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Abstract: In this paper, a study on the effects of the FGM configuration is taken into account by studying the 

frequencies of two FG conical shells. Type I FG conical shell has aluminum on its inner surface and almina on its 

outer surface and Type II FG cylindrical shell has almina on its inner surface and aluminum on its outer surface. The 

study is done based on Rayleigh-Ritz method. The objective is to study the effects of configurations of the 

constituent materials on the frequencies. The properties are graded in the thickness direction according to the 
gradient index distribution. The analysis is carried out with strains-displacement relations are given by Soedel 

(1981). The governing equations are obtained using energy functional with the Rayleigh-Ritz method. Results are 

presented on the frequency characteristics and the influences of constituent various volume fractions for Type I and 

II FG conical shells. the boundary conditions are simply supported.  
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Introduction 

Conical shells have been widely utilized in a 

variety of engineering fields as important structural 

components due to their special geometric shapes, 

especially in marine industries and aerospace. 

Considerable investigations have been conducted to 

examine the dynamic responses of such structures. 

Leissa (1993)  provided an earlier survey on the free 

vibration of conical shells, the effects of semi-vertex 

angles and different boundary conditions on the 

frequency characteristics of conical shells were 

investigated. The vibration analysis of shallow 

conical shells by a global Ritz formulation based on 

the energy principle is done by Liew and Lim 1994. 

Next, a formulation for the free vibration of 

moderately thick conical shell panels based on shear 

deformable theory was also presented by them 

(1995). He et al. (2002), Ng et al. (2002) and Liew et 

al. (2004) examined the finite element analysis of 

shell and shell panels subjected to vibration. The 

generalized differential quadrature method was 

employed to study the free vibration of composite 

laminated conical shells by Shu (1996), and the 

vibration characteristics of open conically curved, 

isotropic shell panels using a h–p version of finite 

element method was investigated by Bardell et al. 

(1998). A new kind of composite materials are 

known as functionally graded materials (FGM) that 

are formed by mixing two or more different materials 

according to a pre-determined formula that depends 

on the volume fractions of constituents. Such 

materials possess smooth and continuous material 

properties, which make them more suitable in 

engineering applications. Much effort has been used 

to various structural analyses of functionally graded 

structures, such as static, thermal stresses, vibration 

analyses and buckling. Noda (1999) presented a 

review on thermal stresses in functionally graded 

materials, the thermal stresses on the functionally 

graded plates and the thermal stress intensity factor in 

the functionally graded plates with crack were 

discussed. The stresses and strains in a functionally 

thick-walled tube under uniform thermal loading was 

examined by Fukui et al. (1993), and studied the 

effects of FGM materials on the parametric resonance 

of plate structures was studied by Ng et al. (2000). 

The thermal stress behavior of functionally graded 

hollow circular cylinders was investigated by Liew et 

al. (2003), and the static and dynamic response of 

functionally graded plates in terms of the 

combination of the first-order shear deformation plate 

theory and the von Kármán strains was examined by 

Praveen and Reddy (1998).  

A finite element formulation for the active control 

of functionally graded plates with integrated 

piezoelectric actuators and sensors was provided by 

He et al. (2001), and the vibration analysis of variable 

thickness annular functionally graded plates was 

conducted by Efraim and Eisenberger (2007). A few 

publications on the analysis of functionally graded 

conical shells have been reported in literature. The 

stability of truncated conical shells of functionally
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 graded material subjected to external pressure was 

investigated by Sofiyev (2004). Tornabene (2009) 

was calculated free vibration analysis of moderately 

thick functionally graded conical, cylindrical shell 

and annular plate structures with a four-parameter 

power-law distribution. The formulation was based 

on generalized differential quadrature method and the 

first order shear deformation theory. Tornbene et al. 

(2009) also examined the same structures with two 

different power-law distributions. The applications of 

functionally graded conical shell can be very 

extensive. Due to their high strength and resistance to 

temperature change, the functionally graded conical 

shell can be applied to military aircraft propulsion 

system, fuselage structures of civil airliners, and 

other machine parts. 

In this study, Rayleigh-Ritz method is used to 

comparison natural frequencies of two kinds of 

functionally graded conical shells with various 

gradient indexes. 

2. Functionally gradient materials  

In which for functionally graded materials with two 

constituent materials Poisson ratio υ is assumed to be 

constant through the thickness, whereas the variations 

through the thickness of Young’s modulus  E(η) and 

the mass density per unit volume ρ(η) can be written as 

(Matsunaga, 2009) 

E η = E2 +  E1 − E2 (0.5 +
η

h
)p                            (1)                                                                                                       

ρ(η) = ρ
2

+  ρ
1
− ρ

2
 (0.5 +

η

h
)p                             (2)                                                                                                               

Where η  is the thickness coordinate (-h/2 ≤
η ≤ h/2), and p ≥ 0  is the gradient index. The 
material properties vary continuously from material 2 

at the inner surface of the conical shell to material 1 

at the outer surface of the conical shell. 

