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ABSTRACT: Helminth parasites are of considerable medical and economic importance. Studies of the immune 
response against helminths are of great interest in understanding interactions between the host immune system 
and parasites. The lack of exposure to helminth infections, as a result of improved living standards and medical 
conditions, may have contributed to the increased incidence of inflammatory bowel diseases (IBDs) in the 
developed world. Epidemiological, experimental, and clinical data sustain the idea that helminths could provide 
protection against IBD. Studies investigating the  underlying mechanisms by which helminths might induce such 
protection have revealed the importance of regulatory pathways, for example, regulatory T-cells. Further 
investigation on how helminths influence both innate and adaptive immune reactions will shed more light on the 
complex pathways used by helminths to regulate the hosts immune system. Although therapy with living 
helminths appears to be effective in several immunological diseases, the disadvantages of a treatment based on 
living parasites are explicit. Therefore, the identification and characterization of helminth-derived 
immunomodulatory molecules that contribute to the protective effect could lead to new therapeutic approaches 
in IBD and other immune diseases. 
[Doaa A. Yones. Role of Parasitic Helminths in Protection Against Inflammatory Bowel Diseases Doaa A. 
Yones. Journal of American Science 2011; 7(12):945-955]. (ISSN: 1545-1003). 
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INTRODUCTION 

More than two billion people are infected 
with parasitic helminths. Although infection  by 
most of these pathogens are generally not fatal, they 
are associated with high rates of morbidity, with 
chronic infection often leading to anaemia and 
malnourishment.[1] 

Developed countries have controlled these 
infections through primary health care programs and 
effective public sanitation, but helminth diseases are 
still widespread in developing nations and often 
drug treatment does not protect against rapid 
reinfection. The need for effective vaccines to 
control these infections is compelling and at least 
few clinical trials are currently underway. However, 
one impediment towards development of an 
effective vaccine is lack of understanding of the 
actual components of the immune response that 
mediate protection against helminthes.[2]  

Helminths usually cause asymptomatic or 
subclinical chronic infection, although some 
parasitized individuals can suffer from severe 
disease which may be fatal. Indeed, worms tend to 
be aggregated in their distribution, with a large 
number of hosts harboring few parasites and  few 
heavily infected hosts. [3]  

This remarkable equilibrium between most 
hosts and parasites is the product of long term 
coevolution of the two partners and particularly of 
the immune defence of the host and the immune 
evasion of the parasite.[4] 

For parasites, it is advantageous to trick the 
host into developing an ineffective  immune 
response, to find a suitable niche for maturation and 
propagation, and to do so without killing or unduly 

harming the host. Conversely, the host has to ideally 
generate an effective immune response to expel the 
parasite, and minimize its harmful effects, while not 
sacrificing its ability to effectively respond to other 
pathogens.[5] The immune responses of the hosts to 
helminth infection are generally characterized by a 
skewed Th2-like response. Helminths have 
developed several means of escaping these immune 
responses. Recently, Maizels et al. called them  
“masters of immunomodulation”.  These  
immunomodulatory abilities  enable  the worm to 
persist in the host and can lead to interactions 
with inflammatory and  immune mechanisms 
involved in other infections, to vaccines or in 
allergic and autoimmune  diseases.[6] 

IBDs, such as Crohn’s disease (CD) and 
ulcerative colitis (UC), are chronic immune diseases 
of the gastrointestinal tract. Although the aetiologies 
of these diseases still remain unknown, probably 
results from an inappropriately vigorous immune 
response to the normal contents of the intestinal 
lumen.[7] Genetic factors and environmental factors 
both contribute to the damaging mucosal immune 
response.[8] 

