radius of the lower arc which 

is half the span of the arch, R1, the radius of the upper 

arc, R2, the angle subtended by the lower arc, 90-α, 

the angle subtended by the upper arc, β, as well as the 

overall height of the arch, h.  These variables are 

shown in Figure 3.  From the geometry of the arch 

the coordinates of the peak of the arch, point 3, can 

be expressed as 

         0)sin(sin)( 2213 =+−+= βαα RRRx         (1) 

         hRRRy =+−+= )cos(cos)( 2213 βαα       (2) 

Eliminating R1 from these two simultaneous 

equations and simplifying gives the expression for 

R2/h as 

                                  
β
α

sin

sin2 =
h

R
                          (3) 
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Substituting Equation (3) into Equation (1) and 

simplifying gives the expression for R1/h as 

      
( )

β
αβα

sin

sinsin1 −+
=

h

R
        (4) 

The radius of the upper curve R2 can be expressed in 

terms of R1, α, and β as 

     
αβα

α
sin)sin(

sin

1

2

−+
=

R

R
        (5) 

Equations (3) – (5) must be solved 

iteratively to determine all the geometric variables of 

an ogee arch, so to simplify the process of design the 

graphs in Figures 4 and 5 have been developed to 

determine the geometric variables for a specific 

height-to-half span ratio, h/R1.  Figure 4 plots the 

relationship between the ratio h/R1 for different 

values of angle α such that angle β can be determined 

from these independent variables.  Figure 5 plots the 

relationship between the ratio h/R1 for different 

values of angle α such that the ratio R2/R1 can be 

determined.  It is to be noted that Eqs. (3) – (5) are 

only valid for practical values of h/R1 as for higher 

ratios the left and right curves of the arch overlap 

each other suggesting that there are two solutions to 

the problem a practical one and an imaginary one. 
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Figure 4. Relationship of h/R1 Versus Angle β. 
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Figure 5. Relationship of h/R1 Versus R2/R1. 

 
3. Structural Analysis of Ogee Arch 

Arches behave like two-dimensional beams 

spanning an open space, but unlike simple beams 

arches have a horizontal thrust resisting the tendency 

of the arch to open out.  The common statical systems 

of an arch can be either a three-hinged arch, a two-

hinged arch, or a fixed-fixed arch as shown in Figure 

1. For most common arch applications the two-

hinged arch is the most practical and is the statical 

system used in this research. 

 

3.1 Horizontal Thrust 

The arch is assumed to be a two hinged arch 

with horizontal base reactions H, as shown in Figure 
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6.  To analyze this arch the principal of virtual work 

(Williams, 2009) or minimum strain energy 

(Timoshenko, 1930) is used giving the horizontal 

support reaction as 

                           
∫
∫=

EIdsy

EIMyds
H

/

/

2
   (6) 

where M is the bending moment of the applied load 

case for a statically determinate simply supported 

arch, y is the distance from the base of the arch and 

represents the bending moment due to a unit 

horizontal load applied at the released support of the 

statically determinate simply supported arch, ds is the 

infinitesimal distance along the length of the arch, 

and EI is the bending rigidity of the arch (E being the 

modulus of elasticity and I the moment of inertia of 

the cross-section about the axis of bending).  For the 

ogee arch, two circular coordinate systems are 

required as shown in Figure 6; the first for the lower 

part of the arch using θ as the variable and integrating 
the moments from θ = α to θ = π/2, and the second 
for the upper part of the arch using φ as the variable 
and integrating the moments from φ = α to φ = (α + 

β).  The horizontal reaction that prevents the spread 

of the arch depends on the type of loading applied to 

the arch.  Three cases of loading are analysed namely 

a concentrated load P at the peak of the arch 

(midspan), a uniformly distributed vertical load 

acting along the horizontal projection w, and a 

uniformly distributed horizontal load acting along the 

vertical projection wh, which are shown in Figure 7. 

 

 
Figure 6. Statical System of Two-Hinged Ogee Arch. 

 

 
Figure 7. Load Cases Considered in Structural Analysis for Horizontal Thrust Reaction. 

