The Behavior of 1,7,7 - Trimethyl Bicyclo [2.2.1] Heptane -2,3- Dione And 3-(2-Phenylhydrazono) -1,7,7Trimethyl Bicyclo [2.2.1] Heptane -2- one Toward Organophosphorus Reagents.

Hoda Anwar Abdel-Malek
Department of Organometallic and Organometalliod Chemistry, National Research Centre, Giza, 12622, Egypt hodanwar@yahoo.com

Abstract

Phosphate product of type $\mathbf{9}$ are produced upon reacting phenylhydrazone 2 with trialkylphosphites 4a-c. Also, reaction of phenylhydrazone 2 with Lawesson's reagent (LR, 5) gave adducts 10 and 11. Structural elucidation for the new products was based upon compatible analytical and spectral data. [Hoda Anwar Abdel - Malek. The Behavior of 1,7,7 - Trimethyl Bicyclo [2.2.1] Heptane -2,3- Dione And 3-(2-Phenylhydrazono) -1,7,7- Trimethyl Bicyclo [2.2.1] Heptane -2- one Toward Organophosphorus Reagents] Journal of American Science 2011; 7(12):864-869]. (ISSN: 1545-1003). http://www.americanscience.org.

Kew Words: Heptanedione, phenylhydrazone heptanone, tris(dialkylamino) phosphines, trialkyl phosphites and Lawesson's Reagent.

1. Introduction

Heptanone derivatives $\mathbf{1}$ and 2 (camphorquinones) are reported to possess a variety of pharmacological importance such as dentin bonding agents [1], dental cements [2], and in root canal filling materials [3]. This together with our interest in organophosphorus chemistry [4-12] enhanced the synthesis of new phosphorus compounds. The present investigation has aimed to study the reaction of 1,7,7 -trimethyl- bicyclo [2.2.1] hephane $-2,3-$ dione (1) with tris (dialkylamino) phosphines (3a,b) and 3- (phenyl hydrazone) -1,7,7trimethyl bicyclo [2. 2.1] heptane-2-one (2) with trialkyl phosphite (4a-c) and 1,3,2,4dithiadiphosphetane - 2 , 4 - disulfide (LR) (5) (Scheme 1).

2. Experimental

Melting points were determined in open glass capillaries using an Electrothermal IA 9000 series digital melting point apparatus (Electrothermal, Essex, UK) and were uncorrected. The IR spectra were measured in KBr pellets with a Perkin-Elmer Infracord Spectrophotometer model 157(Grating). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded in $\mathrm{CDC1}_{3}$ as solvent on a Joel- 500 MHz spectrometer, and the chemical shifts were recorded in δ values relative to TMS. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (125 MHz) spectra were taken with a Varian CFT-20 (vs. external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ standard). The mass spectra were performed at 70 eV on a Shimadzu GCS-OP 1000 Ex spectrometer provided with a data system. Elemental analyses were performed using an Elmenter Varu EL Germany Instrument.

Reaction of tris(dimethylamino)phosphine (3a) with $1,7,7$ - trimethyl-bicyclo [2.2.1] hephane -2,3-

dione (1)

An excess of amino phosphine $\mathbf{3 a}(\approx 3 \mathrm{ml})$ was added to $1(0.16 \mathrm{~g}, \mathrm{mmol})$ and was heated for 5 h . The reaction mixture was evaporated under reduced pressure and the residue was chromatographed on a silica gel column to give product 6a 4,7,7 trimethyl -3- (tris (dimethylamino) phosphoniooxy) bicyclo [2.2.1] hept-2-en-olate, using methanol / chloroform as an eluent ($5 / 95, \mathrm{v} / \mathrm{v}$), product 6 a was separated as colorless crystals, yield 73% and m.p. $221-222^{\circ} \mathrm{C}$ (methanol / chloroform). IR [$\mathrm{v}, \mathrm{cm}^{-1}, \mathrm{KBr}$]. 1590 $(\mathrm{C}=\mathrm{C}), 1490$ (enolate, carbonyl), 1310 and 870 [P-N $\left(\mathrm{CH}_{3}\right)_{2}$], ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.99$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 6 \mathrm{H} 2 \mathrm{CH}_{3}\right), 1.25-1.43(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 1.62-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33(\mathrm{~m}, \mathrm{H}, \mathrm{CH})$, $2.65\left(\mathrm{~d}, 18 \mathrm{H}, 6 \mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{HP}}=10.50 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 18.32\left(\mathrm{CH}_{3}\right), 19.91\left(2 \mathrm{CH}_{3}\right)$, 26.95, $29.96\left(2 \mathrm{CH}_{2}\right), 39.75(\mathrm{CH}), 46.03\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $49.25\left(\underline{\mathrm{C}}-\mathrm{CH}_{3}\right), 37.83\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right), 101.01(\mathrm{C}=\underline{\mathrm{C}}-\mathrm{O})\right.$, 189.03 (C=C-O-P). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (δ, ppm, CDCL_{3}) : +38.73 . MS m/z (\%) $329\left[\mathrm{M}^{+}\right](50)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}(329.22): \mathrm{C}, 58.34 ; \mathrm{H}, 9.79$; N , 12.76 ; P, 9.40 . Found : C, 58.53 ; H, 9.43 ; N, 12.42 ; P, 9.82.

