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Abstract: In the present paper, a model based on artificial neural networks (ANN) for predicting compressive 

strength of concretes containing Cr2O3 nanoparticles have been developed at different ages of curing. For purpose of 

building these models, training and testing using experimental results for 144 specimens produced with 16 different 

mixture proportions were conducted. The data used in the multilayer feed forward neural networks models and input 

variables of genetic programming models are arranged in a format of eight input parameters that cover the cement 

content (C), nanoparticle content (N), aggregate type (AG), water content (W), the amount of superplasticizer (S), 

the type of curing medium (CM), Age of curing (AC) and number of testing try (NT). According to the input 

parameters, in the model the compressive strength of concretes was predicted. Neural network have trained results 

good and the new data can be predicted by the trained network as well.  
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1. Introduction 

Strength assessment of concrete is a main and 

probably the most important mechanical property, 

which is usually measured after a standard curing 

time. Concrete strength is influenced by lots of factors 

like concrete ingredients, age, ratio of water to 

cementitious materials, etc. The pore structure 

determines the transport properties of cement paste, 

such as permeability and ion migration. Permeability 

of cement paste is a fundamental property in view of 

the durability of concrete: it represents the ease with 

which water or other fluids can move through 

concrete, thereby transporting aggressive agents. It is 

therefore of utmost importance to investigate the 

quantitative relationships between the pore structure 

and the permeability. Through experimental studies 

and then numerical simulations of the pore structure 

and the permeability of cement-based materials, a 

better understanding of transport phenomena and 

associated degradation mechanisms will hopefully be 

reached [1]. 

Conventional methods of predicting various properties 

of concrete are generally based on either water to 

cement ratio rule or maturity concept of concrete [2]. 

Over the last two decades, a different modeling 

method based on neural networks (NNs) has become 

popular and used by many researchers for a wide 

range of engineering applications. NNs are a family of 

massively parallel architectures that solve difficult 

problems via the cooperation of highly interconnected 

but simple computing elements (or artificial neurons). 

Basically, the processing elements of a neural network 

are analogous to the neurons in the brain, which 

consist of many simple computational elements 

arranged in several layers [3]. The concrete properties 

could be calculated using the models built with NNs. 

It is convenient to use these models for numerical 

experiments to review the effects of each variable on 

the mix proportions [4-6]. The aim of this study is to 

predict compressive strength of several types of 

concrete with and without Cr2O3 nanoparticles by 

ANNs. Totally 144 compressive strength data from 16 

different concrete mixtures were collected, trained and 

tested by means of different models. The obtained 

results have been compared by experimental ones to 

evaluate the software power for predicting the 

properties of concrete. 

 

2. Experimental procedure 

2.1. Materials 

Two series of concrete were made in the laboratory. 

The first was normally vibrated concrete (NVC) series 

with ordinary river sand as aggregates and the second 

self compacting concrete (SCC) series with limestone 

aggregates. The utilized materials are as below: 

Ordinary Portland Cement (OPC) conforming to 

ASTM C150 [7] standard was used as received. The 

chemical and physical properties of the cement are 

shown in Table 1. The particle size distribution pattern 

of the used OPC has been illustrated in Fig. 1.  

Cr2O3 nanoparticles with average particle size of 15 

nm and 45 m
2
/g Blaine fineness producing from 

Suzhou Fuer Import & Export Trade Co., Ltd was 

used as received. The properties of Cr2O3 

nanoparticles are shown in Table 2. Scanning electron 

micrographs (SEM) and powder X-ray diffraction 

(XRD) diagrams of Cr2O3 nanoparticles are shown in 

Figs. 2 and 3. 
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Table 1. Chemical and physical properties of Portland cement (Wt. %) 

Material SiO2  Al2O3  Cr2O3  CaO  MgO  SO3 Na2O K2O Loss on ignition 

Cement              21.89 5.3 3.34 53.27 6.45 3.67 0.18 0.98 3.21 

Specific gravity: 1.7 g/cm
3 

 

Table 2. The properties of nano- Cr2O3 

Diameter (nm) Surface Volume ratio (m
2
/g) Density (g/cm

3
) Purity (%) 

15 ± 2  159 ± 18  < 0.15  >99.9 
 

Table 3. Physical and chemical characteristics of the polycarboxylate admixture. 

