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Abstract: Accurate simulation of curved solid boundaries is of great importance in lattice Boltzmann method, 

because solid curved boundaries are used in many applications, such as turbine blades, airfoils, curved body of 

flying objects, depositing solid particles, blood flow in vessels, flow round heat exchanger pipes, etc. In lattice 

Boltzmann method, curved boundary was first simulated by using standard bounce-back boundary condition. This 

boundary condition was not able to simulate curved boundary accurately. Lots of corrections have been made so far 

to improve the bounce-back boundary condition for curved solid boundary [1]. In this study three of these 

corrections are compared with each other in respect of accuracy and stability. These boundary conditions are: (1) FH 

boundary condition, (2) mass conserving FH boundary condition, and (3) OSIF boundary condition. Numerical 

results obtained from simulations a two-dimensional flow over a stationary and moving circular cylinder, also 

simulation a flow over a transitional oscillating circular cylinder show that FH boundary condition predicts more 

accurate and more acceptable results in comparison with the other two boundary conditions. Therefore to simulate 

moving curved solid boundary in applicational problems, FH boundary condition can be used with assurance. 
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1. Introduction 

In the last decade, scientists proposed many 

algorithms for simulating curved solid boundary 

condition in lattice Boltzmann method. Most of these 

methods are basically different with each other but 

most of them are modified versions of previous 

methods. Curved solid boundary was first simulated 

using standard bounce-back boundary condition. 

Standard bounce-back boundary condition used to 

simulate curved solid boundary in a stair-shaped 

manner and was not able to simulate curved solid 

boundary condition accurately. 

Some of the modifications, which were made 

to standard bounce-back boundary condition are: 

(1) FH Boundary Condition: Filippova, O. 

and Hanel (1998) have offered a second-order 

accuracy model for simulating curved solid boundary 

in lattice Boltzmann method. They have used this 

boundary condition with locally fined lattices to 

simulate flow over a circular cylinder in two different 

cases, one a steady flow with Reynolds number 20 

and the other an unsteady flow with Reynolds number 

100 [2],  

(2) Mass Conserving FH Boundary 

Condition: Bao, J., Yuan, P. and Schaefer, L. (2008) 

have presented a new boundary condition with 

second-order accuracy which is a modified version of 

FH boundary condition. They claim that they have 

improved the mass conservation problem from which 

the FH boundary condition suffers [3], and 

(3) OSIF Boundary Condition: This 

boundary condition was offered by Kao, P.H. and 

Yang, R. J. (2008) and it has a big difference with the 

other two boundary conditions because no 

interpolation is used in this boundary condition. Those 

boundary conditions in which interpolation is used 

suffer from mass-leakage. The authors claim that by 

using this boundary condition mass-leakage error has 

been reduced and the value of calculated transferred 

momentum has been modified [4]. 

As far as we know, a study in which bounce-

back scheme based boundary conditions have been 

compared with each other has not been published, yet. 

This study will provide us with a powerful 

comparative tool according to which we can choose a 

suitable and accurate boundary condition for 

simulating applicational problems.  

 

2. Lattice Boltzmann Method 

Lattice Boltzmann method has been 

constructed according to dynamics of particles and 

uses Boltzmann equation which has a mesoscopic 
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concept (a concept between microscopic and 

macroscopic) instead of using Navier-stokes equations 

which has a macroscopic basis [5]. Spacial and 

temporal differencing of Boltzmann equation and 

resulting to lattice Boltzmann equation has been 

summarized in the following. Beginning from 

Boltzmann equation we have [6]: 

( ) ( ). .
Df f

f
Dt t

 
 

 
     


e
 (1)

 

Using Bhatnagar-Gross-Krook (BGK) 

approximation, the collision operator has been 

linearized:  

( )1
. ( ),eqDf f

f f f
Dt t

 
   




     


e
 (2) 

where ( )eqf is Maxwell-boltzmann equilibrium 

function. Using finite difference, the material 

derivative in the left hand side of equation (2) is 

differenced as: 

( )( , ) ( , ) 1
( ).eqDf f t t t f t

f f
Dt t

   
 