Environmental factors affect the risk for 
IBD.[9] Appendicitis followed by appendectomy 
lowers the incidence of UC,[10–12] whereas cigarette 
smoking enhances the chance for CD.[13] Some 
enteric infections can trigger IBD like 
cytomegalovirus and amebic (Entamoeba 
histolytica) colitis. Moreover, the modern day 
absence of exposure to intestinal helminths is an 
important environmental factor contributing to 
IBD.[14] 
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A characteristic feature of helminth infection 
is a Th2-dominated immune response, but 
stimulation of immunoregulatory cell populations, 
such as regulatory T cells and alternatively activated 
macrophages, is equally common. Typically, Th1/17 
immunity is blocked and productive effector 
responses are muted, allowing survival of the 
parasite in a “modified Th2” environment. Drug 
treatment to clear the worms reverses the 
immunoregulatory effects, indicating that a state of 
active suppression is maintained by the parasite.[15-

19] 
Considering classical Th1/Th2 paradigm, it is 

reasonable to speculate that helminth induced Th2-
skewing with downregulation of Th1 immune 
responses results in an amelioration of Th1 diseases. 
As IL-4 is known to suppress Th17 development,[20] 
Th17 response could also be suppressed as well as 
Th1 response in helminth-infected or helminth 
antigen-treated animals.[21] Downregulation of both 
T helper responses may be beneficial for the 
amelioration of various kinds of autoimmunity.[22] 

There have been several clinical trials using 
helminthes to treat IBD. Results from these trials 
suggest that infection with at least some human or 
animal helminths improves clinical outcome, which 
supports the premise that natural helminth infection 
is protective. There was clinical improvement in a 
double-blind clinical study in UC and an open-label 
study in CD. These studies used live ova from 
porcine whipworm (Trichuris suis) as an oral 
therapeutic intervention.[23–25] Another study in CD 
showed efficacy using live human hookworm 
administered via skin application.[26] 

In the present review, some lights are thrown 
on  recent findings regarding the mechanisms of 
protection in helminth infections and the advantage 
of these  knowledge to identify and select individual 
helminth-derived molecules that may harbor 
therapeutic potential against inflammatory bowel 
diseases (IBDs). 
 
INFLAMMATORY  BOWEL DISEASES AND 
THE HYGINE HYPOTHESIS 

The incidence of IBD has steadily increased 
in the developed world since 1950.[27,28] According 
to the hygiene hypothesis, this is directly related to 
the higher hygienic standards in these countries.[29, 

30] It is suggested that the lack of exposure to  
infectious agents like helminths, as a result of 
improved living standards and medical conditions, 
modulates the development of the immune system 
and thereby increases the risk of immune 
diseases.[31, 32] The hygiene hypothesis was initially 
proposed by Strachan in 1989 for hay fever,[33] and 
additional epidemiological studies were performed 
to further investigate the link between this hygiene 
concept and the incidence of other immunological 
diseases. As a consequence, the hygiene hypothesis 
is now proposed for several immunological 

disorders such as asthma and allergic diseases,[34] 
cardiovascular diseases,[35] Type 1 diabetes 
mellitus,[36] multiple sclerosis,[37] and IBD.[38] The 
hygiene hypothesis for IBD is clearly supported by 
the geographical distribution of the disease. There is 
a well described north-south gradient for the 
incidence of IBD. Northern Europe and North 
America have the highest IBD incidence rates 
whereas Crohn’s disease and ulcerative colitis 
remain scarce in South America, Africa, and Asia.[28, 

39] However, the gap between high and low 
incidence areas in northern versus southern regions 
is narrowing. In Asia, for example, incidence rates 
still remain low as compared to Europe, but they are 
rapidly increasing.[18] Changing lifestyle is thought 
to be the major cause of the disease increase in low 
incidence areas.[40] The most important factor to 
explain these geographical differences is the 
socioeconomic level.[38] IBD is more frequently seen 
among patients with a higher socioeconomic 
status.[41, 42] Higher socioeconomic levels can be 
associated with better sanitation conditions, high 
quality water, and better medical standards.[43] 

Another factor supporting the hygiene hypothesis is 
the inverse relationship between infant mortality 
rates and the incidence of IBD. Infant mortality 
might be linked to worse hygiene and medical 
conditions. Countries with high infant mortality 
rates  consequently have lower reported incidence of 
IBD.[44] As mentioned previously, better hygienic 
circumstances translate into diminished exposure to 
infectious agents like helminths. The absence of 
such parasitic infections during childhood renders 
the immune system more prone to allergic and 
immune diseases. Thus infections seem to activate 
an important protective factor against these 
disorders.[29] Identifying the nature of this protective 
effect and implementing this notion in therapeutic 
strategies against IBD and other immune diseases is 
now the challenge for basic research. 
 