3. Equation of motion of FG conical shell 

A thin and FG conical shell with constant 

thickness is assumed. Fig. 1 shows the schematic 

diagram of the conical shell. The two boundaries of 

the conical shell are simply supported (S-S). The 

corresponding curvilinear surface coordinates 

O − ξζη and Cartesian coordinates 𝑂 − 𝑥𝑦𝑧  are also 

shown in Fig. 1. The curvilinear surface coordinates 

are limited to be orthogonal ones which coincide with 

the lines of principal curvature of the neutral surface. 

For conical shells, the lines of principal curvature of 

the neutral surface are the circles (ζ-axis) and parallel 

meridians (ξ-axis). 

 

. 

Fig. 1. The schematic diagram of a FGM conical 

shell (a) The geometry and the curvilinear surface 

and Cartesian Coordinate Systems; (b) the 

infinitesimal shell element and the corresponding 

stresses. 

For a thin conical shell, plane stress condition is 

assumed and the constitutive relation is given by 
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×  

ε11

ε22

ε12

ε23

                                                                         (3) 

where εij  (i, j = 1, 2, 3)  are the strains and 

σij  (i, j = 1, 2, 3) are the stresses in which 1, 2 and 3 

coincide with the ξ, ζ and η directions and E(η)  is the 

Young’s modulus and μ is the Poisson’s ratio. Where 

𝜎11  and 𝜎22  are the normal stresses acting in the 

ξ and ζ  directions, 𝜎12  and 𝜎23  are the shear stresses 

in the curvilinear coordinate O − ξζη as shown in Fig. 

1b. To determine the equation of motion of the 

conical shell, the Lagrangian function with the 

Rayleigh-Ritz method will be used. The Lagrangian 

function is written by (Soedel, 2004) 

 δ T − U dt = 0
t2

t1

                                                     (4) 

Where T the kinetic energy, U strain energy and W 

work, 𝑡1 and 𝑡2 are the integration time limits, 𝛿(0) 

denotes the first variation. The strain energy and 

kinetic energy and virtual work of a conical shell can 

be written as
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L
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2π

0
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ξ sinα0  dξdζdη                                                                     (5) 

U =
1

2
   (ζ11ε11 + ζ22ε22 + ζ12ε12 +

L

L0

2π

0

h/2

−h/2

 

ζ23ε23 )ξ sinα0 dξdζdη                                                       (6) 

For simply supported conical shell, the boundary 

conditions at both ends can be written as 

v = w = N11 = M11 = 0                                           (7) 

at ξ = l  and ξ = l0  would be considered. The 

displacement fields which satisfy these boundary 

conditions can be written as 

u ξ, ζ, t = cos  
iπ ξ−l0 

l−l0
 cos jζ p(t)                        (8) 

v ξ, ζ, t = sin  
iπ ξ−l0 

l−l0
 sin jζ r(t)                          (9) 

w ξ, ζ, t = sin  
iπ ξ−l0 

l−l0
 cos jζ s(t)                       (10) 

i = 1,2,… , m ;    j = 1,2, … , n,    

where i and j denote the wave numbers in the 

meridional and circumferential directions and p, r, s 

are the generalized coordinates or modal coordinates. 

Substituting Eqs. (5) and (6) in terms of the 

displacement fields into Eq. (4) and fulfilling the 

variation operation in terms of p, r and s. They can be 

obtained as 

Mt
d2X

dt 2 + KtX = 0                                                       (11) 

where Mt  the generalized mass matrix, Kt  the 

stiffness matrix, X the generalized coordinate matrix 

and written by 

Mt =  
M1       0       0  
0       M2       0  
0        0       M3

           Kt =  

K1       K2        K3

K2
T       K4       K5

K3
T       K5

T      K6

   

 X = [pT    rT   sT]T                                                     (12)  

where M1 , M2  and M3 are the modal mass matrices 

and K1 , K2 , … , K6are the modal stiffness matrices 

which are given in Appendix A. A solution of Eq. 

(11) is in the form 

X t = X0eλt                                                                 (13) 

where λ  is the characteristic values or the 

eigenvalue and X0 is the eigenvector. Substituting Eq. 

(13) into the homogeneous differential equation of 

Eq. (11) leads to the following standard eigenvalue 

problem: 

 Mtλ
2 + Kt X0 = 0                                                     (14) 

From which the eignvalues and eignvectors can be 

obtinethed. The imaginary parts of the eigenvalues are 

the natural frequencies of the FG conical shell. 