   
   



x e x

 (3) 

By introducing non-dimensional relaxation 

time, lattice Boltzmann equation is derived [6]:  

,t    (4) 

( )1
( , ) ( , ) ( ).eqf t t t f t f f    


      x e x

 (5) 

Equation (5) in known as lattice Boltzmann 

equation, which is separated into two steps to be 

solved numerically. One step is the collision step 

(right hand side of equation (5)) and the other is the 

streaming step (left hand side of equation (5)) of the 

distribution function ( f ). Density and velocity of the 

fluid can be obtained from distribution functions by 

these equations [7]: 
8

0

,f






 (6) 

8

0

1
.f 

 

 u e

 (7) 

 

2.1. Two-Dimensional Model Using D2Q9 Lattice 

D2Q9 lattice uses a two-dimensional nine-

velocity lattice. This method has been introduced by 

Qian et al. (1992). In this model particles are allowed 

to reside only on lattice nodes. The velocities of 

particles are limited to three values and their 

directions are limited to eight values [8] (figure 1). 

 

 
Figure 1. D2Q9 x, y velocity components [6] 

2.2. FH Boundary Condition 

The fraction of the intersected link in the fluid 

region is [2]:  

,
f w

f b


 



x x

x x
 

(8) 

which is illustrated in Figure 2. 

 
Figure 2. Cartesian two-dimensional lattices and solid 

curved boundary [2] 

 

To finish the streaming step, it is clear that 

( , )bf t x%  should be calculated and then substituted 

as: 

( , ) ( , ).f b bf t t t f t      x x e x%
 (9) 

Filippova and Hanel have obtained the value 

of ( , )bf t x% by using a linear interpolation of the 

information of neighboring nodes:  
( )( , ) (1 ) ( , ) ( , ),b f bf t f t f t      x x x% %

 (10) 

where ( ) ( , )bf t


x is known as fictitious equilibrium 

function and is defined by the following equation:  

( ) 2

2 4 2

3 9 3
( , ) ( , ) 1 . ( . ) . ,

2 2
b f bf f f ff t t

c c c
      

    
 

x x e u e u u u

 (11) 

where the parameter 
i  is a weighting factor specific 

for each velocity direction. In the case of the D2Q9, 

0  = 4/9, 
1 = 1/9, and 

2 = 1/36 where 
0  is the 

coefficient for the rest velocity, 
1 is the coefficient 

for velocity directions with a magnitude of one (1, 2, 

3, and 4 in this case), and 
2 is the coefficient for 

velocity directions with a magnitude of  2  (5, 6, 7, 

and 8 in this case). The value of c is defined as, 

c x t   , which has a magnitude of one in this 

model.  

Filippova and Hanel have introduced the 

values of    and bfu  for different values of  ∆:  

( 1) ,     (2 1) / ,bf f w       u u u
 (12) 

for
 

1 2, 
 (13) 

and
               

,     (2 1) /( 1),bf f     u u
 (14) 

for 1 2.   (15) 
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2.3. Mass Conserving FH Boundary Condition 
Mass conserving FH boundary condition is 

very similar to FH boundary condition just in term of 

fictitious distribution function. In this boundary 

condition fictitious distribution function is modified in 

order to guarantee the conservation of mass [3]: 

( ) 2

2 4 2

3 9 3
( , ) ( , ) 1 . ( . ) . ,

2 2
b W bf bf f ff t w t

c c c
     

    
 

x x e u e u u u

 

(16)

 where 
W( , ) tx  is known as wall density. The value 

of 
W( , ) tx  depends on the geometry of wall and the 

geometry of lattice. As an example we think of a two-

dimensional flat channel. As illustrated in figure 3, for 

a D2Q9 lattice and for the lower part of a two-

dimensional flat channel after the streaming step the 

numerical values of 
4f ,

7f and 
8f  are known and the 

numerical values of 
2f , 

5f  
and 

6f  are unknown 

which must to be calculated. 

 

 

 

 

 

 

 
Figure 3.

