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Abstract: In a nuclear research reactors plant, a fault can occur in a few milliseconds, so locating the fault might be of
utmost importance due to safety, and other reasons. Accordingly, there is an increasing demand for automated systems
to diagnose such failures. Both Genetic algorithms and neural networks, which are inspired by computation in
biological systems, are emerged as established techniques for optimization and learning. So, using Genetic Algorithm
(GA)-Based Artificial Neural Network (ANN) to obtain the optimum construction of an Artificial Neural Network, and
then implementing it on a field programmable gate array (FPGA) is very interesting due to its high performance and can
easily be made parallel. This paper presents a hardware implementation of a neural network that had obtained from
Genetic Algorithm (GA) using MATLAB's toolbox. The excellent hardware performance has been performed through
the use of field programmable gate array (FPGA), on Xilinx chip, to diagnosis the Multi-Purpose Research Reactor of
Egypt accidents patterns, to avoid the risk of occurrence of a nuclear accident. The neural network hardware model has
been designed using Xilinx Software environment.
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1. Introduction Algorithm-based Neural Network. Section 4
Locating a fault in a nuclear research reactors explains a single hardware neuron circuitry. Section 5
plant, which can occur in a few milliseconds, might be explains our complete Hardware Neural Network
the utmost interest due to safety, and other reasons. architecture. Section 6 explains the Hardware
The early detection of such plant's failure could Implementation on FPGA. Section 7 shows the results
prevent system malfunction or serious damage, which and discussions of the proposed system performance.
could also lead to disaster. Therefore, an intelligent Section 8 is devoted to conclusion. Section 8 assigned
fault detection and diagnosis system to deal with to References, and finally, appendix A is devoted for
inaccurate information has also been greatly required all accidents wave forms.
[1-3].

Genetic Algorithms and Neural networks are two 2. Egyptian Second Nuclear Research Reactor
techniques for optimization and learning, so recently, The Egyptian Second Nuclear Research Reactor,
there have been attempts to combine them. The genetic is a multipurpose (MPR), open pool type, 22MW
algorithm improves the chances of finding a global power, light water cooled and moderated and with
solution, due to its random nature. This process beryllium reflectors, which had been mainly designed
involves a large number of complex arithmetical for radioisotopes production for medical and industrial
operations. However, the software implementations purposes, semiconductors production, activation
don't have the desired performance [4-6]. analysis, neutron radiography and beam tube

An interesting method to increase the experiments, basic and applied research in reactor
performance of the model is by using hardware physics and training. The operation of the reactor is
implementations, where the hardware can execute the controlled and monitored using: the suspension and
arithmetical operations much faster than software. control system (SCS) and the Reactor Protection
Hardware implementations have other advantages such System (RPS). The SCS provide process information to
as reducing the cost, greater reliability in operation, the operator in charge allowing him to control the
reduced probability of equipment failure, better process systems evolution and reactor power. The RPS
protection against and special operating condition [7]. is basically a control system that generates the signals

This paper is organized as follows: After this for the protective functions to be carried out by the
introduction, Section 2 presents the Egyptian Second safety systems. The RPS encloses all electrical and
Nuclear Research Reactor. Section 3 explains the mechanical devices and Circuitry involved in
Genetic generating those initiation signals associated with

protective function carried out by the safety actuation
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systems. The reactor protection system is based on
intelligent units combined with hardwired voting
protective logic's are placed in the instrumentation
room. The detector and sensors are placed as close as
possible to the variables that they supervise. The
following accidents diagnosed: 1- Loss Of Flow
Accident (LOFA), 2- Loss Of Power Supply (LOPS),
3- Loss Of Heat Sink (LOHS), 4- Small Loss OF
Coolant Accident (SLOCA), 5- Medium Loss OF
Coolant Accident (MLOCA), 6- Large Loss OF
Coolant Accident (LLOCA), 7- Uncontrolled Slow
Reactivity Insertion (USRI), 8- Uncontrolled Fast
Reactivity Insertion (UFRI) and 9- Normal case[7].

