Some Properties of Doubt Fuzzy Sub-Commutative Ideals of BCI-Algebras

Samy M. Mostafa, Ragab A.K. Omar and Ahmed I. Marie

Department of Mathematic, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt samymostafa@yahoo.com; ahmedibrahim500@yahoo.com

Abstract: In this paper, we introduce the notion of doubt fuzzy sub-commutative ideal of BCI-algebras, and study some of their properties. We show that a fuzzy subset of BCI-algebra is a fuzzy sub - commutative ideal if and only if the complement of this fuzzy subset is a doubt fuzzy sub-commutative ideal, and any doubt fuzzy ideal of commutative BCI-algebra is doubt fuzzy sub-commutative ideal. We investigate how to deal with the homomorphic image (pre-image) of doubt fuzzy sub-commutative ideal of BCI-algebra. Moreover, we introduce the notion of Cartesian product of doubt fuzzy sub-commutative ideals and then we study some related properties.

[Samy M. Mostafa, Ragab A.K. Omar and Ahmed I. Marie **Some Properties of Doubt Fuzzy Sub-Commutative Ideals of BCI-Algebras**] Journal of American Science 2011;7(11):283-291]. (ISSN: 1545-1003). <u>http://www.americanscience.org</u>.

Keywords: ideal of BCI-algebras - doubt fuzzy sub-commutative ideal - homomorphic image (pre-image) of sub-commutative ideal - Cartesian product of doubt fuzzy sub-commutative ideal.

2000 Mathematics Subject Classification: 03G25, 06F35, 03E72.

1. Introduction

The concept of a fuzzy set was introduced by Zadeh [14] and was used afterwards by many other outhers in various branches of mathematics. Isaki and Tanaka [4] introduced two classes of abstract algebras BCI-algebras and BCK-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI- algebra. Xi [13] applied the concept of fuzzy set to BCI-algebras and gave some properties of it. After that several researchers investigated further properties of fuzzy BCI-algebras and fuzzy ideal [see {[1], [2], [9], [11], [12]}]. Jun [6] gave some properties of a fuzzy commutative ideals in BCK-algebra .Liu and Meng [8] introduced the notion of sub-implicative ideal and sub-commutative ideal in BCI - algebra and investigated the properties of this ideals. Jun [7] defined a doubt fuzzy subalgebra, doubt fuzzy ideal, doubt fuzzy implicative ideal, and doubt fuzzy prime ideal in BCI- algebras, and got some results about it. Modifying this idea, in this paper, we introduce the concept of doubt fuzzy sub-commutative ideal of BCI-algebra and investigate some related properties. We show that in commutative BCI-algebra a fuzzy subset is an doubt fuzzy ideal if and only if it is doubt fuzzy sub-commutative ideal, and a fuzzy subset of a BCI-algebra is a fuzzy sub-commutative ideal if and only if the complement of this fuzzy subset is an doubt fuzzy sub-commutative ideal. Moreover, we discuss the homomorphic pre-image (image) of doubt fuzzy sub-commutative ideal. Finally, we introduce the notion of Cartesian product of doubt fuzzy sub-commutative ideal and then we characterize doubt fuzzy sub-commutative ideal by

it.

2. Preliminaries

Definition 2.1. ([4])

An algebra (X; *, 0) of type (2,0) is called a BCI-algebra if

it satisfies the following axioms:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

(III) x * x = 0,

(IV) x * y = 0 and y * x = 0 imply x = y, for all x, y, $z \in X$.

We can define a partially ordered relation \leq on X as follows:

 $x \le y$ if and only if x * y = 0.

Proposition 2.2. ([4])

A BCI-algebra X satisfies the following properties:

(1) (x * y) * z = (x * z) * y, (2) x * (x * (x * y)) = x * y, (3) ((x * z) * (y * z)) * (x * y) = 0, (4) x * 0 = x, (5) 0 * (x * y) = (0 * x) * (0 * y), (6) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

In what follows, X shall mean a BCI-algebra unless otherwise specified.

Definition 2.3. ([10])

A BCI-algebra X is said to be commutative if it

satisfies:

 $x \le y$ implies $x = y^*(y^*x)$ for all $x, y \in X$.

Definition 2.4. ([4])

A non-empty subset I of X is called an BCI-*ideal* of X if it satisfies:

(I₁) $0 \in I$, (I₂) $x * y \in I$ and $y \in I$ imply $x \in I$.