 

3.1.1. Case (1): Concentrated Load at Midspan 
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Figure 8. Horizontal Thrust for Case 1 Loading, 

Concentrated Load P at Midspan. 

 

Due to the complexity of the expression 

derived for the horizontal thrust it is not stated here 

but is given in the appendix.  The value of the 

horizontal reaction for a concentrated load P at 

midspan is plotted in Figure 8 in the nondimensional 

form of 2H/P for different values of angles α and β.  

It can be seen that for the arches with angles of α 

between 5
o
 and 20

o
, the horizontal thrust increases 

slightly with the increase in the height-to-span ratio 

(i.e., increase of β), whereas for values of α between 

25
o
 and 45

o
, the horizontal thrust decreases with the 

increase of this ratio. 

 

3.1.2. Case (2): Uniformly Distributed Vertical load 

Acting Along Horizontal Projection 

 For a uniformly distributed vertical load of 

w acting along the horizontal projection the 

horizontal reaction, the expression for which is given 

in the appendix, is plotted in Figure 9 in the 

nondimensional form of 3H/2wR1 for different values 

of angles α and β.  It can be seen that for all values of 

α, the horizontal thrust decreases with the increase in 

the height-to-span ratio, however, this decrease 

becomes significantly greater as α increases. 
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Figure 9. Horizontal Thrust for Case 2 Loading, 

Uniformly Distributed Vertical Load w. 

 

3.1.3. Case (3): Uniformly Distributed Horizontal 

Load Acting Along Vertical Projection 
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Figure 10. Horizontal Thrust for Case 3 Loading, 

Uniformly Distributed Horizontal Load wh. 

 

For a uniformly distributed horizontal load 

of wh acting along the vertical projection the 

horizontal reaction on the side of the horizontal 

loading (i.e., the right side), the expression for which 

is given in the appendix, is plotted in Figure 10 in the 

nondimensional form of 2HR/whR1 for different 

values of angles α and β.  Again, it can be seen that 

for all values of α, the horizontal thrust decreases 

with the increase in the height-to-span ratio, however, 

this decrease becomes significantly greater as α 

increases. 

 

3.2 Bending Moment 

Arch-type structures are most efficient if 

they carry their load in such a way that the funicular 

curve coincides with the centroidal axis, which 

results in axial compression and no bending of the 

arch axis (Ziemian, 2010).  Examples of arches 

under pure axial compression include circular arches 

subjected to uniform normal pressure, commonly 

called hydrostatic loading, parabolic arches subjected 

to uniform load on a horizontal projection, and 

catenary arches with load uniformly distributed along 

the arch axis.  However, for other shapes of arches 

and other types of loading, a small amount of 

bending moment will occur along the axis of the 

arch.  Hence, arches are generally designed to resist 

axial compression forces and small amounts of 

moments. 

 

4.  In-Plane Buckling of Arches 

Limit Load

Symmetric
Buckling

Antisymmetric
Buckling

Load

Displacement

Bifurcation Load

 
Figure 11. Modes of In-Plane Buckling of Arches. 

 

The stability of an arch can be characterized 

by buckling in or out of the plane of the arch.  In-

plane buckling occurs when the arch is substantially 

braced against out-of-plane deformations, while out-

of-plane buckling occurs for arches with significant 

free-standing portions.  In-plane buckling is 

associated with combined compression and bending 

while out-of-plane buckling is associated with 

combined compression, biaxial bending, and torsion.  

This paper deals with in-plane buckling.  Arches can 

buckle in-plane in a symmetrical buckling mode or 

an antisymmetrical buckling mode, as shown in 

Figure 11 (Ziemian, 2010).  Generally, the 

symmetrical buckling load is greater than the 

antisymmetrical buckling load.  If an antisymmetric 

mode does not become dominant, the arch eventually 

becomes unstable in a symmetrical mode with the 

load-deflection curve gradually reaching a limit 

point.  On the other hand, the limit load may be 

significantly reduced if an antisymmetrical buckling 

mode dominates.  This antisymmetric bifurcation 

load is the subject of discussion in this paper. 

q

R

1 1

w

 
Figure 12. Buckling of an Arch. 