4 7 8,  ,  f f f
 
:Outgoing distribution functions, 

2 5 6?   ?,   ?f f f   : Incoming distribution functions [3] 

 

To satisfy conservation of mass the 

following equation must be satisfied: 

 

outgoing incoming
.f f 
 (17) 

In the above equivalence the unknown 

distribution functions are substituted by equation (16). 

After substitution and some calculations and 

simplifications the following equation is obtained: 

 

2

4 7 8 W bf f

1
( , ) 1 3u 3(u ) ,

6

y yf f f t       x
 

 (18)  

where, 
bf

yu  and 
f

yu are y components of velocity 

vectors 
bfu and

fu , respectively. So the value of 

( , ) W tx  can be obtained: 

4 7 8
W 2

bf f

( , ) 6 .
1 3u 3(u )y y

f f f
t

 


 
x

 
 (19) 

By satisfying the equation 

outgoing incoming
 f f  in this boundary condition, 

total mass of the system during solution approach 

would be conserved. 

2.4. OSIF Boundary Condition (a Non-

interpolation Boundary Condition for Solid 

Curved Boundary)  

As shown in Figure 4, for an instance of the 

proposed interpolation-free model, the distribution 

functions directed toward the curved boundary, i.e. 

3f , 
4f , and 

7f , are treated as the values from 

‘‘coarse” grid transferring into the ‘‘fine” grid: 

 

 
Figure  4. Illustration of interpolation-free treatment of 

curved boundary using local refinement concept [4] 

 

When transferring information between 

nodes associated with different lattice sizes, it is 

essential to rescale the distribution functions at each 

link (
if ) in order to satisfy the principles of mass and 

momentum conservation, respectively, and to ensure a 

continuity of the deviatoric stresses across the 

interface between the two different grids. In rescaling 

the distribution functions, the following grid size ratio 

is defined: 
( )

( )
.

f

c

x
Q

x


 

  (20) 

where superscripts (c) and (f) denote the coarse grid 

and the fine grid quantities, respectively. To ensure a 

consistent viscosity and Reynolds number in the 

coarse lattice ( )( ) cx and fine lattice ( )( ) fx , the 

relationship between the two relaxation factors of the 

two different lattices must conform to: 

( ) ( )

( ) ( )

2 2
( 1) ( 1)

6 6

c f

c f c f

c c
x x 

 
        

( )

( ) ( )

( )

2 1 2 2
( 1) ( 1) ,

2
( 1)

f

c f

c

Q

Q
Q


 




     


  

 

       (21) 

where ( )c  and ( )f  are the relaxation parameters of 

course and fine lattices, respectively. Furthermore, the 

derivatives of the distribution functions must be 

continuous across the interface between the two 

different grids. Consequently, the following 

relationship is applied between the post-collision 

distribution functions (
if
%) at adjacent nodes in the 

coarse and fine lattices [4]: 
( ) ( )

( ) ( ) ( )

( ) ( )

(1 )
( ). .

(1 )

c f
f eq c eq

i i i i f c

Q
f f f f

 

 

 
  


% %

 (22) 
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In the proposed model, the boundary fluid 

distribution function is rescaled according to equation 

(22) and is then streamed to the surface of the solid 

node 
Wr  in the propagation step, i.e. the ( , )Wf t tr . 

The on-site BB scheme is then applied at the solid 

surface, i.e. by setting  

( , ) ( , )i W i Wf t t f t t   r r%  (23) 

in the following collision step. Finally, the 

distribution function is streamed back to the fluid 

node in the subsequent propagation step to obtain 

( , 2 )i Ff t t  r  at time-level (t + 2Dt). 

 
2.5. Zou, Q and He, X. Boundary Condition on a 

Flow Boundary with Fixed Velocity 

Suppose a flow boundary (take the inlet in 

Figure 1 as example) is along the y−direction, and the 

pressure (density) is to be specified on it. After 

streaming, 
2f , 

3f , 
4f , 

6f  
and

7f  are known, xu  

and 
yu are specified at inlet. (the velocity profile is 

the velocity profile of a poisson flow). 