Appearance Yellow-brown liquid 

% solid residue Approximately 36% 

pH 5.2-5.3 

Specific gravity (kg/l) Approximately 1.06 

Rotational Viscosity (MPa) 79.30 

% C 52.25 

ppm Na
+ 

9150 

ppm K
+ 

158 
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Fig.1. Particles distribution pattern of ordinary 

Portland cement. 

 
Fig. 2. SEM micrograph of Cr2O3 nanoparticles. 

 
Fig. 3. XRD analysis of Cr2O3 nanoparticles. 

 

Locally available natural sand with particles smaller 

than 0.5 mm and fineness modulus of 2.25 and 

specific gravity of 2.58 g/cm
3
 was used as fine 

aggregate for NVC series concrete. Crushed basalt 

stored in the laboratory with maximum size of 15 mm 

and specific gravity of 2.96 g/cm³ was used as coarse 

aggregate in NVC series concrete. 

Crushed limestone aggregates were used to produce 

self-compacting concretes, with gravel 4/12 and two 

types of sand: one coarse 0/4, for fine aggregates and 

the other fine 0/2, with a very high fines content 

(particle size < 0.063 mm) of 19.2%, the main 

function of which was to provide a greater volume of 

fine materials to improve the stability of the fresh 

concrete. A polycarboxylate with a polyethylene 

condensate defoamed based admixture (Glenium C303 

SCC) was used. Table 3 shows some of the physical 

and chemical properties of polycarboxylate admixture 

used in this study.   
 

2.2. Mixture proportions 

Totally 6 series of mixtures were prepared and tested 

experimentally. C0 series mixtures were prepared as 

control specimens. The control mixtures were made of 

natural aggregates, cement and water. C0 series 

mixtures were cured in water (W) and saturated 

limewater (LW) and designated as C0-W and C0-LW 

series, respectively. N series were prepared with 

different contents of Cr2O3 nanoparticles. The 

mixtures were prepared by the cement replacement of 

0.5, 1.0, 1.5 and 2.0 weight percent. N series mixtures 

were also cured in water (W) and saturated limewater 

(LW) and designated as N-W and N-LW series, 

respectively. 
C0-SCC series mixtures were prepared by cement, fine 

and ultra-fine crushed limestone aggregates with 

19.2% by weight of ultra-fine ones and 1.0 weight 
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percent of polycarboxylate admixture replaced by 

water. N-SCC series were prepared with different 

contents of Cr2O3 nanoparticles. The mixtures were 

prepared with the cement replacement by Cr2O3 

nanoparticles from 1 to 5 weight percent and 1 weight 

percent polycarboxylate admixture.  

The water to binder ratio for all mixtures was set at 

0.40. The binder content of all mixtures was 450 

kg/m
3
. The proportions of the mixtures are presented 

in Table 4. 

 

2.3. Test procedure 

For NVC series concrete, cubes with 200 mm × 50 

mm × 50 mm edges were cast and compacted in two 

layers on a vibrating table, where each layer was 

vibrated for 10 s. SCC series mixtures were prepared 

without subsequent vibration. The moulds were 

covered with polyethylene sheets and moistened for 24 

h. Then the specimens were demolded and cured in 

water and saturated limewater at a temperature of 20
o
 

C prior to test days.  

Compressive tests were carried out according to the 

ASTM C 39 [10] standard. After the specified curing 

period was over (7, 28 and 90 days for NVC series and 

2, 28 and 90 days for SCC series), the concrete cubes 

were subjected to compressive test by using universal 

testing machine. The tests were carried out triplicately. 

 

3. Experimental results 

The compressive strength results of the specimens are 

shown in Table 4. Table 4 shows that the compressive 

strength increases with adding nano- Cr2O3 particles 

up to 1.0% in N-W series. It is shown that using 2.0% 

Cr2O3 nanoparticles decreases the compressive 

strength to a value which is near to the control 

concrete. This may be due to the fact that the quantity 

of nano- Cr2O3 particles is higher than the amount 

required to combine with the liberated lime during the 

process of hydration thus leading to excess silica 

leaching out and causing a deficiency in strength as it 

replaces part of the cementitious material but does not 

contribute to strength [10]. Also, it may be due to the 

defects generated in dispersion of nanoparticles that 

causes weak zones. The high enhancement of 

compressive strength in the N series blended concrete 

are due to the rapid consuming of Ca(OH)2 which was 

formed during hydration of Portland cement specially 

at early ages related to the high reactivity of nano- 

Cr2O3 particles. As a consequence, the hydration of 

cement is accelerated and larger volumes of reaction 

products are formed. Also nano- Cr2O3 particles 

recover the particle packing density of the blended 

cement, directing to a reduced volume of larger pores 

in the cement paste.  