IMMUNE MECHANISMS AGAINST 
HELMINTHS AND THEIR REGULATION 

Helminth  infections are typically associated 
with hypereosinophilia, considerable IgE 
production,  mucous  mastocytosis, and  goblet 
cells hyperplasia.  These immune parameters are 

involved in  different effector mechanisms highly 
depending on where the helminth is localized.[4]  
 
IMMUNE MECHANISMS AGAINST TISSUE 
PARASITES AND ESCAPE MECHANISMS 
DEVELOPED BY THE PARASITE  

Several mechanisms against tissue-dwelling 
parasites have been described. These parasites are 
mainly larval stages, for example, of trematodes 
(Schistosoma  spp., Fasciola spp.) or nematodes, 
which migrate through tissue. 

Antibody Dependent  Cellular Cytotoxicity 
(ADCC) is dependent on eosinophils, neutrophils, 
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macrophages, or platelets as  effector cells and  
IgE, IgG, or  IgA as  antibodies. The parasitic 
structures covered by antibodies are destroyed by 
cells carrying receptors to  the  Fc fragment 
(fragment crystallizable) of the antibodies  (Figure 
1). When these cells are activated by fixation of the 
antibodies to the RFc, they (activated cells) 
release products that are toxic to the worm (major 
basic protein, eosinophil cationic protein, 
eosinophil-derived  neurotoxin and reactive nitrogen 
intermediates). ADCCs are also able to immobilize 
nematode larval stages as they migrate through the 
gut mucosa.[45–48] 

A granuloma  can  occur  around  the  
parasite  in  the tissue which stops the worm 
migration and development. This phenomenon has 
been well investigated for Schistosoma mansoni. 
The granuloma is composed of eosinophils, 
macrophages, and lymphocytes with an increasingly 
fibrotic extracellular matrix,[49] which surrounds and 
segregates the eggs from the hepatic tissue. In the 
long term, fibrosis may develop as the eggs die and 
the granuloma is resolved.[50] 

Finally, nitric oxide (NO), toxic to the worm, 
is released by the macrophages classically activated 
by IFNγ and TNFα. This  mechanism  has  been  
described  mainly against  trematodes  (Schistosoma 
sp.,  Fasciola sp.)  during acute infection, before egg 
production in Schistosoma mansoni.[51–53] 

Tissue dwelling parasites have developed 

several mechanisms to escape the effector immune 
response of the host. For example, Fasciola sp. 

escapes from the immune responses by different 
means as follows: 

(i) Fasciola  gigantica  produces  superoxide  
dismutase which neutralizes superoxide radicals 
toxic for juveniles.[54, 55] 

(ii) F.  hepatica   releases  cathepsin  L-
protease  which cleaves IgE and IgG involved in the 
ADCC. [56] 

(iii) Juvenile flukes were found  to  be 
covered by IgM.[57]  While eosinophils do not 
express Fcγ receptor, IgM deposition on fluke 
tegument could inhibit eosinophil adhesion. IgG 
produced during fasciolosis in susceptible has been 
also suspected to be a blocking immunoglobulin of 
the ADCC.[58] 

Furthermore, F. hepatica secretes several 
molecules able to modulate the immune response. 
Excretory-secretory products of F. hepatica (ESPFh) 
can depress the sheep and rat lymphocytes 
stimulation[59, 60] and induce eosinophil apoptosis.[61] 