 

 
Figure 5. Boundary nodes in inlet boundary for a two-

dimensional channel flow [10] 

 

By solving the four equations obtained from 

equations of mass, momentum and the equation 

obtained from bounce-back rule for the non-

equilibrium part of the particle distribution normal to 

the inlet, density and other unknown distribution 

functions are obtained:  

 0 2 4 3 6 7

1
2( ) ,

1 x

f f f f f f
u

      


 

(24)  

1 3

2
,

3
xf f u 

 (25)

   

5 7 2 4

1 1 1
( ) ,

2 2 6
y xf f f f u u     

 (26)

 

8 6 2 4

1 1 1
( ) .

2 2 6
y xf f f f u u     

 (27) 

 

2.6. Calculating the Force on a Body 

By using the momentum-exchange method 

presented by Ladd & Verberg the force exerted on a 

surface by fluid can be evaluated [11]. The force 

exerted on a boundary can be evaluated using the 

distribution function after the collision step and the 

momentum exchange term which relates to the object 

velocity (figure 6). 
3

2

2 ( . )1
( , ) [2 ( , ) ] .

2

c i w i
w i A i

s

wx
t t f t

t c


   



u e
F x x e

(28) 

where the parameter 
i  is a weighting factor. 

 
Figure 6. Illustration of the Momentum-Exchange 

Method for Force Evaluation (fluid exists only outside 

of wall) [11] 

 

In order to get the total force and torque on a 

solid moving particle immersed in fluid, a summation 

of the forces is done around the boundary of a particle 

[11]: 

total

1 1
( ) ( , ),

2 2
wt t t t    F F x

 (29) 

total

1 1
( ) ( ) ( , ).

2 2
w CM wt t t t      Τ x x F x

(30) 

In order to compare different boundary 

conditions with each other for a moving solid curved 

boundary at first we compare these boundary 

conditions for a stationary solid curved boundary. 

 

3. Steady Two-dimensional Flow with Reynolds 

Number 20 over a Circular Cylinder in a Channel 

In figure 7 the geometry of the flow domain 

and its boundary conditions are shown. The width of 

the channel is H=0.41m and the diameter of the 

cylinder is D=0.1m [13]. The Reynolds number in this 

problem is defined as: 

Re ,UD 
 (31) 

where ( ) 2 (0, 2, ) 3U t U H t is the average velocity of 

the flow passed the channel. 

 
 

Figure 7. Geometry of 2D test cases with boundary 

conditions [12] 

 

3.1. Inlet Boundary Bondition for Steady Flow 

The inlet boundary condition is a flow 

boundary condition, with a fixed parabolic velocity 

profile. 
2(0, ) 4 ( ) ,       0mU y U y H y H V  

 (32) 
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To simulate this boundary condition, Zou 

and He boundary condition on a flow boundary is 

used. 

 

3.2. Outlet Boundary Condition 

Since the gradients of flow variables at the 

outlet boundary are small temporally and spacially we 

can easily set these gradients to zero and extrapolate 

the distribution functions for the outlet boundary 

nodes [13].  

By setting the first partial derivative of 

distribution function to zero and using second-order 

differencing the following relation is obtained for the 

distribution function: 

 

max max 1 max 2

1
(4 ).

3
i i if f f  

 (33) 

 

3.3. Grid Dependency Study for Steady Flow 

In order to study grid dependency, we solve 

the problem of the two-dimensional flow with Re=20 

over a circular cylinder in a channel by using different 

grids. The results are shown in table 1. To obtain this 

table FH boundary condition is used for solid curved 

boundaries and Zou and He boundary condition is 

used for inlet and wall boundaries of the channel. By 

comparing the obtained results with each other the 

suitable resolution can be chosen. 

Table 1. Drag and lift coefficients of a fixed circular cylinder in a flow channel (Re=20, Ma=0.1) with different 

resolutions 

 

 

According to table 1 we choose the 

resolution 881×165 for flow domain. By using this 

resolution for flow domain the numerical results are 

not dependant on the number of grids anymore and 

according to figure 7 which shows the geometry of the 

flow the diameter and the center of the cylinder are 

20lu and (81,81),  respectively.  