  

The buckling of arches is well presented by 

Timoshenko and Gere (1961).  The radial deflection 

of a circular arch of radius R and subjected to a 

uniform pressure is taken as w, as shown in Figure 



Journal of American Science 2012;8(9)                                                  http://www.jofamericanscience.org 

 

http://www.jofamericanscience.org           editor@americanscience.org 266 

12.  The moment in the arch is assumed to be equal to 

the secondary moment due to the internal 

compressive force, S, multiplied by the deflection w 

(i.e., M = Sw).  Hence, the differential equation for 

the buckling of the arch is 

          
EI

SwR
w

d

wd
2

2

2

−=+
θ

         (7) 

where S = qR, q being the uniform pressure acting on 

the arch, and EI is the bending rigidity of the arch.  In 

this equation the variation of the compressive force S 

along the length of the arch is neglected.  Taking k
2
 = 

1 + qR
3
/EI the differential equation for the buckling 

of the circular arch becomes 

                  0
2

2

2

=+ wk
d

wd

θ
         (8) 

The general solution of this equation is w = A sin kθ 
+ B cos kθ.  Satisfying the condition at the left end (θ 
= 0) gives B = 0, and the condition at the right end (θ 
= 2α1) gives sin 2α1k = 0.  The smallest root for this 

that satisfies the condition of inextensibility of the 

center line of the arch is k = π /α1 giving 

                         









−= 1

2

1

2

3 α
π

R

EI
qcr   (9) 

Equation (9) is also a good approximation 

for the case of a uniformly distributed vertical load.  

Austin (1971) noted that the critical thrust for the 

case of a two-hinged circular arch with midspan 

concentrated load in which large bending moment 

and displacements exist prior to buckling is nearly 

the same as the critical thrust for the uniform pressure 

loading which causes only compression in the arch.  

So, it can be assumed that the buckling data for 

arches subjected to loadings which cause pure 

compression can be used to estimate the critical 

loading values for other symmetrical loadings. 

 

5.  Finite Element Analysis 

COSMOS/M 2.6, a finite element program, 

was used to model the ogee arches.  The finite 

element model consisted of 2D elastic straight beam 

elements along the axis of the arch.  The beam 

elements were modeled using the properties of steel 

giving the material model a modulus of elasticity of 

210 GPa and a yield stress of 350 MPa.  The model 

was given a cross-sectional area of 8450 mm
2
 and a 

moment of inertia of 0.231 x 10
9
 mm

4
.  The model 

was constrained at the base of the arch in both planar 

directions to achieve the pinned-end conditions.  

Initially, a linear analysis was conducted to verify the 

horizontal reactions derived previously and to obtain 

the bending moment diagram.  Then an eigenvalue 

buckling analysis was conducted to find the trend in 

elastic buckling for each case of loading.  A 

nonlinear analysis was conducted to verify these 

elastic buckling loads.   

 

Table 1. Specimens Used in Parametric Study. 