Milbourne and Howell (1990, 1993)[62, 63] have 
shown that  there  is an  “IL5-like” substance in  
the excretory-secretory products (ESPs) probably  
responsible in  part  of  the  local and  systemic 
eosinophilia  observed during fasciolosis. Cathepsin 
L-proteases induce a decrease of 
lymphoproliferation and of the CD4 (cluster of 
differentiation or cluster of designation) expression 

on human and ovine T cells.[64] GST (glutathione 
S-transferase) from F. hepatica induces a significant 
inhibition of nitrite production by peritoneal 
macrophage.[59] 
 
IMMUNE MECHANISMS AGAINST  LUMINAL 
PARASITES AND ESCAPE  MECHANI- SMS 
DEVELOPED BY THE PARASITE   

Intestinal anaphylaxis, with IgE-induced mast 
cells degranulation,  is responsible for changes in 
the  intestinal physiology as well as architecture  
and  chemistry  of  the gut epithelium,  including 
stimulation  of fluid, electrolyte and mucus 
secretion, smooth muscle contractility, increased 
vascular  and  epithelial permeability, and  
recruitment  of immune cells such as eosinophil or 
mast cells [17] (Figure2). This can lead to rapid 
elimination of the gastrointestinal larvae, before 
they reach their tissue niche, and to expulsion of the 
adult.[65] Furthermore, IgA on the surface of the gut 
mucosa helps to neutralize the metabolic enzymes 
released by the worms and interfere with the worm’s 
ability to feed. [66, 67] 

As for tissue-dwelling parasites, parasites 
localized in the lumen  of ducts  are able to  
produce  immunomodulatory substances to  escape 
to  the  host  immune  responses. For example, 
Necator americanus secretes a metalloprotease 
which cleaves eotaxin, a chemotactic factor for 
eosinophils.[68] Gastrointestinal nematodes produce 
also superoxide dismutase and  glutathione S-
transferase which neutralize toxic oxide radicals.[21] 
A cystatin produced by Haemonchus contortus and 
Nippostrongylus brasiliensis modulates the antigen 
presentation to T cells by inhibiting cysteine 
proteases of antigen presenting cells, involved in the 
processing of the antigen.[69, 70] 
 
REGULATION OF IMMUNE RESPONSES 
AGAINST HELMINTHS 

All these mechanisms, except the classically 
activated macrophages, are  regulated  by Th2-like 
cytokines  and  immunomodulatory cell types 
(Figure 1). Interleukin-4 is involved in the IgE 
isotype-switched B-cell responses, IL-5 is involved in  
the production  of eosinophils, and  IL-13 has  
similar functions  to  IL-4 and  is involved mainly 

in  the  effector phase of inflammation and the 
development of fibrosis.[50] T regulatory cells 
(TReg cell) produce  the  suppressive cytokines IL-

10 and  TGF-β (Transforming growth factor beta ) 

which  have anti-inflammatory  effects and could 
be involved in the skewed Th2-like responses. 
Immune deviation may also be promoted  by the 
development of a Th2-driving dendritic cell 
population induced by excretory-secretory antigens 
from Nippostrongylus brasiliensis[71] or soluble egg 
antigen from schistosome.[72] 

Finally, IL-4 and IL-13 are able to 
alternatively activate macrophages (AAMps) which 
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have strong anti-inflammatory properties, enhance 

Th2 cell differentiation, contribute to fibrosis, and 
repair at the site of injury.[73] Thus, an environment, 
with downregulated pro-inflammatory 
responsiveness, activated damage- repair 
mechanisms, and a controlled development of Th2-

like antiparasite effector responses is created during 
infection with helminthes.[18] 

Several proteins produced by helminths 
were involved in the regulation of cytokine 
production.[15, 19] Schistosome soluble egg antigen 
contains molecules as alpha-1 or omega-1 that 
initiate a Th2-like response.[74–76]  

ES-62, a leucine aminopeptidase secreted by 
Acanthocheilonema vitae, reduces CD4+  cell IL-4 
and  IFNγ  production  but promotes IL-10 
production by peritoneal B1 cells.[77, 7 8] It also 
inhibits the antigen-presenting cells ability to 
produce IL-12p70 and  drives Th2-like 

differentiation in  vitro.[79, 80] Helminths  could  also  
secrete cytokine  homologues as macrophage  
migration  inhibitory  factor (MIF)  which induces, 
with IL-4, the development of alternatively activated 
macrophage.[16] 
 