Similarly, 1,7,7 - trimethyl - bicyclo [2.2.1] heptane - 2,3 - dione (1) react with tris(diethylamino)phosphine (3b) to give 6b 4,7,7trimethyl -3- tris (diethylamino)phosphoniooxy bicyclo [2.2.1] hept -2-en-2-olate ($6 \mathbf{b}, \mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$).

Eleuent : methanol / chloroform (5/95, v/v). product $\mathbf{6 b}$ was separated as colorless crystals yield 67% and m.p 234-235 ${ }^{\circ} \mathrm{C}$ (methanol / chloroform) . IR [$\left.\mathrm{v}, \mathrm{cm}^{-1}, \mathrm{KBr}\right]$: $1585(\mathrm{C}=\mathrm{C}$), 1489 (enolate , carbonyl) 1312 and $875\left(\mathrm{P}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500) MHz, $\delta \mathrm{ppm}, \mathrm{CDCl}_{3}$) : $0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.25-1.43\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.62-$
$1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 0.95,1.35(2 \mathrm{t}$, $\left.18 \mathrm{H}, \quad \mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]_{3}\right), \quad 2.85, \quad 3.25 \quad(\mathrm{~m}, \quad 12 \mathrm{H}$, $\left.\mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right]_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) $413 \quad\left[\mathrm{M}^{+}\right]$(90), corresponding to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ (413.58) : C, 63.89 ; H, 10.72 ; N, 10.16 ; P, 7.49.
Found : C, 63.52, H, 11.11 ; N, 10.49, P, 7.23.
Reaction of trimethyl phosphite 4a with 3-(2-phenylhydrazono) - 1,7,7 - trimethyl bicylo[2.2.1] heptane -2-one (2)

Trimethyl phosphite (4a) ($0.12 \mathrm{~g}, 1 \mathrm{~m}$ mol) was added drop wise to a solution of compound $2(0.25 \mathrm{~g}$, 1 m mole $)$ in dry toluene (30 mL), and the reaction mixtur was refluxed for 5 h . after evaporation the volatile material under reduced pressure, the residue was applied to a silica gel column chromatography to give product 9a dimethyl 1,7,7 - trimethyl -3-(2-phenylhydrazinyl)bicyclo [2.2.1] hept -2-en-ylphosphate (9a, $\left.\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}\right)$.

