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Abstract: In this article, we study an approximation of a system of differential equations when it has a noise. We 
use the Taylor method and we model the organization of such systems. In a system of differential equations, we set a 
scalar multiplication with a function and we saw that this system can be in chaotic mode. We used a method to omit 
the noises and chaos in this system.  
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1. Introduction 
  In many natural and real phenomenon, a system of 
differential equations can be seen. These systems may 
have different behavior in different qualifications [4]. 
One of these cases is chaotic qualification. A system 
in chaotic qualification may have many stable and/or 
unstable points. This system in bounded space have 
many iterates around several strange attractors. A 
system of differential equations can be chaotic when 
we add a function to it. H. Poincare proved that we 
cannot solve three mass models, about 150 years ago. 
We can solve this problem with Poincare section [1]. 
In this paper we want to study these systems and 
controlling the dynamic of those systems in chaotic 
qualification. We use control parameters for a system 
of differential equations when we add a matrix 
function to it. We introduced Chaos in Section 2, and 
explain about a system of differential equations in 
Section 3 and set several term and definition about 
this. Some numerical examples are given in Section 4. 
 

1. Chaos 
A dictionary definition of chaos is a disordered 

state of a collection; a confused mixture. This is an 
accurate description of dynamical systems theory 
today or of any other lively field of research. (Morris 
W. Hirsch). 

When a system in nature is mathematically 
modeled, we find that their graphical representations 
are not straight light lines and the system behavior is 
not so easy to predict. After researches on complex 
systems, now we know that noise is actually important 

information about the experiments. When noise is 
inserted in to the result graph, the graph no longer 
appear as straight line, neither its point are predictable. 
Once, this noise was referred to as the chaos in an 
experiment. For chaos applications we can mention, 
much like physics, chaos theory provides a foundation 
for the study of all other scientific disciplines. It is 
actually a toolbox of methods for incorporating non-
linear dynamics for the study of science. 

 
2. A System of Differential Equations 

Let  be a function, for 

. Also let ' be the derivative operator 

  .  

For , consider the following system of 
differential equations: 
 

 

 

where for .  is a 
function of t.  
Definition 3.1. Let f be a scalar function or an 

operator, also  be a vector. 

We define  as follows: 

  

      
We can rewrite the system of differential equations (3.1), as follows:  

 

(3.2) 

(3.3) 
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where . The function F(X, t) is satisfied the Lipchitz condition 
with Lipchitz constant L  if for any two points (X, t)   and (Y, t)    we have: 

 
Definition 3.2. Let  and  be two vectors. We define a direct 

product,  as follows: 

 
for the purpose of solving  (3.1) numerically by using Euler method we have: 

 
where  and  is a direct product. 

Theorem 3.3. Let  be a sequence of real numbers such that  and there exist two constant  and  , such 
that for any k we have [2] 

 
Therefore for any k we have: 

 

 

Theorem 3.4. Let  be a vector obtained from Euler method in step k, and for  we have 

, where . Suppose that  be the exact vector in step k. Thus we have 

 
              Proof. when know that 

 
From Euler method we have 

 
Let   be the exact vector in step , thus 

 
where  .Therefore 

 
Also we know that   so we have: 

 
From Lemma 3 we have 

 
 
 

Corollary 3.1. From Theorem 4 we have: 

 
 
  Now let we add a function to this system of differential equations. In lots of natural and real phenomenon, we need 
to do such work. For example when an airplane goes through a storm, or when a robot faces a snag or any one has a 
epilepsy. Another example is the case when we have an artificial moon between the real moon and earth. All of this 
phenomenon and other example are satisfied by this term. 

Let  be a function. Now consider the new system of differential equations: 

 

(3.4) 

(3.6) 

(3.5) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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  The functions F(X, t) and G(X, t) are satisfied in Lipchitz condition with Lipchitz constants L and , respectively. 

So for   we have: 

 
 

Lemma 3.1 Let  be a vector obtained from Euler method in step k, and  for  , we have , 

 where  and . Suppose that be the exact vector in step k. 
Thus we have: 

 

 
                Proof. It is a corollary of Theorem 4. 
 
Corollary 3.2. From Lemma 3.1 we have: 

 

 
  This Corollary shows that the maximum error is affected by the added function. Therefore the system can be 

unstable if  is unbounded or has a large bound, for some of indexes i. 

We use a parameter  for G(X; t), to control the behavior of the system. So we consider a system as: 

 
 

The functions F(X; t) and G(X; t) are satisfied in Lipchitz condition with Lipchitz constants L and , respectively. 

So for  we have: 

 
 
Theorem 3.5. By assumptions of Lemma 3.1 and Corollary 2, we have: 
 

 

If we use vector  as a control array parameter, we will have: 
 

        
  Theorem 3.6. By assumptions of Lemma 3.1 and Corollary 2, we have: 
 

             

 
 

3. Numerical exampel 
Example 1 
              Consider the following system of differential equations 
 

 

We surveyed this system with Euler method. Let  varies from 0 to 14. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are 

. (Figure 1) 

Now let , the answer of above system in a 3-dimensional space is shown in the following figure for all 
2000 iterations. (Figure 2) 
 
 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.17) 

(4.1) 
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Figure 3:  for the last 100 iterations when  
 

Figure 2:  in 3-dimensional space 
all 2000 iterations when  

Example 2 
   Consider the following system of differential equations 

 
There we have . We surveyed this system with Euler method. Let  and  varies from -5 

to 5. In the following figure the values of  are shown for the last 100 iterations, when we have 1000 
iterations. In this case our parameters are a = 4, b = 1. 
 (Figure 3) 

Now let   and . The answer of above system in a 2-dimensional space is shown in the 
following figure for all 2000 iterations. (Figure 4) 

We surveyed this system with Euler method. Let  varies from -5 to 5. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are a = 4, 

b = 1 and . (Figure 5) 

As you see the system affects is better than the systems with immovable parameter of .  

This system will be dynamic when  is more than about 1.5. Now let , the answer of above system in 
a 2-dimensional space is shown in the following figure for all 2000 iterations. (Figure 6) 
 
Example 3 
  Consider the following system of differential equations 

 

We surveyed this system with Euler method. Let  varies from -7.7 to -4.9. In the following figure the values of 

 are shown for the last 100 iterations, when we have 1000 iterations. In this case our parameters are 

. (Figure 7) 

Now let , the answer of above system in a 2-dimensional space and 3-dimensional space is shown in 
the following figure for all 2000 iterations. (Figure 8) 

let  In the following figure we map the points  for 2000 iterations. (Figure 9) 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1:  for the last 100 iterations 
when  

(4.2) 

(4.3) 
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Figure 5:  for the last 100 iterations when  and  
 

Figure 6:  in 3-dimensional space all 2000 

iterations when  
 

Figure 4:  in 3-dimensional space all 2000 iterations when  and  

Figure 7:  for the last 100 
iterations when  

 

Figure 8:  in 2-dimensional and 3-dimensional space all 2000 iterations when  
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Figure 8: The points  for 2000 iterations when  
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