On the other hand, for the specimens saturated in 

limewater, the compressive strength increases by 

adding up to 2.0 weight percent Cr2O3 nanoparticles. 

Lime reacts with water and produces Ca(OH)2 which 

needs to form strengthening gel. When Cr2O3 

nanoparticles react with Ca(OH)2 produced from 

saturated limewater, the content of strengthening gel is 

increased because of high free energy of nanoparticles 

which reduces significantly when reacts by Ca(OH)2.  

Table 4 also shows the compressive strength of C0-

SCC and N-SCC specimens at 2, 7 and 28 days of 

curing. The results show that the compressive strength 

increases by adding Cr2O3 nanoparticles up to 4.0 

weight percent replacements (N4-SCC series) and then 

it decreases, although adding 5.0 percent Cr2O3 

nanoparticles produces specimens with much higher 

compressive strength with respect to C0-SCC and N-

SCC specimens with 1.0, 2.0 and 3.0 weight percent 

Cr2O3 nanoparticles.  

The mechanism that the nanoparticles improve the 

strength of concrete specimens can be interpreted as 

follows [13]: Suppose that nanoparticles are uniformly 

dispersed in concrete and each particle is contained in 

a cube pattern, therefore the distance between 

nanoparticles can be determined. After the hydration 

begins, hydrate products diffuse and envelop 

nanoparticles as kernel [13]. If the content of 

nanoparticles and the distance between them are 

appropriate, the crystallization will be controlled to be 

a suitable state through restricting the growth of 

Ca(OH)2 crystal by nanoparticles. Moreover, the 

nanoparticles located in cement paste as kernel can 

further promote cement hydration due to their high 

activity. This makes the cement matrix more 

homogeneous and compact. Consequently, the 

strength of concrete is improved evidently such as the 

concrete containing nano- Cr2O3 in the amount of 1% 

by weight of binder [13]. 

With increasing the content of Cr2O3 nanoparticles 

more than a specific weight percent (based on the 

concrete type), the improvement on the strength is 

weakened. This can be attributed to that the distance 

between nanoparticles decreases with increasing 

content of nanoparticles, and Ca(OH)2 crystal cannot 

grow up enough due to limited space and the crystal 

quantity is decreased, which leads to the ratio of 

crystal to strengthening gel small and the shrinkage 

and creep of cement matrix increased [14], thus the 

strength of cement matrix is looser relatively. 

On the whole, the addition of nanoparticles improves 

the strength of concrete. On the one hand, 

nanoparticles can act as a filler to enhance the density 

of concrete, which leads to the porosity of concrete 

reduced significantly. On the other hand, nanoparticles 

can not only act as an activator to accelerate cement 

hydration due to their high activity, but also act as a 

kernel in cement paste which makes the size of 
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Ca(OH)2 crystal smaller and the tropism more 

stochastic. 

 

 

Table 4. Average compressive strength of different mixture proportion of concrete specimens 

Sample 

designation           

Cr2O3 

nanoparticles 

(%)              

PC 

content 

(%) 

Quantities (kg/m
3
) Average Compressive Strength 

(MPa) 

 Cement Cr2O3 

nanoparticles 

2 days 7 days 28 

days 

90 

days 

C0-W 0 0 450.00 0.00 - 27.3 36.8 42.3 

N1-W 0.5 0 447.75 2.25 - 29.4 40.1 43.6 

N2-W 1.0 0 445.50 4.50 - 30.5 41.6 45.1 

N3-W 1.5 0 443.25 6.75 - 30.3 41.0 44.2 

N4-W 2.0 0 441.00 9.00 - 27.5 38.2 42.9 

C0-LW 0 0 450.00 0.00 - 27.0 35.4 39.8 

N1-LW 0.5 0 447.75 2.25 - 30.7 42.6 43.0 

N2-LW 1.0 0 445.50 4.50 - 31.6 44.0 43.9 

N3-LW 1.5 0 443.25 6.75 - 34.0 44.6 45.2 

N4-LW 2.0 0 441.00 9.00 - 36.1 47.0 47.7 

C0-SCC1 0 1.0 450.00 0.00 14.0 20.6 31.6 - 

N1-SCC1 1 1.0 445.50 4.50 13.7 22.1 32.3 - 

N2-SCC1 2 1.0 441.0 9.00 14.9 26.5 35.2 - 

N3-SCC1 3 1.0 437.5 13.50 16.3 29.9 40.9 - 

N4-SCC1 4 1.0 432.0 18.00 17.3 34.5 46.0 - 

N5-SCC1 5 1.0 427.5 22.50 18.6 32.5 44.8 - 

Water to binder [cement + nano- Cr2O3] ratio of 0.40 

W denotes the specimens cured in water and LW denotes to those cured in saturated limewater 

 

 

 

 

4. Artificial Neural Networks 

ANNs were developed to model the human brain [15]. 