Eluent: Petroleum ether / ethyl acetate ($95 / 5, \mathrm{v} / \mathrm{v}$), 9a was separated as colorless crystals yield 65%. and m.p $153-154{ }^{\circ} \mathrm{C}$. IR [$\left.\mathrm{v}, \mathrm{cm}^{-1}, \mathrm{KBr}\right]$: $3328(\mathrm{NH}) 3275(\mathrm{NH}), 1603(\mathrm{C}=\mathrm{C})$ and $1260(\mathrm{P}=\mathrm{O})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.98(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.11\left(\mathrm{~s}, 6 \mathrm{H}_{3}, 2 \mathrm{CH}_{3}\right), 1.22-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.51-1.63 (m, 2H, CH2), $2.53(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 3.83(\mathrm{~d}$, $\left.6 \mathrm{H}^{3} \mathrm{~J}_{\mathrm{HP}}=11.50 \mathrm{~Hz},(\mathrm{O}) \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right), 7.13-7.38(\mathrm{~m}$, 5 H , aromatic) and $11.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 17.43$ $\left(\mathrm{CH}_{3}\right), 20.52\left(2 \mathrm{CH}_{3}\right), 22.16,30.15(2 \mathrm{CH}), 39.90(\mathrm{CH})$, $46.75 \quad\left(\underline{\mathrm{C}}-\left(\mathrm{CH}_{3}\right)_{2}\right)$, $49.80 \quad\left(\underline{\mathrm{C}}-\mathrm{CH}_{3}\right)$, $53.70 \quad(\mathrm{~d}$, $\left.{ }^{2} \mathrm{~J}_{\mathrm{cp}}=29.30, \quad \mathrm{O}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right), \quad 121.51 \quad(\mathrm{C}=\underline{\mathrm{C}}-\mathrm{NH})$, $160.52(\mathrm{C}=\underline{\mathrm{C}}-\mathrm{O}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right):+1.85$. MS m/z (\%) $366\left[\mathrm{M}^{+}\right]$(75). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}(366.17): \mathrm{C}, 59.01 ; \mathrm{H}, 7.43 ; \mathrm{N}, 7.65$; P, 8.45. Found: C, 59.42; H, 7.71 ; N, 7.29 ; P, 8.83.

Reaction of triethyl phosphite (4b) with 3-(2-phenyl hydrazono) 1,7,7 - trimethyl bicyclo [2.2.1] heptane -2-one(2)

The same method described for 9 a to give adduct 9b diethyl 1,7,7 - trimethyl -3-(2-phenyl hydrazinyl) bicyclo [2.2.1] hept -2-en-2-yl phosphate (9b, $\left.\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}\right)$. Eluent: petroleum ether / ethyl acetate ($95 / 5, \mathrm{v} / \mathrm{v}$). product 9 b was separated as colorless crystals yield 70% and $\mathrm{mp} 168-169^{\circ} \mathrm{C}$.

IR [v, $\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right]$; $3327(\mathrm{NH}), 3270(\mathrm{NH})$, $1601(\mathrm{C}=\mathrm{C})$ and $1250(\mathrm{P}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, \delta$ ppm, $\left.\mathrm{CDCl}_{3}\right): 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 1.25-1.42 (m, 2H CH 2), 1.52-164 (m, 2H, CH ${ }_{2}$), 2.55 $(\mathrm{m}, \mathrm{H}, \mathrm{CH}), 1.38\left(\mathrm{t}, 6 \mathrm{H},(\mathrm{O}) \mathrm{P}\left(\mathrm{OCH}_{2}-\mathrm{CH}_{3}\right)_{2}\right), 3.91(\mathrm{~m}$, $\left.4 \mathrm{H},(\mathrm{O}) \mathrm{P}\left(\mathrm{OCH}_{2}-\mathrm{CH}_{3}\right)_{2}\right), 7.25-7.41(\mathrm{~m}, 5 \mathrm{H}$, aromatic) and $11.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS m/z (\%) $394\left[\mathrm{M}^{+}\right]$(55). Anal. Calcd. for
$\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}(394.20): \mathrm{C}, 60.90 ; \mathrm{H}, 7.92 ; \mathrm{N}, 7.10$; P, 7.58. Found : C,60.53; H. 8.21 ; N, 7.33 ; P, 7.93. Similarly, 3-(2-phenyl hydrazono) -1,7,7trimethyl bicyclo [2.2.1] heptane - 2 - one (2) reacted with triisopropylphosphite (4c) to give 9c diisopropyl 1,7,7 - trimethyl -3- (2- phenyl hydrazinyl) bicyclo [2.2.1] hept-2-en-ylphosphate ($\mathbf{9 c}, \mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$). Eluent : petroleum ether / ethyl acetate ($95 / 5, \mathrm{v} / \mathrm{v}$). Product 9c was separated as colorless crystals yield 63% and m.p $175-176^{\circ} \mathrm{C}$. IR [$\left.\mathrm{v}, \mathrm{cm}^{-1}, \mathrm{KBr}\right] ; 3325$ $(\mathrm{NH}), 3269(\mathrm{NH}), 1600(\mathrm{C}=\mathrm{C})$ and $1255(\mathrm{P}=\mathrm{O})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.99(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.22-1.40\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{CH}_{2}\right)$, $1.55-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 1.23[\mathrm{~m}$, $\left.12 \mathrm{H}(\mathrm{O}) \mathrm{P}\left(\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right], 4.34-4.73[2 \mathrm{~m}, 2 \mathrm{H}$, $\left.(\mathrm{O}) \mathrm{P}\left(\mathrm{O}-\mathrm{CH} \quad\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right], \quad 7.25-7.42(\mathrm{~m}, 5 \mathrm{H}$, aromatics) and $11.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS m/z (\%) 422 [$\left.\mathrm{M}^{+}\right]$(40). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{P}(422.50): \mathrm{C}, 62.54 ; \mathrm{H}, 8.35$; N, 6.63 ; P , 7.33. Found : C, 62.32 ; H, 8.41 ; N, 6.52 ; P, 7.55.