4. Results and discussions 

The results for Metal are compared with the open 

literature in Table 1. In the numerical calculations, 

the non-dimensional frequency parameter is defined 

as ((Lam and Li, 1999) ; (Liew et al., 2002)) 

f = ω0α2 
ρm (1−μ2)

Em
                                                (15) 

where ω0 is the natural frequency of the conical 

shell in radians per second. The material properties 

used in the present study is: 

Metal (Aluminium, Al): EM = 70 GPa,          

ρ
M

= 2710 kg/m3, μ = 0.3 

Ceramic (Almina, Al2O3): EC = 380 GPa, 

ρ
C

= 3800 kg/m3, μ = 0.3 

The variation through the thickness of Young’s 

modulus E(η)   and mass density per unit volume 

ρ(η) are the same as Eqs. (1) and (2). The structural 

parameters are h = 0.004 m, h/𝑎2 = 0.01, (L −
L0) sin α0 /𝑎2 = 0.25 . For metal, the frequency 

parameters computed by Eq. (15) are listed in Table 

1. Also the corresponding results by ((Lam and Li, 

1999) ; (Irie et al., 1984)) are listed in Table 1. 

The frequencies of two FG conical shells with two 

different FGM configurations are studied: Type I FG 

conical shell and Type II FG conical shell. Type I FG 

conical shell has aluminum on its inner surface and 

almina on its outer surface and Type II FG conical 

shell has almina on its inner surface and aluminum on 

its outer surface. Tables 2, 3 and 4 show the 

variations of the natural frequencies (Hz) with the 

circumferential wave numbers n for a Type I FG 

conical shell. The columns PC and PM show the 

natural frequencies for a ceramic conical shell and a 

metal conical shell, respectively. The effects of 

changing gradient index (P) can be seen from tables. 

As P increased, the natural frequencies decreased.  

When P is small, the natural frequencies approached 

those of PC and when P is large they approached 

those of PM. Hence, the natural frequencies for P > 0 

fell between those of PC and PM for a given 

circumferential wave number n.
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Table 1. Comparisons of frequency parameter f for 

the conical shell with S-S boundaries (m = 1, Metal). 

 n 
Irie et al 

(1984) 

Lam and 

Li (1999) 
Present 

α0 = 300 

2 0.7910 0.8420 0.84307 

3 0.7284 0.7376 0.74163 

4 0.6352 0.6362 0.64194 

5 0.5531 0.5528 0.55902 

6 0.4949 0.4950 0.50079 

7 0.4653 0.4661 0.47079 

8 0.4654 0.4660 0.46921 

9 0.4892 0.4916 0.49318 

α0 = 450 

2 0.6879 0.7655 0.76424 

3 0.6973 0.7212 0.72108 

4 0.6664 0.6739 0.67467 

5 0.6304 0.6323 0.63364 

6 0.6032 0.6035 0.60492 

7 0.5918 0.5921 0.59311 

8 0.5992 0.6001 0.60045 

9 0.6257 0.6273 0.62691 

α0 = 600 

2 0.5772 0.6348 0.63423 

3 0.6001 0.6238 0.62361 

4 0.6054 0.6145 0.61459 

5 0.6077 0.6111 0.61128 

6 0.6159 0.6171 0.61721 

7 0.6343 0.6350 0.63479 

8 0.6650 0.6660 0.66525 

9 0.7084 0.7101 0.70873 

 

Table 2. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type I FG conical shell α = 300 

n PC P=1 P=3 P=8 P=30 PM 

1 3847 3193 2702 2338 2079 1955 

2 3516 2917 2469 2138 1901 1787 

3 3093 2563 2171 1883 1675 1572 

4 2677 2213 1877 1633 1453 1360 

5 2331 1918 1630 1428 1272 1185 

6 2088 1704 1454 1288 1150 1061 

7 1963 1582 1358 1222 1094 998 

8 1957 1554 1343 1230 1104 994 

9 2057 1612 1401 1304 1173 1045 

10 2247 1742 1521 1433 1292 1142 

 

 

 

 

 

 

Table 3. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type I FG conical shell α = 450 

n PC P=1 P=3 P=8 P=30 PM 
1 3316 2737 2322 2024 1802 1686 

2 3187 2628 2230 1947 1734 1620 

3 3007 2474 2102 1841 1640 1528 

4 2814 2305 1962 1728 1541 1430 

5 2642 2152 1837 1631 1456 1343 

6 2523 2037 1746 1566 1401 1282 

7 2473 1977 1702 1547 1387 1257 

8 2504 1980 1713 1578 1417 1272 

9 2615 2046 1779 1658 1492 1329 

10 2799 2172 1896 1784 1608 1422 

 