Even an ANN fairly simple and small in size when 

compared to the human brain, has some powerful 

characteristics in knowledge and information 

processing because of its similarity to the human 

brain. Therefore, an ANN can be a powerful tool for 

engineering applications [16]. McCulloch and Pitts 

[17] defined artificial neurons for the first time and 

developed a neuron model as in Fig. 4. McCulloch and 

Pitts’ network [17] formed the basis for almost all later 

neural network models. Afterwards, Rosenblatt [18] 

devised a machine called the perceptron that operated 

much in the same way as the human mind. 

Rosenblatt’s perceptrons [11] consist of ‘‘sensory” 

units connected to a single layer of McCulloch and 

Pitts [12] neurons. Rumelhardt et al. [13] derived a 

learning algorithm for perceptron networks with 

constituted hidden units. Their learning algorithm is 

called back-propagation and is now the most widely 

used learning algorithm. Fig. 5 is shown a typical 

architecture of a multilayer perceptron neural network 

with an input layer, two hidden layer and one output 

layer. As a result of these studies, together with the 

developments in computer technology, using ANN has 

become more efficient after 1980 [14]. 

As it can be seen from Fig. 4, an artificial neuron is 

composed of five main parts: inputs, weights, sum 

function, activation function and outputs. Inputs are 

information that enters the neuron from other neurons 

of from external world. Weights are values that 

express the outcome of an input set or another process 

element in the preceding layer on this process element. 

Sum function is a function that calculates the effect of 

inputs and weights completely on this process 

element. This function computes the net input that 

approaches to a neuron [15]. The weighted sums of the 

input components (net)j are calculated using Eq. (1) as 

follows: 

             (1) 

where (net)j is the weighted sum of the jth neuron for 

the input received from the preceding layer with n 

neurons, Wij is the weight between the jth neuron in 

the previous layer, xi is the output of the ith neuron in 

the previous layer [14]. b is a fix value as internal 

addition and Ʃ represents sum function. Activation 

function is a function that processes the net input 

obtained from sum function and determines the neuron 

output. In general for multilayer feed-forward models 

as the activation function sigmoid activation function 

is used. The output of the jth neuron (out)j is computed 
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using Eq. (2) with a sigmoid activation function as 

follows [16]: 

                           (2) 

where α is constant used to control the slope of the 

semi-linear region. The sigmoid nonlinearity activates 

in every layer except in the input layer [14]. The 

sigmoid activation function represented by Eq. (2) 

gives outputs in (0, 1). If it desired, the outputs of this 

function can be adjusted to (-1,1) interval. As the 

sigmoid processor represents a continuous function it 

is particularly used in non-linear descriptions. Because 

its derivatives can be determined easily with regard to 

the parameters within (net)j variable [14]. 

LMBP is often the fastest available back-propagation 

algorithm, and is highly recommended as a first-choice 

supervised algorithm, although it requires more 

memory than other algorithms. The standard LMBP 

training process can be described in the pseudocode of 

Fig. 6 [17]. 

 

 
Fig. 4. Architecture of applied neural network. 

 
Fig. 5. A typical architecture of multilayer perceptron 

neural network. 

 

4.1. Neural network model structure and parameters 

ANN model is carried out in this research has eight 

neurons in the input layer and one neurons in the 

output layer as demonstrated in Fig. 7. The values for 

input layers were cement content (C), nanoparticle 

content (N), aggregate type (AG), water content (W), 

the amount of superplasticizer (S), the type of curing 

medium (CM), Age of curing (AC) and number of 

testing try (NT). The values for output layer were 

compressive strength (fF) in the other set. Two hidden 

layer with ten and eight neurons were used in the 

architecture of multilayer neural network because of 

its minimum absolute percentage error values for 

training and testing sets. The neurons of neighboring 

layers are completely interconnected by weights. 