3. Genetic Algorithm-based Neural Network

Genetic Algorithms and Neural networks are two
techniques for optimization and learning, each with its
own strengths and weaknesses, and have generally
evolved along separate paths. For the diagnoses of
nuclear reactor accidents, a computer program is
developed using MATLAB environment for this
purpose, a Genetic algorithm program was designed
and employed to construct an artificial neural network.
The system was designed, using Genetic algorithms
(GAs), to construct an ANN (the optimum values of
weights and biases that are required to construct such
network). The data used in the application were
collected by the aid of reactor operation crew and
Safety Analysis Report (SAR) of the reactor, in
addition to the Atomic Energy experts. The data sets
are for the eight accidental cases (Classes) listed
below; plus the normal operation case as shown in
Figure (1). So the total cases, which we have, are nine.
One of the best structures that were obtained is two
layers ANN with correspondence values of weights
and biases that are required to construct such
network(Figure2). Figures (3&4) show weights and
biases matrices that are required to construct layerl
layer2 respectively. One of the basic problems to
implement neural network on reconfigurable hardware,
is related to the neurons transfer functions.

The problem of representing the arithmetic
operations using digital hardware is related to using
some transfer function like the sigmoid function,
(frequently used in the Multilayer Perceptron (MLP)
model), is not easy to implement the design in the
hardware environment. So, for our case, the sigmoid
function has been substituted by the linear function
during the run of program of GA that were used to
obtain the optimum construction of such neural
network [4-7].

4. Single Hardware Neuron Circuitry

An artificial neural network (ANN) is an
information processing system that tries to simulate
biological neural networks. The field of ANN was born
in an attempt to overcome the limitations of the
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computer's ability to perform certain tasks. The neural
network is not programmed but "trained" [7].
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Figure (1): Sample of reactor accidents data patterns.
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Figure (2): The output of two layers ANN structure.
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Figure (3): Layer1 weights and biases matrix (16x10).
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Figure (4): Layer2 weights and biases matrix (16x10).

The design and all of our work are directed
towards the implementation of a multilayer perceptron
(MLP) in a modular way. Our modular design means
that the network constructed initially with small
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components and become as large as practically
required to obtain the structure of the complex
application. Figure (5) explain the expression to be
implemented in the hardware, where Pi is the input
signals, as depicted in figure (1), w; the weights; f(x) is
the activation function and «a is the output, equation (1).
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Figure (5): Single neuron module.
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Figure (6): A block diagram of a complete hardware
neuron of layer |

Figure (6) depict the block diagram of complete
hardware neuron that is used in layer1. The circuit does
the algebraic equations of the electric model of the
neuron, that is, the multiplication and sum required in
the neuron's internal processing. Where the input
patterns of the accidents are in binary form, we are
Satisfied with the using of a multiplexer, as shown in
figure (6), to enter the multiplication of the input
values by the corresponding weights. In layer2 we
were forced to use a multiplier to multiply the real
values output from layerl by the real values of the
corresponding weights of layer2
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Figure (7): A block diagram of a complete hardware
neuron of layer 2
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5.Complete Hardware Neural Network architecture

The architecture of the complete hardware neural
network is shown in figure (8), which includes the
accidents input patterns, hidden layer (layer 1) and
output layer (layer 2). Where, the design is modular
and parametric so it can be easily expanded as long as
device's resources allow it. So, when put together they
need additional circuitry for synchronization and
control. Private weights storage ROM has been
assigned for each layer, where each neuron will access
its memory storage area. One multiplier and one
accumulator have been assigned for each layer. Data
transfer between layers will stored in a private RAM
for each layer, as shown in figure (8), to gather all
computations of all neurons of each layer. Layer 1
output RAM is dedicated for storing layer 1 output and
Layer 2 output RAM is dedicated for storing layer 2
output (so, the network output).

6. Hardware Implementation on FPGA

Neural networks, in general, work with floating-
point numbers and working with floating-point
numbers in hardware is difficult because the arithmetic
operations are more complex than with integer
numbers and the dedicated circuits for floating-point
operations are more complex, slower, and occupy a
larger chip area that integer [7,8]. So, one floating-
point multiplier has been forced to use in layer2, to
keep the computations precision and achieving an
excellent results. But in layerl the use of the
multiplexer is enough because of the binary inputs of
the accidents patterns.