 

3.4. Numerical Results for a Two-dimensional 

Steady Flow 

The following quantities have been 

computed for the steady flow: drag coefficient (
DC ), 

length of recirculation zone (
aL ). The results for drag 

coefficient and length of recirculation zone have been 

written in table 2. 

 

 

Table 2. Percentage error for 
DC  and 

aL  for a steady flow (Re=20, Ma=0.1) compared with results reported in [12] 

 

Boundary 

Treatment DC  

Drag 

Error 

(%) with 

Lower 

Bound 

Drag 

Error 

(%) with 

Upper 

Bound 

aL  

aL  Error 

(%) with 

Lower 

Bound 

aL  Error 

(%) with 

Upper 

Bound 

FH 5.609 0.7 0.3 0.0817 2.9 4.1 

Mass Conserving 

FH 
5.684 2.0 1.6 0.0843 0.1 1.0 

OSIF 6.211 11.5 11.1 0.0853 1.3 0.1 

 

According to table 2 FH and Mass 

conserving FH boundary conditions show smaller 

error percentage than OSIF boundary condition which 

means, OSIF boundary condition is not able to meet 

conservation of momentum. So among these three 

boundary conditions, FH and Mass conserving FH 

boundary conditions can show acceptable results for a 

steady flow. 

 

Resolution 

Lattice 

Spacing 

(∆x=∆y) [m] 

  

Relaxation 

Parameter 

Boundary  

Treatment 

Inlet & 

Channel Wall 

Boundary 

Treatment 

DC  
LC  

221×42 0.01 0.5577 FH Zou & He Diverged Diverged 

441×83 0.005 0.6154 FH Zou & He 5.616 0.011 

661×124 0.00333 0.6732 FH Zou & He 5.611 0.010 

881×165 0.0025 0.7309 FH Zou & He 5.609 0.010 

1101×206 0.002 0.7886 FH Zou & He 5.609 0.010 
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4. Unsteady Two-dimensional Flow with Re=100 

Over a Circular Cylinder in a Channel 

For unsteady flows in which frequency plays 

a great roll, in addition to the previous non-

dimensional numbers another non-dimensional 

number is used which is known as Strouhal number 

and is defined as [12]:  

,St Df U  (34) 

where f is the frequency of vortex production. 

 

4.1. Inlet Boundary Condition for Unsteady Flow 
The inlet boundary condition is a flow  

boundary condition with a fixed parabolic velocity  

profile, the same as the steady flow: 
2(0, ) 4 ( ) ,       0mU y U y H y H V  

 (35) 

In here, Zou and He boundary condition on a flow 

boundary is also used to simulate this boundary 

condition. 

4.2. Outlet Boundary Condition for Unsteady Flow 

The same boundary condition for steady 

flow is used for outlet boundary in unsteady flow. 

 

4.3. Numerical Results for a Two-dimensional 

Unsteady Flow 

The following quantities have been 

computed for the unsteady flow: drag coefficient ( Dc ) 

as a function of time, maximum drag 

coefficient maxDc , maximum lift coefficient maxLc and 

Strouhal number (St). The results for unsteady flow 

(
maxRe 100,  0.1U  ) have been shown in table 3. 

Table 3, consists of maximum drag 

coefficient
maxDc and Strouhal number. FH boundary 

condition has been used for curved solid boundaries in 

table 3. 

 

 

Table 3. Percentage error for maxDc  and 
maxLc  for unsteady flow (

maxRe 100,  0.1 U ) compared with results 

reported in [12] 

Boundary 

Treatment maxDc
 

maxDrag Error 

(%) with 

Lower Bound 

maxDrag Error 

(%) with 

Upper Bound 

St 

St Error 

(%) with 

Lower 

Bound 

St Error 

(%) with 

Upper 

Bound 

FH 3.3130 2.8 2.2 0.303 2.7 0.6 

Mass 

conserving 

FH 

3.3053 2.6 2.0 0.303 2.7 0.6 

OSIF 3.9590 22.9 22.1 0.301 2.0 1.3 

 

As can be seen from table 3, OSIF boundary 

condition shows unacceptable error in comparison 

with the other two boundary conditions. 