Reaction of Lawesson's reagent (5) with 3-(2-phenyl hydrazono) 1-,7,7 - trimethyl bicyclo [2.2.1] heptane -2-one(2)

A mixture of $5(0.4 \mathrm{~g}, 1 \mathrm{~m} \mathrm{~mol})$. and $\mathbf{2}(0.25 \mathrm{~g}, 1$ $\mathrm{m} \mathrm{mol})$ in dry toluene $(40 \mathrm{~mL})$. The reaction mixture was refluxed for 15 h . The reaction mixture was evaporated under reduced pressure and the residue was applied to a silica gel column chromatography, using petroleum ether/ethyl acetate as eluent to give products $\mathbf{1 0}$ and 11, respectively. The product 10 1,7,7-trimethyl - 3 - (2- phenylhydrazono) bicyclo [2.2.1] heptane -2- thione ($\mathbf{1 0}, \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$). Eluent : petroleum ether/ethylat ($98 / 2, \mathrm{v} / \mathrm{v}$). It was separated as yellow crystals yield 35% and m.p $75-76^{\circ} \mathrm{C}$. IR [$\left.v, \mathrm{~cm}^{-1}, \mathrm{KBr}\right] ; 3227(\mathrm{NH}), 1175(\mathrm{C}=\mathrm{S}){ }^{1} \mathrm{HNMR}$ $\left(500 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.25-1.43\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{CH}_{2}\right), 1.55-1.65$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.56(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 7.28-7.47(\mathrm{~m}, 5 \mathrm{H}$, aromatics) and 11.66 (s, H, NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 $\left.\mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right) .18 .55\left(\mathrm{CH}_{3}\right), 20.22(2 \mathrm{CH} 3)$, $27.11,31.33\left(2 \mathrm{CH}_{2}\right), 47.50\left(\mathrm{C}-\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}, 49.88-$ $\left(\mathrm{C}-\mathrm{CH}_{3}\right), 34.99(\mathrm{CH})$ and $240.33(\mathrm{C}=\mathrm{S}) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)$ $272[\mathrm{M}+]$ (100). Anal. Cald for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$ (272.41) : C, $70.55 ; \mathrm{H}, 7.40 ; \mathrm{N}, 10.28 ; \mathrm{S}, 11.77$ found: C, 70.75 ; H, 7.82 ; N, 10.59 ; S, 11.65.

2'- (4-methoxyphenyl) - $4,7,7$-Trimethyl -3(phenylamino) 3H - spiro [bicyclo [2.2.1] heptane - 2, $4^{\prime}-[1,3,2]$ thiazaphosphetidine $]-3^{3}$ - thione ($\mathbf{1 1}$, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OPS}_{3}$).