Theorem 2.5. ([10, theorem 3])

A BCI-algebra X is commutative if and only if x * (x * y) = y * (y * (x * (x * y))) for all $x, y \in X$.

Definition 2.6. ([8])

A nonempty subset I of X is called a sub-commutative ideal of X if it satisfies:

Theorem 2.7. ([8])

Let I be an ideal of X. Then I is sub-commutative if and only if $y * (y * (x * (x * y))) \in I$ implies $x * (x * y) \in I$, for all $x, y \in X$.

Theorem 2.8. ([8])

Any sub-commutative ideal is an ideal, but the converse is not true.

Definition 2.9. ([14])

Let X be a non empty set. A fuzzy set μ of X is a function $\mu: X \rightarrow [0,1]$. Let μ be a fuzzy set of

X. Then for $t \in [0, 1]$ the t-level cut of μ is the set

 $\mu_t = \{ x \in X : \mu(x) \ge t \}$, and the complement of μ , denoted by μ^c , is the fuzzy subset of X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$.

Definition 2.10. ([13])

A fuzzy set μ of a BCI-algebra X is called a fuzzy sub-algebra of X if $\mu(x * y) \ge \mu(x) \land \mu(y)$ for all x, y \in X.

Definition 2.11. ([13])

A fuzzy set μ of a BCI-algebra X is said to be a fuzzy ideal of X if it satisfies (F₁) μ (0) $\geq \mu$ (x), (F₁) μ (0) $\geq \mu$ (x),

 $(\mathbf{F}_{2}) \ \mu(\mathbf{x}) \geq \mu(\mathbf{x} * \mathbf{y}) \ \land \mu(\mathbf{y}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{X}.$

Lemma 2.12. ([11])

A fuzzy set μ of a BCI-algebra X satisfying (F₁) is a fuzzy ideal if and only if for all x, y, z \in X, (x * y)*z=0 implies $\mu(x) \ge \mu(x) \land \mu(z)$.

Definition 2.13. ([9])

A fuzzy set μ of X is called a fuzzy sub-commutative ideal (briefly, FSC-ideals) of X if it satisfies

 $(F_1) \mu(0) \ge \mu(x)$, and (F_3)

$$\begin{array}{l} \mu \left({\rm x} \, \ast \, (\, \, {\rm x}^{\ast} \, \, {\rm y}) \right) \leq \mu \left(\left({\rm y} \, \ast \, (\, \, {\rm y}^{\ast} \, (\, \, {\rm x} \, \ast \, \, {\rm y}) \right) \right) \right) \, \ast \\ {\rm z} \right) \wedge \, \mu \left({\rm z} \right) \end{array}$$

for all x, y, $z \in X$.

Theorem 2.14.

Every fuzzy ideal of a commutative BCI-algebra X is a fuzzy sub-commutative ideal of X.

Proof. Let μ be a fuzzy ideal of a commutative BCI-algebra X. Then (F_1) hold, as X is a commutative BCI-algebra, we have x * (x * y) = y * (y * (x * (x * y)))[Th. 2.4], then [(x*(x * y))*((y*(y*(x*(x * y))))*z)]* z = [(x * (x * y)) * ((x * (x * y)) * z)] * z= [(x * (x*y))*z] * [(x * (x * y)) *z] = 0by (1) and (III). By (lemma 2.12), we get * y)) μ (x (x $\geq \mu \left((\mathbf{y} \ast (\mathbf{y} \ast (\mathbf{x} \ast (\mathbf{x} \ast \mathbf{y})))) \ast \mathbf{z}) \land \mu (\mathbf{z}). \text{ This shows} \right)$ that μ is a fuzzy sub-commutative ideal of X.

Definition 2.15. ([7])

A fuzzy set μ of a BCI-algebra X is called a doubt fuzzy sub- algebra of X if

 μ (x * y) $\leq \mu$ (x) $\vee \mu$ (y) for all x, y \in X.

Definition 2.16. ([7])

A fuzzy set μ of a BCI-algebra X is called a doubt fuzzy ideal of X if it satisfies: $(DF_1) \quad \mu(0) \leq \mu(x),$

$$(DF_2)$$
 $\mu(x) \leq \mu(x^*y) \vee \mu(y)$ for all $x, y \in X$.