 

5. Unsteady Flow due to Translational Oscillation 

of a Circular Cylinder 

In order to model moving curved solid 

boundary, the flow over a circular oscillating cylinder 

is simulated. Velocity profiles and exerted forces on 

the simulated cylinder are compared with benchmark 

results of H. Dutsch, F. Durst, S. Becker and H. 

Lienhart. For an oscillating motion a non-dimensional  

number is defined known as Keulegan-carpenter 

number [14]: 

 

max ,
U

KC
fD  (36) 

where maxU  is the maximum velocity of cylinder, D  

is the diameter of cylinder and f  is the frequency of 

oscillation. The Reynolds number in this part is 

defined as: 

Re ,
UD




 (37) 

where,   is the cinematic viscosity of the fluid. In the 

present study the translational motion ( )cu t is given 

by the harmonic oscillation: 

 
2

( ) cos( ),

( ) 0.


 



c

c

u t U t
T

v t
 (38) 

where cu  and cv  are the velocity of center of cylinder, 

U  
is the amplitude of the oscillation and T is the 

period of the oscillation. The fluid around the cylinder 

is at first stationary, as the cylinder starts to oscillate 

the fluid over the cylinder initiates to a semi-steady 

flow. The flow around an oscillating cylinder can be 

complex, showing vortex structures and mechanisms 

with different properties and different behaviors, but 

with parameter set of the present investigation, Re = 

100 and KC = 5, a street of two symmetric and 

counter-rotating vortices of apparently the same 
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magnitude of strength were generated in front and 

back of the cylinder (figure 8). 

 

 
Figure 8. Flow visualization for Re=100 and KC=5 

[14] 

 

The computational domain which is going to 

be simulated is shown in figure 9. 

 

 
Figure 9. Sketch of the computational domain for a 

circular cylinder oscillating in-line in a quiescent 

fluid. The cylinder is initially set at the center of the 

domain [15] 

 

5.1. Boundary Condition for Curved Solid 

Boundaries 

For curved solid boundaries only FH and 

mass conserving FH boundary conditions are used 

because according to tables 2 and 3 they offer the 

smallest error percentage for curved solid boundaries. 

 

5.2. Boundary Conditions for Computational 

Domain  

For right, left, down and above boundary 

conditions of the computational domain, first-degree 

extrapolation using second-order differencing are 

used. By using extrapolation boundary condition an 

infinite flow domain is trying to be simulated. 

max max 1 max 2

max

max max 1 max 2

3 4
0

2

1
                                 (4 ).

3

 

 

 
   

 

 

i i i

i

i i i

f f ff

x x

f f f

 (39) 

 

5.3. Grid Dependency Study for Oscillating 

Cylinder 

In order to study grid dependency of the 

problem of oscillating circular cylinder, the problem 

is going to be solved with different resolutions and by 

comparing the results with the benchmark results the 

suitable resolution can be chosen for the flow domain. 

Table 4 compares the maximum drag coefficient of 

translational oscillating cylinder with different 

resolutions. The boundary condition which is used for 

table 4 is FH boundary condition. 

 

Table 4. Maximum drag coefficient of translational 

oscillating cylinder with different resolutions 

Resolution 

Lattice 

Spacing 

(∆x=∆y) 

[m] 

  

Relaxation 

Parameter 

Boundary 

Treatment maxDc
 

601×401 0.0005 0.5346 FH 3.39 

901×601 0.00033 0.5519 FH 3.35 

1201×801 0.00025 0.5692 FH 3.33 

1501×1001 0.0002 0.5866 FH 3.33 

 

As can been seen from table 4 by choosing 

the resolution 1201×801 for flow domain the 

numerical results are not dependant on the number of 

grids anymore. By choosing this resolution for flow 

domain, the diameter and the center of the cylinder 

are 40lu and (601, 401), respectively, according to 

figure 9. 

 

5.4. Numerical Results for Semi-steady Flow due to 

a Translational Oscillating Cylinder 

The numerical results obtained for semi-

steady flow due to the translational oscillating 

cylinder and also the numerical benchmark results of 

Duetsch et al. are shown in figures 10 to 12. At first 

the numerical results obtained using FH boundary 

condition for curved solid boundaries are shown. In 

figure 10, drag coefficient is drawn for the oscillating 

cylinder as a function of time and is compared with 

the benchmark numerical results of Dutsch et al. 