The other problem of representing the arithmetic
operations using digital hardware is the using of some
transfer functions like the sigmoid function (frequently
used in the MLP model). To overcome this problem
and to make the design is easy to implement in the
hardware environment, the construction of the ANN
has been got using “Liner Transfer Function” when the
GA-based ANN program was run. In this case, the
sigmoid function has been substituted by a linear
function is shown on Figure (9).

The hardware model of the neural network has
been designed using Xilinx FPGA environment [12],
where Xilinx offers competing products. Moreover,
because Xilinx FPGA environment are standard parts
that need only to be programmed, and no need to wait
for prototypes or pay large nonrecurring engineering
(NRE) costs. [ ]. One of its products is the Xilinx
Spartan3A FPGAs, which are ideal for low-cost, high-
volume applications and are targeted as replacements
for fixed-logic gate arrays and Application Specific
Standard Product (ASSP) products such as bus
interface chip sets [7-12].
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Figure (8): The block diagram of the complete
hardware neural network.

Figure (9): Linear Transfer Function (a = purelin (n))

The Xilinx design tools interface supports two
basic flows within the Project Manager: HDL and
Schematic. An HDL Flow project can contain VHDL,
Verilog, or schematic top-level designs with
underlying VHDL, Verilog, or schematic modules.
VHDL is one of industry’s standard languages used to
describe digital systems. VHDL stands for VHSIC
(Very High Speed Integrated Circuits) Hardware
Description Language. VHDL has many features
appropriate for describing the behavior of electronic
components ranging from simple logic gates to
complete microprocessors and custom chips [13-14].
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Package Fia454
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Figure (10): Project information.
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To generate hardware models from software
algorithm some simple logic and arithmetic blocks
such as: ROMs, RAMs, multipliers, adders, and logic
gates have been designed. Initially, there are fifteen
inputs that will multiply by the corresponding weight,
and then added to the accumulator. The results of the
addition are added with the assigned bias for each
neuron. Finally, the transfer function delivers the
neuron's output to layerl RAM which stores the
computation of each neuron. The connections between
components of the complete neural network are
dedicated hardware signal for data transfer. The signals
(busses) distribute the computations to the assigned
target. Finally, the result appears in the output pin (on
the right side).

7. Results and discussion

The model needs less than 2 ps for processing the
input values and presenting the result, as displayed
from figure (11A). This is a very fast implementation
comparing to the protection software system that needs
from 18 ms to 24 ms as a response time. The neural
network's hardware model will be integrated within the

Reactor Protection System (RPS) of the Multi-
Purpose Research Reactor of Egypt (MPR) where, a
valuable interesting result will obtain. The LOFA
Accident simulation waveforms result of the proposed
implementation is shown in Figure (11A). Figure (11B)
and Figure (11C) show the desired output of LOFA
accident and its real output respectively.

Cursor | |089.1ns | fiNEENE
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Figure (11A): The LOFA Accident Simulation
Waveform
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Figure (11B): The desired output for Accident (LOFA).
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Figure (11C): The Hexa. Decimal and Decimal values
for real output for Accident (LOFA)

7.1 Design Results Summary

This Project was designed to diagnosis and to
predict the Multi-Purpose Research Reactor of Egypt
accidents, to avoid the risk of occurrence of a nuclear
accident. A sequential Hardware Neural Network is
implemented using XC3S700A-4-FG484 device -
Xilinx FPGA SPARTAN3A-3AN family. The
implementation on FPGA provides the higher benefits
of lower costs and higher results, where, FPGA can be
reprogrammed for an unlimited number of times; they
can be used in innovative designs where hardware is
always in dynamic change, or where hardware must be
adapted to different user applications requirements.