Proposition 2.17. ([7])

Every doubt fuzzy ideal of a BCI-algebra X is a doubt fuzzy sub-algebra of X.

Proposition 2.18.

Every doubt fuzzy ideal of a BCI-algebra X is order preserving.

Proof. Let μ be a doubt fuzzy ideal of X and $x \le y$, then x * y = 0, and for all x, $y \in X$. we have

$$\mu(\mathbf{x}) \leq \mu(\mathbf{x} \ast \mathbf{y}) \lor \mu(\mathbf{y}) = \mu(\mathbf{0}) \lor \mu(\mathbf{y}) = \mu(\mathbf{y}).$$

Definition 2.19. ([2])

Let μ be a fuzzy subset of a BCI-algebra X. Then for $t \in [0,1]$ the lower t-level cut of μ is the set $\mu^{t} = \{x \in X \mid \mu(x) \le t\}.$

Definition 2.20. ([2])

Let μ be a fuzzy subset of a BCI-algebra X. The fuzzification of μ^{t} , t $\in [0,1]$ is the fuzzy subset

 μ_{i} of X defined by

$$\mu_{\mu^{t}} = \begin{cases} \mu(x) & \text{if } x \in \mu^{t} \\ 0 & \text{other wise} \end{cases}$$

3. Doubt fuzzy sub-commutative ideals **Definition 3.1.**

A fuzzy set μ of a BCI-algebra X is called a doubt fuzzy sub-commutative ideal of X (briefly, DFSC-ideal) if it satisfies (DF₁) and (DF₃) μ (x*(x*y)) $\leq \mu$ ((y*(x*(x*y))))*z) $\vee \mu$ (z)

for all x, y, $z \in X$.

Example 3.2.

Let $\bar{X} = \{0, 1, 2, 3\}$ be a BCI-algebra with Cayley table as follows :

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Define $\mu: X \rightarrow [0,1]$ by $\mu(0) = \mu(3) = 0.3$ and $\mu(2) = \mu(1) = 0.7$. It is to check that μ is a doubt fuzzy sub-commutative ideal of X.

Proposition 3.3.

Every doubt fuzzy sub-commutative ideal of a BCI-algebra X is order preserving.

Proof.

Let μ be doubt fuzzy sub-commutative ideal of X and let x, y, $z \in X$ be such that $x \leq z$, then x * z = 0and by (DF₃) μ (x*(x*y)) $\leq \mu$ ((y*(y*(x*(x*y))))*z) $\vee \mu$ (z). Let y = x, then we have μ (x) $\leq \mu$ ((x*(x*(x*(x*x))))*z) $\vee \mu$ (z) = μ (x * z) $\vee \mu$ (z) = μ (0) $\vee \mu$ (z) = μ (z).[by(III),(2)]

Proposition 3.4.

Every doubt fuzzy sub-commutative ideal of BCI-algebra X is a doubt fuzzy ideal. **Proof.**

Let μ be a doubt fuzzy sub- commutative ideal of a BCI-algebra X for all x, y, $z \in X$, then $\mu(x*(x*y)) \leq \mu((y*(y*(x*(x*y))))*z) \lor \mu(z)$, put y = x, we get $\mu(x) \leq \mu((x*(x*(x*(x*(x*(x*y))))*z) \lor \mu(z)))$ $= \mu(x*z) \lor \mu(z)$ [by (III),(2)],

for all x, $z \in X$. Hence μ is doubt fuzzy ideal of X.

Lemma 3.5.

Every doubt fuzzy sub-commutative ideal of BCI-algebra is a doubt fuzzy sub algebra of X. **Proof.**

Let μ be a doubt fuzzy sub-commutative ideal of BCI-algebra X, then

$$\mu \quad (x \quad * \quad (x \quad * \quad y)) \\ \leq \mu \left((y * (y * (x * (x * y)))) * z) \lor \mu (z) , \quad \text{put } y = x, \\ \text{we have} \\ \mu (x) \leq \mu \left((x * (x * \ (x * \ (x * \ x)))) * z) \lor \mu (z) \right)$$

$$= \mu (x * z) \lor \mu (z), [by (III),(2)]$$

for all $x, z \in X$, which imply that

 $\mu(\mathbf{x} * \mathbf{z}) \le \mu((\mathbf{x} * \mathbf{z}) * \mathbf{z}) \lor \mu(\mathbf{z}), \text{ but} \\ (\mathbf{x} * \mathbf{z}) * \mathbf{z} \le \mathbf{x} * \mathbf{z} \le \mathbf{x}, \text{ then} \\ \mu((\mathbf{x} * \mathbf{z}) * \mathbf{z}) \le \mu(\mathbf{x}) \text{ [by proposition 3.3].}$

So μ (x * z) $\leq \mu$ (x) $\vee \mu$ (z), then μ is doubt fuzzy sub-algebra of X.