 
Figure 10. Drag coefficient as a function of time. : 

numerical results of Dutsch et al. [14]; : numerical 

results of the present study using FH boundary 

condition 

 

Figure 11 shows the velocity profile of the 

flow domain in three different cross sections 

(
0 0.6x x D  ،

0x x ،
0 0.6x x D  ) and at temporal 

phase 2t nT T   .  
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    (b)                                           (a)           

Figure 11. Comparison of velocity components in three 

different cross sections, in temporal phase . 2t nT T  . 

: numerical results of Dutsch et al. [14]; : numerical 

results of present study by using FH boundary condition for 

curved solid boundary (a) horizontal velocity component 

(b) vertical velocity component 

Vorticity contours at different time cross 

sections ( t T ، 0.2t T T  ، 0.5t T T  and 

0.8t T T  ) of a period for Re = 100 and KC = 5 are 

shown in figure 12. 

 

 

 

 
Figure 12. Velocity contours for Re = 100 and KC = 

5. Right: numerical results of Dutsch et al. [14]. Left: 

numerical results of the present study 

 

Numerical results obtained for flow domain 

of oscillating cylinder by using mass conserving FH 

boundary condition are shown in figures 13 and 14. In 

figure 13, drag coefficient is drawn as a function of 

time as is compared with numerical benchmark results 

of Dutsch et al. 

 

 
Figure  13.  Drag coefficient as a function of time. 

: numerical results of Dutsch et al. [14]; : 

numerical results of the present study using Mass 

conserving FH boundary condition 

 

Figure 14 shows the velocity profile of the 

flow domain in three different cross sections 

(
0 0.6 x x D ،

0x x ،
0 0.6 x x D ) and at temporal 

phase 2 t nT T . 

As can been seen in figures 13 and 14 

numerical results obtained for velocity profile and 

drag coefficient as a function of time by using Mass 

conserving FH boundary condition are with unwanted 

fluctuations, which means that the mass conserving 

boundary condition cannot model moving curved 

solid boundaries accurately. 
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                (a)                                               (b)     

Figure  14. Comparison of velocity components in 

three different cross sections and in temporal phase 

. 2t nT T  . : numerical results of Dutsch et al. 

[14]; : numerical results of present study by using 

Mass conserving FH boundary condition for curved 

solid boundary (a) horizontal velocity component (b) 

vertical velocity component 

 

6. Conclusion 

We can come to this conclusion that mass 

conserving FH boundary condition, in despite of 

convincing conservation of mass and momentum for 

stationary solid boundaries simultaneously, it cannot 

convince conversation of momentum for moving solid 

boundaries. The inability of mass conserving FH 

boundary condition in convincing conservation of 

momentum for moving solid boundaries is a topic 

which is not reported in literature, because mass 

conserving FH boundary condition used to be applied 

for stationary solid boundaries.  

The probable reason why mass conserving 

FH boundary condition is not able to fulfill 

conservation of momentum for moving solid 

boundaries is the virtual compressibility of lattice 

Boltzmann method. In order to simulate a moving 

body the virtual compressibility of lattice Boltzmann 

method becomes more obvious, because during time 

marching some solid nodes will change into fluid 

node and some fluid nodes will change into solid 

nodes. The density of a fluid node which has been 

changed from a solid node is assumed as the average 

density of the neighboring fluid nodes and its real 

density is not evaluated. So, at each time step, mass 

conserving FH boundary condition tries to maintain 

different total mass. Therefore, density fluctuation 

becomes more obvious for a problem which deals 

with moving bodies. 

According to this study we can conclude that 

FH boundary condition offers more acceptable and 

more accurate results for moving curved solid 

boundaries compared with mass conserving FH 

boundary condition and OSIF boundary condition. So, 

in order to model moving curved solid boundary in 

simulation of applicational problems, we can easily 

trust on the results obtained from correct coding of FH 

boundary condition. 
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