Table 4. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type I FG Conical Shell α = 600 

n PC P=1 P=3 P=8 P=30  PM 
1 2679 2175 1859 1657 1480 1362 

2 2645 2142 1833 1638 1464 1344 

3 2601 2099 1799 1615 1445 1321 

4 2563 2057 1768 1598 1431 1302 

5 2549 2032 1752 1597 1432 1295 

6 2574 2036 1762 1621 1456 1308 

7 2647 2078 1804 1676 1507 1345 

8 2774 2162 1883 1764 1589 1410 

9 2955 2289 2000 1887 1701 1502 

10 3189 2456 2152 2041 1842 1621 

 

Tables 5, 6 and 7 show the alterations of the 

natural frequencies (Hz) with the circumferential 

wave numbers n for a Type II FG conical shell.  

Table 5. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type II FG conical shell α = 300 

n PC P=15 P=8  P=5  P=3 PM 
1 3847 3779 3725 3661 3558 1955 

2 3516 3453 3403 3344 3250 1787 

3 3093 3036 2991 2938 2855 1572 

4 2677 2624 2583 2536 2463 1360 

5 2331 2279 2241 2198 2133 1185 

6 2088 2033 1994 1952 1892 1061 

7 1963 1899 1857 1813 1754 998 

8 1957 1879 1830 1783 1721 994 

9 2057 1964 1907 1851 1783 1045 

10 2247 2135 2067 2004 1928 1142 

.
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The influence of the gradient index (P) on the 

natural frequencies is the opposite of a Type I FG 

conical shell. Unlike a Type I FG conical shell where 

the natural frequencies decreased with P, the natural 

frequencies for a Type II FG conical shell increased 

with P. Thus the influence of the gradient index for a 

Type II FG conical shell is different from a Type I 

FG conical shell. 

Table 6. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type II FG conical shell α = 450 

n PC P=15 P=8 P=5 P=3 PM 
1 3316 3248 3197 3138 3048 1686 

2 3187 3120 3070 3013 2926 1620 

3 3007 2940 2891 2836 2753 1528 

4 2814 2746 2697 2643 2564 1430 

5 2642 2571 2521 2468 2392.3 1343 

6 2523 2444 2391 2337 2262.6 1282 

7 2473 2384 2327 2270 2193.5 1257 

8 2504 2401 2337 2274 2194.3 1272 

9 2615 2495 2422 2352 2266.0 1329 

10 2799 2661 2577 2500 2405.0 1422 

 

Table 7. Variation of natural frequencies (Hz) 

against circumferential wave number n (m=1). 

Type II FG conical shell α = 600 

n PC P=15 P=8 P= 5 P=3  PM 
1 2679 2603 2551.4 2496 2418 1362 

2 2645 2566.9 2514.2 2458 2381 1344 

3 2601 2519.1 2464.9 2408 2331 1321 

4 2563 2476.0 2419.3 2361 2283 1302 

5 2549 2454.4 2393.9 2333 2254 1295 

6 2574 2468.9 2403.3 2339 2256 1308 

7 2647 2529.8 2457.5 2388 2301 1345 

8 2774 2642.1 2561.9 2486 2392 1410 

9 2955 2806.9 2717.6 2634 2532 1502 

10 3189 3022.2 2922.2 2829 2719 1621 

 

5. Conclusions 

A study on the vibration of functionally graded 

(FG) conical shells made of aluminum and almina 

has been presented. The study was done for two 

kinds of functionally graded conical shells where the 

configurations of the constituent materials in the 

functionally graded conical shells are different. Type 

I FG conical shell has aluminum on its inner surface 

and almina on its outer surface and Type II FG 

conical shell has almina on its inner surface and 

aluminum on its outer surface. One is named as a 

Type I FG conical shell and has properties that 

change continuously from aluminum on its inner 

surface to almina on its outer surface. The other is 

named as a Type II FG cylindrical shell and has 

properties that change continuously from almina on 

its inner surface to aluminum on its outer surface. 

The analysis was done by Rayleigh-Ritz method. For 

validation, the results are compared with those in the 

literature and have found to be accurate. The 

influence of the gradient index (P) on the frequencies 

for Types I and II FG conical shells has been found to 

be different. For the Type I FG conical shells, the 

natural frequencies decreased when (P) increased, 

and for the Type II FG conical shells, the natural 

frequencies increased when P increased. In Types I 

and II FG conical shells, the natural frequencies for 

all values of P are between those for aluminum and 

almina conical shells. Therefore, the gradient index 

and the configurations of the constituent materials 

affect the natural frequencies. 

 

Appendix A.    The expressions of the modal mass, 

modal stiffness and forcing matrices in Eqs. (11) are 

given by  
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