The following example shows that the converse of proposition 3.4 and lemma 3.5may not be true.

Example 3.6.

Let $X = \{0,1,2,3\}$ be a BCI-algebra with Cayley table as follows:

*	0	1	2	3	
0	0	0 0		3	
1	1	0	0	3	
2	2	2	0	3	
3	3	3	3	0	

Define a fuzzy subset $\mu : X \rightarrow [0,1]$ by

 μ (0) = 0.5 and μ (x) = 1 for all x \neq 0. Then μ is doubt fuzzy ideal(sub algebra) of X, but it is not doubt fuzzy sub-commutative ideal of X, because μ (1*(1*2))= μ (1)= 1 >

$$\mu \left((2 * (2 * (1 * (1 * 2))) * 0) \lor \mu (0) = \right)$$

 $\frac{1}{2}$

Analogous to (theorem 4.3 [9]), we have a similar result for a doubt fuzzy sub-commutative ideal which can be proved in a similar manner, we state the result

withoutproof.

Theorem 3.7.

Let μ be a doubt fuzzy ideal of X. Then the following are equivalent:

(i) μ is doubt fuzzy sub-commutative ideal of X, (ii) μ (x * (x * y)) $\leq \mu$ (y * (y * (x * (x * y)))) for all x, y \in X (iii) μ (x * (x * y)) = μ (y * (y * (x * (x * y)))) for all x, y \in X

(iv) If $x \le y$, then $\mu(x) = \mu(y \ast (y \ast x))$ for all $x, y \in X$

(v) If $x \le y$, then $\mu(x) \le \mu(y \ast (y \ast x))$ for all $x, y \in X$.

Proposition 3.8.

If X is commutative BCI-algebra, then every doubt fuzzy ideal of X is a doubt fuzzy sub-commutative ideal of X.

Proof.

Let μ be a doubt fuzzy ideal of X, then

 $\mu(\mathbf{x}) \leq \mu(\mathbf{x} * \mathbf{z}) \lor \mu(\mathbf{z}) \text{ for all } \mathbf{x}, \mathbf{z} \in \mathbf{X}.$

So μ (x * (x * y)) $\leq \mu$ ((x * (x * y)) * z) $\vee \mu$ (z), but X is a commutative BCI-algebra, then x * (x * y) = y * (y * (x * (x * y))). There for, μ (y * (y * x)) $\leq \mu$ ((y * (y * (x * (x * y)))) * z) $\vee \mu$ (z). This shows that μ is doubt fuzzy sub-commutative ideal of X. By applying proposition(3.8) and lemma(3.4), we have:

Theorem 3.9.

If X is a commutative BCI-algebra, then a fuzzy set μ of X is a doubt fuzzy ideal of X if and only if it is a doubt fuzzy sub-commutative ideal of X.

Theorem 3.10.

A fuzzy set μ of a BCI-algebra **X** is a fuzzy sub-commutative ideal of **X** if and only if its complement μ^c is a doubt fuzzy sub-commutative ideal of **X**.

Proof.

Let μ be a fuzzy sub-commutative ideal of a BCI-algebra X and let x, y, $z \in X$. Then

$$\mu^{c}(0) = 1 - \mu(0) \leq 1 - \mu(x) = \mu^{c}(x)$$

and $\mu^{c}(x*(x*y)) = 1 - \mu(x*(x*y)) \leq 1 - (\mu((y*(y*(x*(x*y))))*z) \land \mu(z)) = 1 - [(1 - \mu^{c}((y*(y*(x*(x*y))))*z)) \land (1 - \mu^{c}(z))]) = \mu^{c}((y*(y*(x*(x*y))))*z) \lor \mu^{c}(z).$
So, μ^{c} is a doubt fuzzy sub-commutative ideal of X.