Finally, the output layer neurons produce the network 

prediction as a result. 

In this study, the back-propagation training algorithm 

has been utilized in feed-forward two hidden layers. 

Back-propagation algorithm, as one of the most well-

known training algorithms for the multilayer 

perceptron, is a gradient descent technique to 

minimize the error for a particular training pattern in 

which it adjust the weights by a small amount at a time 

[17]. The non-linear sigmoid activation function was 

used in the hidden layer and the neuron outputs at the 

output layer. Momentum rate and learning rate values 

were determined and the model was trained through 

iterations. The trained model was only tested with the 

input values and the predicted results were close to 

experiment results. The values of parameters used in 

neural network model are given in Table 5. 

To make a decision on the completion of the training 

processes, two termination states are declared: state 1 

(ANN-I model) means that the training of neural 

network was ended when the maximum epoch of 

process reached (1000) while state 2 (ANN-II model) 

means the training ended when minimum error norm 

of network gained.  

 

5. Results 

In this study, the error arose during the training and 

testing in ANN-I and ANN-II models can be expressed 

as absolute fraction of variance (R
2
) which are 

calculated by Eq. 3 [18]: 

           (3) 

where t is the target value, o is the output value and p 

is the pattern. 

All of the results obtained from experimental studies 

and predicted by using the training and testing results 

of ANN I and ANN II models, are given in Figs. 8a 

and 8b. The linear least square fit line, its equation and 

the R
2 

values were shown in these figures for the 

training and testing data. Also, inputs values and 

experimental results with testing results obtained from 

ANN-I and ANN-II models were given in Table 6. As 

it is visible in Fig. 8 the values obtained from the 

training and testing in ANN-I and ANN-II models are 

very close to the experimental results. The result of 

testing phase in Fig. 7 shows that the ANN-I and 

ANN-II models are capable of generalizing between 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

  

 

 

Input 

Layer 

Hidden 

Layer 1 

Output 

Layer 

Hidden 

Layer 2 

Output 

Cred-Forward 

Back-Propagation 



Journal of American Science 2012;8(8)                                                     http://www.jofamericanscience.org  

 

http://www.americanscience.org  168 editor@americanscience.org 
 

input and output variables with reasonably good 

predictions. 

The performance of the ANN-I and ANN-II models 

for fF is shown in Fig. 8. The best value of R
2
 is 

predict the compressive strength values of concretes 

containing Cr2O3 nanoparticles without attempting any 

experiments were developed two different multilayer 

96.41% for training set in the ANN-II model, The 

minimum value of R
2
 is 85.47% for testing set in the 

ANN-I model. All of R
2
 values show that the proposed 

ANN-I and ANN-II models are suitable and can 

predict fF values for every age very close to the 

experimental values. 

 

1. Initialize the weights and parameter µ (µ = 0.01 is appropriate). 

2. Compute the sum of the squared errors over all inputs F(w) 

F(w) = e
T
e                                                                                                                                            (3) 

Where w = [w1, w2, …, wn] consists of all weights of the network, e is the error vector comprising the error for 

all the training examples. 

3. Solve (5) to obtain the increment of weights Δw 

Δw = [J
T
J + µI]

-1
J

T
e                                                                                                                               (4) 

Where J is the Jacobian matrix,  is the learning rate which is to be updated using the β depending on the 

outcome. In particular, µ is multiplied by decay rate β (0<β<1). 

4. Using w+Δw as the trial w, and judge 

IF trial F(w)<F(w) in step 2 THEN 

W = w + Δw 

µ = µ.β (β = 0.1) 

             go back to step 2 

ELSE 

     µ = µ/β 

             go back to step 4 

END IF  

Fig. 6. Pseudo-code for LMBP algorithm [19] 

 

 
Fig. 7. The system used in the ANN model. 

 

6. Discussion 

Artificial neural networks are capable of learning and 

generalizing from examples and experiences. This 

makes artificial neural networks a powerful tool for 

solving some of the complicated civil engineering 

problems. In this study, using these beneficial 

properties of artificial neural networks in order to 

artificial neural network architectures namely ANN-I 

and ANN-II. 