Eluent : petroleum ether / ethylacetate (95/5, v / v). Product 11 was separated as colorless crystals, yield 55% and m.p. $138-139^{\circ} \mathrm{C}$. IR (v , $\mathrm{cm}^{-1}, \mathrm{KBr}$): 3210 (NH), 1175 (C=S) . ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , δ ppm, $\left.\mathrm{CDCl}_{3}\right): 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ctl}_{3}\right), 1.15(\mathrm{~s}, 6 \mathrm{H}$,
$\left.2 \mathrm{CH}_{3}\right), 1.25-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.65(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66(\mathrm{~m}, \mathrm{H}, \mathrm{CH}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ $7.15-7.95(\mathrm{~m}, 9 \mathrm{H}$, aromatics $), 11.55(\mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MH}_{\mathrm{z}}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 18.56\left(\mathrm{CH}_{3}\right)$, $20.24\left(2 \mathrm{CH}_{3}\right), 27.31,31.35\left(2 \mathrm{CH}_{2}\right), 47.55(\underline{\mathrm{C}}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 49.88\left(\underline{\mathrm{C}}-\mathrm{CH}_{3}\right), 55.80\left(\underline{\mathrm{C}}-\mathrm{OCH}_{3}\right)$, $160.61(\mathrm{C}=\underline{\mathrm{C}}-\mathrm{O})$ and $243.21(\mathrm{C}=\mathrm{S}) .{ }^{\frac{3}{31}} \mathrm{P}-\mathrm{NMR}(\delta$ ppm, CDCL_{3}) : + 89.99 . MS m/z (\%) 474 (55). Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OPS}_{3}(474.10)$: C , 58.20 , $\mathrm{H}, 5.73, \mathrm{~N}, 5.90$; P , 6.53 , $\mathrm{S}, 20.27$. Found : C, 58.53 , H , 5.93 ; N, 5.49 , P , 6.71, S,20. 35.

3. Results and Discussion

When heptanedione $\mathbf{1}$ is allowed to react with tris (dimethylamino) phosphine (3a) [8] without solvent was heated 5 h to gave the open dipolar adduct 4,7,7 trimethyl -3- (tris (dimethylamino) phosphoniooxy) bicyclo [2.2.1] hept -2-en-2-olate (6a). Compound 6a are chromatographically pure and posses sharp melting point. The structur of compound 6a was identified for the following reasons : Elemental and mass spectral analyses for compound 6a corresponded to empirical formula of $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$. The IR of $\mathbf{6 a}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ exhibited strong absorption bands at $1310,870 \mathrm{~cm}^{-1}$ $\mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}[13]$ and absence of band at $1700(\mathrm{C}=\mathrm{O}$ camphor). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (in CDCl_{3}) of the adduct showed doublet centered at $\delta=2.65 \mathrm{ppm}\left(\mathrm{J}_{\mathrm{HP}}\right.$ $=10.50 \mathrm{H}_{\mathrm{Z}}$) due to 18 H of the dimethylamino group attached to the phosphorus atom of the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$ moiety [14]. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of $\mathbf{6 a}$ exhibited signal at $\delta=+38.73 \mathrm{ppm}\left(85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$. The formation of the open dipolar ion $\mathbf{6 a}$ might arise [15] by the nucleophilic attack of the phosphorus of 3a on the carbonyl carbon in heptanequinone 1. Our results rule out the possibility of the formation of compounds having the cyclic structure 7 since the latter would predict a negative value for the signal of ${ }^{31} \mathrm{P}-\mathrm{NMR}$ corresponding to the structure 7 (Scheme 2).

Similarly, the reaction of $\mathbf{1}$ with tris(diethylamino)phosphine (3b) proceeded without solvent to give chromatographically pure adduct $\mathbf{6 b}$. Structure elucidation for compound $\mathbf{6 b}$ was attested by analytical and spectral data (cf. Experimental).

Next, the study was extended to include the behavior of 3-(2-phenylhydrazono) -1,7,7- trimelhyl bicyclo [2.2.1] heptane-2- one (2) toward trimethyl phosphite (3a) [16] in dry toluene proceeded at the reflux temperature to give a chromatographically pure $1: 1$ adduct formulated as dimethyl-1,7,7-trimethyl-3-(2-phenylhydrazinyl) bicyclo [2.2.1] hept -2-en-2-ylphosphate (9a) (Scheme 3), was deduced from its elemental analysis, IR ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}-\mathrm{NMR}$, and mass spectral data (cf.

Experimental). Similarly 4b and 4c reacted with $\mathbf{2}$ to give dialkyl phosptate 9b and 9c respectively, in good yields (scheme 3). Structure assignments for $\mathbf{9 b}$ and 9c were substantiated on the basis of their elemental analysis and spectral data. (cf. Experimental)

A possible explanation for the course of the reaction of trialkylphosphites 3a-c with 2 was shown in Scheme 3. The reaction was assigned to proceed through an initial attack of the phosphorous reagents 3a-c at the most reactive center in 2 and led to the formation of the dipolar adduct 8 . The reaction was accompanied with rapid hydrolysis by the presence of unavoidable moisture and elimination of one molecule of alcohol under the applied reaction conditions to afford the dialkyl phosphate products (9a-c) (Scheme 3).