Now let μ^c be a doubt fuzzy sub-commutative ideal of X, and let x, y, $z \in X$. Then

$$\mu (0) = 1 - \mu^{c} (0) \ge 1 - \mu^{c} (x) = \mu (x) \text{, and}$$

$$\mu (x^{*} (x^{*} y)) = 1 - \mu^{c} (x^{*} (x^{*} y))$$

$$\ge 1 - [(1 - \mu ((y^{*}(y^{*}(x^{*}(x^{*}y))))^{*}z)) \lor (1 - \mu (z))]$$

$$= \mu ((y^{*} (y^{*} (x^{*} (x^{*} y))))^{*}z) \land \mu (z).$$

Thus, μ is a fuzzy sub-commutative ideal of X.

Definition 3.11. ([5])

A fuzzy set μ in X is called doubt fuzzy p-ideal of X if it satisfies

 $(\mathrm{DF}_{1}) \quad \mu(0) \leq \ \mu(\mathbf{x}),$

(DF₄) μ (x) $\leq \mu$ ((x * z) *(y *z)) $\vee \mu$ (y), for all x, y, z \in X.

Remark(1)

Every doubt fuzzy p-ideal is doubt fuzzy ideal, but the converse does not hold.

Remark(2)

Take z = x and y = 0 in (DF₄), then every doubt fuzzy p-ideal in X satisfies the inequality

 $\mu(\mathbf{x}) \leq \mu(\mathbf{0} \ast (\mathbf{0} \ast \mathbf{x})) \text{ for all } \mathbf{x} \in \mathbf{X}.$

Theorem 3.12.

Every doubt fuzzy p-ideal of X is doubt fuzzy sub-commutative ideal of X.

Proof.

Let μ be a doubt fuzzy p-ideal of X. Then μ is a doubt fuzzy ideal of X and

(0*(0*(x*(x*y))))*(y*(y*(x*(x*y))))

= (0*(y*(y*(x*(x*y)))))*(0*(x*(x*y))) [by(1)]

= ((0*y) *(0*(y*(x *(x *y)))))*(0*(x*(x*y))) [by(5)]= ((0*y)*((0*y)*(0*(x*(x *y)))))*(0*(x*(x * y)))

 $= ((0^*y)^*(0^*(x^*(x^*y))))^*((0^*y)^*(0^*(x^*(x^*y)))) = 0.$ [by(1)]

From remark(2) we have,

 $\mu(\mathbf{x}^{*}(\mathbf{x}^{*}\mathbf{y})) \leq \mu(0^{*}(\mathbf{0}^{*}(\mathbf{x}^{*}(\mathbf{x}^{*}\mathbf{y})))), \text{ but } 0^{*}(0^{*}(\mathbf{x}^{*}(\mathbf{x}^{*}\mathbf{y}))) \leq \mathbf{y}^{*}(\mathbf{y}^{*}(\mathbf{x}^{*}(\mathbf{x}^{*}\mathbf{y}))). \text{ Since every }$

doubt fuzzy ideal is order preserving, then

 μ (0*(0*(x*(x*y)))) $\leq \mu$ (y*(y*(x*(x*y)))), hence μ (x*(x*y)) $\leq \mu$ (y*(y*(x*(x*y)))). From theorem 3.7, we get μ is doubt fuzzy sub-commutative ideal of X.

In the following example, we see that the converse of theorem 3.12 may not be tru

Example 3.13. Consider a BCI-algebra $X = \{0,a,1,2,3\}$ with Cayley table

Define an anti fuzzy set $\mu: X \rightarrow [0,1]$ by $\mu(0) = 0.2$, $\mu(a) = 0.5$ and $\mu(1) = \mu(2) =$ $\mu(3) = 0.7$. Then μ is a fuzzy ideal of X in which the inequality $\mu(x^*(x^*y)) \leq \mu(y^*(y^*(x^*(x^*y))))$ holds for all x, $y \in X$. Using theorem 3.7, we see that μ is a doubt fuzzy sub-commutative ideal of X. μ is not doubt fuzzy p-ideal of X because $\mu(a) > \mu((a^*1)^*(0^*1)) \lor \mu(0)$.

Theorem 3.14.