 
(a) 

 
(b) 

Fig. 8. The correlation of the measured and predicted 

compressive strengths in a) training and b) testing 

phase for ANN models 
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Table 5. The values of parameters used in neural network model 

Parameters  ANN 

Number of input layer units  8 

Number of hidden layer  2 

Number of first hidden layer units  10 

Number of second hidden layer units  8 

Number of output layer units  1 

Momentum rate  0.88 

Learning rate  0.70 

Error after learning  0.000050 

Learning cycle  30.000 

 

Table 6. Testing data sets for comparison of experimental results with testing results predicted from models 

Cement 

(Kg/m
3
) 

Nano- 

Cr2O3 

(Kg/m
3
) 

Aggregate 

type 

Water 

(Kg/m
3
) 

Superplasticizer 

(Kg/m
3
) 

Curing 

Medium 

Age of 

Curing 

No. 

Test 

try 

Compressive Strength 

(MPa) 

Exp. ANN-

I 

ANN-

II 

450 0 3 0 18 1 7 3 29.7 31.1 30.8 

450 0 3 0 18 1 28 3 38.7 39.1 41.3 

447.75 2.25 3 0 18 1 7 2 29.2 30.4 29.6 

447.75 2.25 3 0 18 1 28 3 42.4 41.9 43.1 

447.75 2.25 3 0 18 1 90 3 45.0 46.5 46.2 

445.5 4.5 3 0 18 1 7 3 33.0 35.2 34.9 

445.5 4.5 3 0 18 1 28 1 41.5 42.5 42.8 

445.5 4.5 3 0 18 1 90 2 44.7 47.3 45.9 

443.25 6.75 3 0 18 1 7 2 32.2 31.5 33.2 

443.25 6.75 3 0 18 1 28 1 43.2 41.8 41.9 

441 9 3 0 18 1 7 1 24.8 27.0 25.0 

441 9 3 0 18 1 90 1 40.5 40.8 39.6 

450 0 3 0 18 2 90 2 41.4 41.5 41.9 

447.75 2.25 3 0 18 2 7 2 32.0 31.6 31.7 

447.75 2.25 3 0 18 2 28 1 44.8 42.9 41.4 

445.5 4.5 3 0 18 2 7 3 34.0 35.1 34.1 

443.25 6.75 3 0 18 2 90 1 45.8 47.2 45.9 

441 9 3 0 18 2 28 2 50.0 49.4 50.1 

450 0 4 0.18 17.82 1 7 2 22.7 21.9 23.4 

445.5 4.5 4 0.18 17.82 1 7 2 22.0 23.5 24.1 

445.5 4.5 4 0.18 17.82 1 28 1 31.4 32.1 30.7 

441 9 4 0.18 17.82 1 7 2 28.0 27.0 27.4 

441 9 4 0.18 17.82 1 28 3 39.4 39.5 38.4 

437.5 13.5 4 0.18 17.82 1 28 1 40.4 40.8 40.3 

432 18 4 0.18 17.82 1 7 2 36.5 33.3 34.7 

427.5 22.5 4 0.18 17.82 1 2 2 19.9 18.9 19.0 

427.5 22.5 4 0.18 17.82 1 28 1 44.1 44.1 44.8 

 

In two models developed in ANN method, a 

multilayered feed forward neural network with a back 

propagation algorithm was used. The models were 

trained with input and output data. Using only the 

input data in trained models the compressive strength 

of concrete specimens containing Cr2O3 nanoparticles 

were found. The compressive strength and percentage 

of water absorption values predicted from training and 

testing, for ANN-I and ANN-II models, are very close 

to the experimental results. Furthermore, according to 

the compressive strength and percentage of water 

absorption results predicted by using ANN-I and 

ANN-II models, the results of ANN-II model are 

closer to the experimental results. R
2
 values that are 

calculated for comparing experimental results with 

ANN-I and ANN-II model results have shown this 

situation. 

 

7. Conclusions 

1. Cr2O3 nanoparticles showed its influence on 

compressive strength and percentage water absorption 

up to 1.0 weight percent in N-W series concrete, up to 
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2.0 weight percent in N-LW series concrete and finally 

up to 4.0 weight percent in N-SCC series concrete. 

The deficiency in dispersion of nanoparticles more 

than the mentioned values causes the reduction of 

nanoparticles effects on improving compressive 

strength results. 

2. ANN can be an alternative approach for the 

evaluation of the effect of cementitious material on the 

compressive strength. There is an optimum 

replacement ratio of Cr2O3 nanoparticles existed; this 

value can be predicted using ANN models. 

3. ANN efficient for predicting the compressive 

strength of Cr2O3 nanoparticles concrete.  
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