Furthermore, this study was extended to include the reaction of Lawessen's reagent $5[7,11]$ with 2 . It was found that, when one mole of 2 was allowed to react with one equivalent of 5 in refluxing toluene for 15 h . A mixture of $\mathbf{1 0}$ and $\mathbf{1 1}$ were obtained. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ are chromatographically pure and possess sharp melting points. Compound 10 (yield 35%) was formulated as $1,7,7$ trimethyl -3-(2-phenylhydrazono) bicyclo [2.2.1] heptane -2-thione based upon analytical and spectroscopic arguments (cf. Experimental). The second product 11 (yield 55%) was formulated as the thiated cyclic 2'-(4-methoxyphenyl) - 4,7,7 - trimethyl -3'-(phenylamino)- 3 H - spiro [bicyclo [2.2.1] heptane -$2,4-[1,3,2]$ thiazaphosphetidine] -3^{3} - thione, for the following reasons: Elemental and mass spectral analyses for compound $\mathbf{1 1}$ corresponded to an empirical formula of $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OPS}_{3}$. The structure assigned for compound to $\mathbf{1 1}$ was based on the ${ }^{31} \mathrm{P}$-NMR shift at $\delta=+89.99 \mathrm{ppm}\left(85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$, which corresponded to a cyclic structure [7, 17]. The IR spectrum of $\mathbf{1 1}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ showed absence of bands at $1700 \mathrm{~cm}^{-1} \quad(\mathrm{C}=\mathrm{O})$ and at $1648 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$ of phenylhydrazone heptanone of compound 2 . The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ revealed the presence of signals at $7.15-7.95 \mathrm{ppm}(\mathrm{m}, 9 \mathrm{H})$ corresponding to the aromatic protons and at 3.85 ppm (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$). The ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ revealed absence of a signal of carbonyl group of the starting material 2 at $204.83(\mathrm{C}=\mathrm{O})$ and appear signal at $243.21(\mathrm{C}=\mathrm{S})$. The mass spectrum of $\mathbf{1 1}$ contained a prominent peak of M^{+}at $\mathrm{m} / \mathrm{z} 474$ (85\%) which supported the thiated, cyclic structure 11. compound 11 was formed via the thiation by usual manner and the addition of LR 5 to the carbonyl group ($\mathrm{C}=\mathrm{O}$) and $(\mathrm{C}=\mathrm{N})$ group of hydrazone of the starting material 2 (Scheme 4).

1

2

$$
\begin{aligned}
3 \mathrm{a}, \mathrm{R} & =\mathrm{CH}_{3} \\
\mathrm{~b}, \mathrm{R} & =\mathrm{C}_{2} \mathrm{H}_{5}
\end{aligned}
$$

$4 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}$
b, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ $\mathrm{c}, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

5

Scheme 1

1

$3 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}$ b, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$

7

Scheme 2

$9 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{3}$
b, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ c, $\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Scheme 3

10

Scheme 4

Conclusion

From the present study, it was shown that 1,7,7 - trimethyl bicyclo [2.2.1] heptane- 2,3- dione (1) reacted with tris (dialkylamino) phosphines $\mathbf{3 a , b}$ gave the dipolar adducts $\mathbf{6 a}, \mathbf{b}$. On the other hand 3-(2-phenylhydrazonon) - 1,7,7-trimethyl bicyclo [2.2.1] - heptane -2-one(2) reacted with trialkylphospite 4a-c gave phosphate 9a-c. Also, 2 reacted with LR 5 to give thiated product $\mathbf{1 0}$ and led to new thiated cyclic adduct 11. The different adducts whose structures vary according to the nature of the phosphorus reagents as well as on the stability of the addition products.