Table (1): Accident Simulation Waveform
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Table (2): Design Statistics
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8. Conclusion

This work proved the advantage of the hardware
implementation of Neural Networks in a special
hardware (FPGA), where the neural network is
implemented on Xilinx chip. Where, we can say; the using
of hardware description, such as VHDL, represents a
very practical option when dealing with complex
systems. Secondly, the using of FPGAs constitutes a
very powerful option for implementing ANNSs since we
can really exploit their parallel processing capabilities
in the nuclear reactors domain. The model needs less
than 2 ps for processing the input values and
presenting the results. This is a very fast
implementation required for a critical field like the
nuclear research reactors, comparing to the protection
software system that needs from 18 ms to 24 ms as a
response time. So, more precise classification accidents
can be processed in a shorter period of time. The neural
network's hardware model will be integrated within the
Reactor Protection System (RPS) as a future work, where
valuable interesting results will obtain.

Corresponding author

Abdelfattah A. Ahmed'

Atomic Energy Authority, Nuclear Research Center,
Inshas, Egypt

fatt231153@gmail.com

References:

1. The International Atomic Energy Agency (IAEA)
Safety Series, "Safety in the Utilization and
Modification of Research Reactors", TAEA
publications, STI/PUB/961, Vienna, Austria,
December 1994, STI/PUB/961.

2. J. Korbicz, Z. Kowalczuk, J. M. Koscielny, W.
Cholewa "Fault diagnosis: models, artificial
intelligence, applications", ISBN 3-540-40767-7,
Springer-Verlag Berlin Heidelberg 2004.

3. B. Ch. Hwang, "Fault Detection and Diagnosis of a
Nuclear Power Plant Using Artificial Neural
Networks", Simon Fraser University, March 1993.

4. L. S. Admuthe and S. D. Apte, "Neuro — Genetic
Cost Optimization Model: Application of Textile
Spinning Process", International Journal of
Computer Theory and Engineering, 1793-8201,
Vol. 1, No. 4, October 2009.

5. A. Fiszelew, P. Britos, A. Ochoa, H. Merlino, E.
Fernandez, R. Garcia-Martinez, "Finding Optimal
Neural Network Architecture Using Genetic
Algorithms", Software & Knowledge Engineering
Center. University of Buenos Aires.Kb, Research in
Computing Science 27, 2007.

6. A. M. Sadeq, A. A. Wahdan, H. M. K. Mahdi,
"Genetic  Algorithms and its Use with
Backpropagation Network", Faculty of

editor@americanscience.org




Journal of American Science, 2012;8(3)

http://www.americanscience.org

Engineering, Ain Shams University; Vol. 35, No. 3,
Sept 30, 2000.

7. S. Sh. Haggag, PhD Thesis, "Design and FPGA-
Implementation of Multilayer Neural Networks
With On-chip Learning", Atomic Energy Authority,
Egypt 2nd Research Reactor. PhD, Menufia
University, 2008.

8. Amos R. Omondi and Jagath C. Rajapakse, “fpga
implementations of neural networks”, ISBN-13
978-0-387-28487-3 (e-book), Springer, P.O. Box
17, 3300 AA Dordrecht, The Netherlands, 2006.

9. kChristophe Bobda, "Introduction to
Reconfigurable = Computing -  Architectures,
Algorithms, and Applications", University of
Kaiserslautern, Germany, ISBN 978-1-4020-6100-4
(e-book), Springer, 2007.

10. Uwe Meyer-Baese, "Digital Signal Processing with
Field Programmable Gate Arrays", ISBN 978-3-
540-72612-8 Springer Berlin Heidelberg New
York, 2007.

11.Karen Parnell and Nick Mehta, “Programmable
Logic Design Quick Start Handbook”, Xilinx, Inc.
PN 0402205 Rev. 4, 4/04, 2004.

12.Peter J. Ashenden, "The Designer's Guide to
VHDL", Morgan Kaufmann Publishers, I

Appendix A: All Accidents Simulation Waveforms
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Figure (12): Loss Of Power Supply (LOPS) Acmdent

Simulation Waveform
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Figure (13): Loss Of Heat Sink (LOHS) Acmdent
Simulation Waveform
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Figure (14): Small Loss OF Coolant Accident
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Figure (15): Med1um Loss OF Coolant Acmdent
(MLOCA) Accident Simulation Waveform
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Figure (17): Uncontrolled Slow Reactivity Insertion Waveform
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