PROTECTIVE AND 
IMMUNOPATHOLOGICAL EFFECTS OF THE 
IMMUNE RESPONSE AGAINST HELMINTHS 

Despite the Th2-like response induced 
against helminths, these parasites are often able to 
persist in the host for a long time, resulting in 
chronic infection. However 2 types of  immunity  
evaluated  from  the  partial  elimination  of settled  
parasites and  from  host  resistance to reinfection 
have been described, namely, premune immunity and 
partial immunity.[4] Premune immunity against 
helminths is very common and particularly 
observed against gastrointestinal helminths. 
Premunition  or  concomitant  immunity  has been 
defined by MacDonald  et  al.[19]  as a  state 
wherein the  host  is protected  from  further  
infection  with a given species by ongoing 
persistent infection with the same organism. Thus 
immune mechanisms existing concomitantly with 
parasites (adults and encysted larval stages) in 
animals infected by gastrointestinal nematodes 
prevent the establishment of new larvae. In contrast, 
the elimination of adult worms by the phenomenon 
of “self-cure” (spontaneous expulsion of adults by 
massive larval invasion during a short period of 
exposure) or by anthelminthic treatment results in 
the installation of new larvae until an equilibrium 
state is obtained. Premune immunity can also be 
expressed as a reduction in adult worm size and in 
female worm fertility. In contrast, the primary 
immune response against Fasciola hepatica limits the 
number of metacercariae which develops in adults 
and reduces the fertility of the females. However it is 
unable to prevent the establishment of new parasites, 

which is a great difference with the premune 

immunity. It also permits partial expulsion of adults 
in the bile ducts. So, immune  responses against 
Fasciola  hepatica  partially protect the host against 
the infection. [20] 

The protective role of Th1- and Th2-like 
responses during fluke infection is less clear: Th1-
like responses might  act on larvae migrating 
through the liver parenchyma whereas the chronic 
phase with F. hepatica might be due to Th2- like 
responses against which the fluke has developed 
several escape mechanisms. As described during 
infection with Schistosoma mansoni, Th2-like 
responses are predominant during infection by F. 
hepatica but early Th1-like responses seem  to  be  
involved in  protection  against  this  parasite. [20] 

This  suggests that protection against 
Fasciola sp. is linked with Th1-cytokine 
production.[81] Similarly, vaccinal trials with 
cathepsin L-protease from F. hepatica proved that 
protection induced by this antigen is mediated by a 
Th1-like response.[82] Although the host immune 
reaction against helminths may control  the  
infection, it can also be responsible for tissue 
lesions and symptoms which are often the primary 
cause of disease during worm infection. 
Immunopathologic phenomena have been 
thoroughly investigated in infections with 
Schistosoma spp.  As described above for F. 
hepatica infection, acute schistosomosis is 
associated with Th1-like responses against adult 
parasites. The Th2-like responses, induced as a 
result of egg antigens secretion, downregulate the 

production and effector functions of Th1-like 
mediators.[83, 8 4 ] When Th2-like responses against 
the eggs were blocked experimentally, an 
exacerbated granuloma  driven by Th1  and  Th17  
cells resulted  in  hepatic  damage and death.[85]  

Granulomatous responses evolve from an early 
Th1- to a sustained and dominant  Th2-like 
response. Whereas tissue fibrosis stimulated by Th2-
like cytokine (IL-13) promotes tissue healing, 
excessive fibrosis may become pathogenic with loss 
of hepatic functions and portal hypertension.[86, 87] It  
seems that  during  trematode  infections Th1-like 
responses are more protective than Th2-like 
responses against which these parasites have 
developed many escape mechanisms. Although Th1-
like responses are closely associated with  
immunopathogenesis, Th2-like responses may also 
contribute to inflammatory damage. Treg cells seem 
to regulate this detrimental immune response by 
suppressing the Th1-like response and by down 
regulating any excessive Th2-like response during 
granuloma formation.[88] 