Specimen 
Angle 

α α α α o 
h/R1 

Angle 

β β β β o 
R2/R1 Specimen 

Angle 

α α α α o 
h/R1 

Angle 

β β β β o 
R2/R1 

S1 0 1.000 0.0 0.000 S22 25 1.400 48.9 0.785 

S2 5 1.005 1.6 3.137 S23 30 1.165 1.8 18.545 

S3 5 1.050 53.4 0.114 S24 30 1.200 7.5 4.597 

S4 5 1.080 77.8 0.096 S25 30 1.300 22.0 1.735 

S5 5 1.100 90.0 0.096 S26 30 1.400 33.8 1.258 

S6 10 1.020 2.9 3.501 S27 30 1.700 58.2 1.000 

S7 10 1.100 47.2 0.260 S28 35 1.230 1.3 31.097 

S8 10 1.150 67.2 0.217 S29 35 1.350 15.6 2.879 

S9 10 1.200 82.2 0.210 S30 35 1.400 20.8 2.261 

S10 15 1.038 1.2 12.828 S31 35 1.600 37.5 1.508 

S11 15 1.100 24.8 0.679 S32 35 1.800 49.4 1.360 

S12 15 1.200 54.3 0.383 S33 35 2.000 58.2 1.350 

S13 15 1.300 74.5 0.349 S34 40 1.320 1.6 30.388 

S14 20 1.068 1.2 17.442 S35 40 1.400 9.3 5.569 

S15 20 1.100 10.3 2.104 S36 40 1.600 24.8 2.452 

S16 20 1.200 34.6 0.723 S37 40 1.800 36.3 1.954 

S17 20 1.300 53.0 0.557 S38 40 2.000 45.0 1.818 

S18 20 1.400 66.8 0.521 S39 45 1.430 1.3 44.570 

S19 25 1.110 1.4 19.200 S40 45 1.600 13.3 4.918 

S20 25 1.200 19.6 1.512 S41 45 1.800 24.2 3.105 

S21 25 1.300 36.0 0.935 S42 45 2.000 32.7 2.618 
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The parametric study consisted of 42 

specimens with angles α ranging from 0
o
 to 45

o
 and 

h/R1 ratios ranging from 1 to 2. The corresponding 

values of angle β and ratio R2/R1 were determined 

from Equations (3) – (5).  These specimens represent 

ogee arches of practical proportions with various 

height and curvature.  The lower bound of these 

specimens, S1, was a semi-circular arch with α = 0
o
 

and h/R1 equal to 1.  This specimen was used to 

compare the finite element results with the theoretical 

buckling results and also represented the upper limit 

for the bifurcation buckling loads of the ogee arches.  

Table 1 lists the specimens used in the parametric 

study.   

 

6. Results and Discussion 

6.1. Linear Analysis 

The linear analysis was used to verify the 

horizontal thrust reactions shown in Figures 8 – 10 

and analytically stated in the appendix, and to obtain 

the bending moment diagrams.  The finite element 

horizontal thrust compared accurately with the 

analytical values derived with a deviation of less than 

0.5% for Case 1 loading, less than 0.3% for Case 2 

loading, and less than 5% for Case 3 loading.  The 

deformed shape and bending moments for the three 

cases of loading are shown in Figure 13 (a) – (c).  As 

the ogee curve is not the funicular curve for any of 

these cases of loading, there is a fair amount of 

bending moment produced, which must be taken into 

consideration in the design of such arches.   

 

    
(a) Case 1 loading. 

 

  
  (b) Case 2 loading. 

 

 
(c) Case 3 loading. 

Figure 13. Deflected Shape and Bending Moment 

Diagram for the Three Cases of Loading. 

 

 

6.2. Eigenvalue Buckling Analysis 

The critical value of the uniform pressure, 

qcr, is 3EI/R
3
 in accordance with the theoretical 

results for a two-hinged semicircular arch (α1 = π /2) 
subjected to uniform pressure as given in Equation 

(9).  Using the finite element method to perform an 

eigenvalue buckling analysis the bifurcation uniform 

pressure was found to equal 3.27EI/R3 for a two-

hinged uniformly compressed semicircular arch with 

constant cross section.  Furthermore, the bifurcation 

load was found to equal 3.50EI/R
3
 for a two-hinged 

semicircular arch with constant cross section and 

loaded by a uniformly distributed vertical load acting 

along the horizontal projection (i.e., live load), and 

2.62EI/R
3
 for a two-hinged semicircular arch with 

constant cross section and loaded by a uniform 

vertical pressure acting along the axis of the arch 

(i.e., dead load).  Hence, the finite element buckling 

analysis compares relatively well with the theoretical 

values.  The bifurcation buckling mode is 

antisymmetrical as shown in Figure 14. 

 

 
Figure 14. Antisymmetrical Buckling Mode of Arch.  

 

6.3. Nonlinear Analysis 

To verify the bifurcation loads obtained 

from the buckling analysis, a nonlinear analysis was 

conducted with an initial geometric imperfection.  

The arch was modeled with an initial horizontal 

imperfection at the peak of the arch and the load was 
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applied incrementally using elastic material 

properties and large deformation.  The load 

converged with the bifurcation load in an 

antisymmetrical deformation mode which tended to 

push the arch in the opposite direction to the initial 

imperfection.  Figure 15 shows a typical nonlinear 

load – horizontal displacement curve for specimen 

S17 with uniform vertical loading acting along the 

horizontal projection. The nonlinear analysis 

indicates a little imperfection sensitivity by showing 

a slight decrease in the convergence load from the 

bifurcation buckling load. 
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Figure 15. Nonlinear Load – Horizontal 

Displacement Curve. 