Corresponding author

Hoda Anwar Abdel - Malek

Department of Organometallic and Organometalliod chemistry
National Research centre, Giza, 12622, Egypt
E-mail: hodanwar@yahoo.com

Reference

1. Kato, G. and Nakabayashi, N., (1996).Effect of phosphric acid concentration on wet-bonding to etched dentin, Dent. Mater. Mater. J. 12 (4) , 250-255
2. NiRaido, T., Podszun, W., Muller, M. and Nakabayashi, (1990): Effect of sulfonamides and 4 - MET on adhesion to tooth substrates. Dent. Mater. J. 6 (2) . $78-82$.
3. Potts, T.V. and Petrou, A. (1991): Argon Laser Initiated resin Photo polymerization for the filling of root teeth. Lasers surg. Med. 11(3), 257 - 262
4. Maigali , S.S. , Abdel-Malek, H.A and Soliman , F.M. (2010): Reaction of camphorquinone derivatives with active phosphacumulenes and stabilised phosphonium ylides .Egypt . J. chem. 53 (2), 315-327
5. Abdel-Malek, H.A. (2003): The behavior of Lawesson's reagent and dialkylaminophosphines towards dicyanomethylene. Heterocycl. Commun. 9, 457 - 464 .
6. Boulos L.S. and Abdel - Malek, H.A. (2005): The behavior of trisdialkylamino phosphines and alkyl phosphites towards 5, 6 - diphenyl-4cyano - pyridazine - 3-thione. Indian. J. Heterocycl. Chem., 4, 245-248.
7. Boulos, L.S. and Abdel- Malek, H.A. (1999): Action of Lawesson's reagent on substituted 2 amino - 1.4-naphthoquinones: Novel synthesis of benzodiphenonquinone bis-1,3,2
thiazaphospholine $-2-$ sulfide derivativatives. Heteroat. Chem.10, 488-491.
8. El- Kateb, A.A., Boulos, L.S. and Abdel - Malek, H.A. (1993): Reaction of 1-(diphenylmethylene) -2- $(1 \mathrm{H})$ and 4 -(diphenylmethylene) - $1(4 \mathrm{H})$ napthalenones with tris (dialkylamino)phosphines and ethyldiphenylphosphinite. Phosphorus, Sulfur and Silicon, 83, 105-110.
9. El- Kateb, A.A., Hennawy, I.T., Shabana, R. and Abdel - Malek, H.A. (1991): Reaction of 1-(diphenylmethylene)- 2- (1H) - and 4(diphenylmethylene) -1 (4H)- naphthalenones with thiol phosphoric acids, Lawesson's reagent and phosphorus pentasulphide. Phosphorus, Sulfur and Silicon 63, 13-17.
10. Boulos, L.S., Abdel - Malek, H.A. El- Sayed, N.F. and Moharam, M.E. (2011): Reactions of 1.1 (azodicarbonyl) dipiperidine with organophosphorus reagents. Phosphorus, Sulfur, Silicon Relat. Elem. Accepted.
11. Abdel-Malek , H.A. (2011): Reaction of 2- thioxo - 4- thiazalidinones toward Lawesson's reagent, phosphorus pentasulfide, dialkyl amino phosphines and phosphorus ylides, Phosphorus, Sulfur, Silicon Relat. Elem. Accepted.
12. Boulos, L.S., Abdel- Malek, H. A. El-Sayed, N.F. and Moharam, M.E. (2011): Scope and limitation of reaction of 3-amino derivatives of pentane - 2, 4 - diones with organphosphorus reagents. Phosphorus, Sulfur, Silicon, Relat. Elem. Accepted.
13. Colthup, N.B; Daly, L.H and wiberly, S.E. (1964): Introduction to Infrared and Raman Spectroscopy Academic press, New York and London, 304.
14. Silversteion, R.M., Bessler, G.C. and Morril, T.C. (1981): Spectroscopy Identification Of organic Compounds. Wiely. New York.
15. Zayed, M.F., El - Khoshnieih Y. O. and Boulos, L. S. (1991): The behavior of phenanthrequinone derivatives towards acyclic aminophosphines. Phosporus, Sulfur and Silicon 62, 251-256.
16. Sidky, M.M., El- Kateb, A. A. and Hennawy. , I.T. (1981): Reaction of alkyl phosphites with 1(diphenylmelylene). 2(1H) - , and 4(diphenylmethylene) -1- (4H) - naphthlbaleones. Phosphorus and Sulfur, 10,343.
17. Newallis , P.E. (1967): In Topic in Phosphorus Chemistry, Mark Dungan , V.C.H., Crutchfield, M.M. and Van Wazer, J.R., Eds Interscience Publishers: New York, 5, 374.
$12 / 12 / 2011$