Protection  against  gastrointestinal  
nematodes and against tissue-dwelling trematodes is 
controlled by Th2- and Th1-like responses, 
respectively. The migration step in tissue is 
considered an immunoevasive strategy due to the 
predominant  Th2-like response during helminth  
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infection whereas protection  in tissue is mediated  
by the  Th1-like response. However, the immune 
mechanisms, particularly those regulated by Th1-
like cytokines, are responsible for considerable 
immunopathological damage and for the clinical 
signs observed during a helminthic  disease.[89] 

Even if the  immune  responses against most  
of helminths  are orchestrated  by  Th2-like  
cytokines,  the  worms  are  still able to  persist in  
the  host  for  a long time.  Indeed,  the immune  
response during  the  chronic  phase of infection 
was recently reported to be a modified Th2-like 
response, that  is, a Th2-like response associated 
with Treg activity and  the  production  of 
antiinflammatory  cytokines  such as IL-10 and 
TGFβ. [90] 

The induction  of immunomodulatory  
Th2/Treg  responses  would  allow the  survival of 
both partners, by downregulating the host’s 
inflammatory response and the immunopathological 
lesions observed during helminths  infection, and 
also the protective immune mechanisms directed 
against the parasite.[91, 92] 
 
 HELMINTHS AND COINFECTION 

Some helminths are able to downregulate the 
Th1-like response because their high 
immunomodulator  activity allows the induction of 
Th2/Treg-type responses.[93]   

 Helminths influence not only host resistance 
to another pathogen  but  also  the  gravity of  the  
resulting  disease. Cerebral malaria is associated 
with an overproduction  of pro-inflam- matory 
cytokines. Helminth infections are able to decrease 
the production of these cytokines by secreting IL-
10 and TGFβ and thereby diminish the risk of severe 
disease.[92] Trichinella spiralis  infection limits 
pulmonary damage induced by influenza virus in 
mice.[94] 

However, other pathogens can also influence 
the immune response against helminths. For 
example, Miller et al.[95] recently showed that the 
production  of Th1-like cytokines and classic 
activation of macrophages were little altered when F. 
hepatica infection preceded or succeeded T. gondii 
infections, whereas the production  of F. hepatica-
specific Th2- like cytokines and recruitment  of 
AAMp were suppressed by T. gondii infection. 
Similarly, neutrophil-activating protein from 
Helicobacter pylori downmodulated the Th2-like 
response to Trichinella spiralis infection.[96]    The 

effects of helminths on infections with other 
pathogens are complex and dependent on many 
factors such as the helminth species, coinfecting 
pathogen, protective and pathological immune 
mechanisms of the host. 
 
HELMINTHS AND VACCINATION 

Several studies have shown that  helminths  

can influence vaccine efficacy by modulating  host 
immune  response, in particular when Th1-like and 
cellular-dependent responses are required. 
Schistosoma sp. and Onchocerca volvulus infections 

decrease the efficacy of vaccine against 
tuberculosis or tetanus,[92] and  Ascaris suum  alters 

the efficacy of vaccine against Mycoplasma 
hyopneumoniae.[97] In mice, Heligmosomoides 
polygyrus was able to downregulate the strong 
immunity against Plasmodium chabaudi induced by 

blood stage antigens.[98] Effects of helminth 
infections on vaccine efficacy must be taken into 
account when using vaccines and also when 
developing new vaccines, in particular by choosing 
adapted  adjuvants  which  are  able to  
counterbalance  the immunomodulatory activities of 
the helminths. 
 
HELMINTHS AND ALLERGIC AND 
AUTOIMMUNE DISEASES 

For several years, epidemiologic observations 
have shown that the prevalence of helminths  
infection is decreasing in westernized countries  
whereas the  prevalence of diseases due to immune 
or inflammatory disorders such as allergic or  
autoimmune  diseases is increasing. Epidemiologic 
and  experimental data  prove that  chronic  infection  
with helminths is protective against allergy. Humans 
infected with worms rarely develop allergic 
reactions.[50] Treatment  against gastrointestinal  
nematodes increases cutaneous reactivity against 
house dust mites.[99] These results are paradoxical 
because allergy  is  linked to mastocyte 
degranulation  by IgE; the  production  of which is  
stimulated  by  helminths.  In  fact,  worms  induce  
the production of large quantities of anti-
inflammatory cytokines (IL-10, TGFβ) by the 
regulatory T cells which then inhibit allergic 
inflammation. 