 

 

6.4. Effect of Height-to-Base Radius Ratio 
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Figure 16. Buckling Load for Concentrated Load at 

Midspan. 

 

The parametric ogee arch analysis shows 

that the bifurcation buckling load for the case of a 

concentrated load at midspan depends only on the 

ratio of the height of the arch to the radius of the base 

of the arch (h/R1).  This value can be expressed in a 

nondimensional form using PcrR1
2
/EI such that the 

expression 
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h
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gives a good lower bound solution for this case as 

shown in Figure 16.  The objective of using a 

nondimensional form is to eliminate the size of the 

arch, the material properties, and the cross-sectional 

inertia from the results.  In this way the buckling 

values or Equation (10) can be used to find the 

buckling load of any size arch with any cross section 

or material properties. 
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Figure 17. Buckling Load for Uniformly Distributed 

Vertical Load Acting Along the Axis of the Arch. 

 

For the case of uniformly distributed vertical 

loading acting along the axis of the arch, representing 

the dead load, the parametric ogee arch analysis 

shows that the buckling load again depends only on 

the ratio of the height of the arch to the radius of the 

base of the arch (h/R1).  This value can be expressed 

in a nondimensional form using wcrR1
3
/EI such that 

the expression 
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gives a good lower bound solution for this case as 

shown in Figure 17. 
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Figure 18. Buckling Load for Uniformly Distributed 

Vertical Load Acting Along the Horzl. Projection. 

 

The live load distribution is best represented 

by uniformly distributed vertical loading acting along 
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the horizontal projection.  In this case the parametric 

ogee arch analysis shows that the buckling load again 

depends on the ratio of the height of the arch to the 

radius of the base of the arch (h/R1) but the 

relationship is not quite linear and the results show a 

fair amount of scatter.  Figure 18 shows that the 

lower bound solution for the critical load for this case 

can be expressed as 

       06.457.0
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Figure 19. Buckling Load for Uniformly Distributed 

Horizontal Load Acting Along the Vert. Projection. 

 

Finally, for the horizontal distributed load 

acting along the vertical projection which represents 

wind load, the parametric ogee arch analysis shows 

that the buckling load again depends only on the ratio 

of the height of the arch to the radius of the base of 

the arch (h/R1), but for this case of loading the 

relationship is nonlinear.  The value of the bifurcation 

buckling load can be expressed in a nondimensional 

form using whcrR1
3
/EI such that the expression 
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   (13) 

gives a good lower bound solution for the critical 

load for this case as shown in Figure 19. 

 

7.  Conclusion 

The paper presents the structural and in-

plane buckling analysis of two-hinged ogee arches.  

The geometry of ogee arches are composed of a 

number of interrelated variables that can be 

determined from the design curves presented before 

the analysis can be conducted.  The horizontal thrust 

reaction of two-hinged ogee arches depends on the 

geometry of the arch and type of loading and, in 

general, decreases with the increase in height-to-span 

ratio.  The eigenvalue buckling analysis predicted an 

antisymmetric mode of buckling, which was verified 

by the nonlinear analysis of the arch with initial 

geometric imperfections.  The bifurcation load of 

ogee arches depends only on the height-to-base 

radius ratio, decreasing with the increase in the 

height-to-base radius ratio.  The relationship between 

the bifurcation load and the height-to-base radius 

ratio is linear for concentrated midspan loads and 

uniform vertical loading acting along the axis of the 

arch.  There is a fair amount of scatter in this 

relationship for uniform vertical loading acting along 

the horizontal projection, and this relationship is 

nonlinear for uniform horizontal loading acting along 

the vertical projection.   

 

8.  Appendix 
The analytical results for the horizontal 

thrust for the three cases of loading described in 

Section 3.1 are as follows: 
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Case (2): Uniformly Distributed Vertical load Acting Along Horizontal Projection 
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Case (3): Uniformly Distributed Horizontal Load Acting Along Vertical Projection 
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