In the same way, helminths can protect the 
host against autoimmune disease or at least decrease 
the gravity of symptoms induced by autoimmune 
inflammation. For example, S. mansoni infection  
inhibits  the  development  of type 1 diabetes in 
mice[100] or of experimental autoimmune 
encephalomyelitis in mice.[101] Helminth-specific 
Treg cells and their anti-inflammatory cytokines (IL-
10, TGFβ) seem to  be  largely implicated  in  the  
inflammatory  disorders associated with allergic 
diseases. Several studies are currently underway to 
investigate the possibility of treating allergic and 
inflammatory diseases with immunomodulatory  
molecules from helminths, with special focus on the 
molecules involved and  the  ways in  which  
helminths  manipulate  the  host response,  
particularly  how  they  activate and  induce  the 
expansion of Treg cells.[4] 
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Figure 1: TH2-cell functions during tissue-dwelling parasites 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 2: Protective TH2-type response during intestinal nematode 

 
 

IMMUNOMODULATORY MOLECULES OF 
HELMINTHS AS NEW ANTI-INFLAMATORY 
THERAPY 

The starting point for considering parasitic 
helminths as a therapeutic option in  inflammatory 
bowel disease is the modulation of the Th1–Th2 
cytokine balance. 

Immunomodulatory  function of helminths 
and their products could be used as anti-
inflammatory drugs. Trichuris suis has been tested 
recently to treat patients with inflammatory bowel 
disease and  Crohn’s  disease with success.[102, 103] 
An excretory-secretory protein of 
Acanthocheilonema vitae, E-S62, has been well 
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studied for its anti-inflammatory property. ES62 
significantly decreases the severity of collagen- 
induced  arthritis  in  mice[102]  and  of cutaneous  
hypersensitivity dependant  on  mast  cells.[103] 

However, these immunomodulatory  molecules 
could have side effects by increasing the risk of 
infections. Furthermore,  they could be responsible 
for allergic reactions because they could be 
allergens or  they could cross react with allergens 
derived from pollen or another source.[104] The 
‘therapeutic helminth’ must be as innocuous as 
possible, and this precludes the use of many species 
such as filarial worms, schistosomes and auto-
infective species. Weinstock and colleagues see 
significant anticolitic benefit with the nematode T. 
suis [105] and the intestinal cestodes (i.e. 
hymenolepids) are interesting candidates as 
therapeutic helminthes.[106, 107] 

 
SUMMARY 

Helminth species have coevolved with their 
host for a long time. This has led to  a strict 
adaptation which enables them to settle and persist 
in the host. The hygiene hypothesis suggests an 
inverse relationship between parasitic infections and 
the incidence of IBD. Epidemiological, 
experimental, and clinical data sustain the idea that 
helminths could provide protection against IBD. The 
importance of regulatory pathways such as 
regulatory T-cells, by which helminths induce such 
protection have been described. Helminths are 
strong immunomodulators able to interfere with 
immune and  inflammatory mechanisms induced  by 
themselves and  by  coinfecting  pathogens,  
inflammatory disorders, or vaccine. 
Immunomodulatory  products  from helminths are 
probably the anti-inflammatory molecules of the 
future. Helminths influence innate as well as 
adaptive immune responses and this knowledge can 
contribute to new therapeutic approaches of 
helminth-induced protection. Therapy with living 
helminths appears to be effective in several 
immunological diseases. A logical next step, to 
avoid the possible disadvantages of a treatment with 
living parasites, is the identification and 
characterization of helminth derived 
immunosuppressive molecules that contribute to the 
protective effect infection.  
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