For any doubt fuzzy sub-commutative ideal μ of X, the set $X_{\mu} = \{x \in X \mid \mu(x) = \mu(0)\}$ is sub-commutative ideal of X.

Proof. Clearly $0 \in X_{\mu}$. Let x, y, $z \in X$ be such that

 $(y^*(y^*(x^*(x^*y))))^*z \in X_{\mu} \text{ and } z \in X_{\mu}.$

By (DF_3) , we have

 μ (x*(x*y)) $\leq \mu$ ((y*(y*(x*(x*y))))*z) $\lor \mu$ (z) = μ (0), which implies from (DF₁) that

 μ (x * (x * y))= μ (0). Then x * (x * y) $\in X_{\mu}$ and X_{μ} is a sub-commutative ideal of X.

Applying Theorems 3.12 and 3.14, we have the following corollary.

Corollary 3.15.

If μ is a doubt fuzzy p-ideal of X, then the set $X_{\mu} = \{ x \in X \mid \mu(x) = \mu(0) \}$ is a sub- commutative ideal of X.

Theorem 3.16.

Let μ be a fuzzy set of BCI-algebra X. Then μ is a doubt fuzzy sub-commutative ideal of X if and only if for each $t \in [0,1], t \ge \mu(0)$, the lower t-level cut μ^t is a sub-commutative ideal of X.

Proof.

Let μ be a doubt fuzzy sub-commutative ideal of X and let $t \in [0,1]$ with $\mu(0) \le t$, by (DF₁), we have $\mu(0) \le \mu(x)$ for all $x \in X$. But $\mu(x) \le t$ for all $x \in \mu^t$ and so $0 \in \mu^t$. Let x, y, $x \in X$ be such that $(y^*(y^*(x^*(x^*y)))) * z \in \mu^t$ and $z \in \mu^t$, then

 μ (z) \leq t and μ ((y*(y*(x*(x*y))))*z) \leq t. Since μ is doubt fuzzy sub-commutative ideal, it follow that

μ (x*(x*y))	*	0	а	1	2	3
	0	0	0	3	2	1
	а	а	0	3	2	1
	1	1	1	0	3	2
	2	2	2	1	0	3
	3	3	3	2	1	0

 $\leq \mu ((y^*(y^*(x^*(x^*y))))^*z) \lor \mu(z)) \leq t$, then $x^*(x^*y) \in \mu^t$. Therefore μ^t is sub-commutative ideal of X.

Conversely, let μ^t be a sub-commutative ideal of X. We only need to show that (DF_1) , (DF_3) are true. If (DF_1) is false, then there exist $x_0 \in X$ such that $\mu(0) > \mu(x_0)$. If we take $t_0 = \frac{1}{2} \{ \mu(0) + \mu(x_0) \}$, then $\mu(0) > t_0$ and $0 \le \mu(x_0) \le t_0$ and $0 \le \mu(x_0) \le t_0$.

then $\mu(0) > t_0$ and $0 \le \mu(x_0) < t_0 \le 1$, hence $x_0 \in \mu^{t_0}$ and $\mu^{t_0} \neq \phi$. But μ^{t_0} is sub-commutative ideal of X, then $0 \in \mu^{t_0}$ and so $\mu(0) \le t_0$, contradiction, hence $\mu(0) \le \mu(x)$ for all $x \in X$. Now, assume (DF₃) is not true, then there exist

 $x_0, y_0, z_0 \in X$ such that

 $\mu \quad (x_0^*(x_0^*y_0)) > \mu \quad ((y_0^*(y_0^*(x_0^*(x_0^* y_0))))^*z_0) \\ \lor \quad \mu \ (z_0). \text{ Putting}$

$$s_{0} = \frac{1}{2} \{ \mu (x_{0}^{*}(x_{0}^{*}y_{0})) + [\mu ((y_{0}^{*}(y_{0}^{*}(x_{0}^{*}(x_{0}^{*}y_{0}))))^{*}z_{0}) \lor \mu (z_{0})] \}, \text{ then } s_{0} < \mu (x_{0}^{*}(x_{0}^{*}y_{0})), \text{ and} \\ 0 \le \mu ((y_{0}^{*}(y_{0}^{*}(x_{0}^{*}(x_{0}^{*}(x_{0}^{*}y_{0}))))^{*}z_{0}) \lor \mu (z_{0}) < s_{0} \le \mu (z_{0}^{*}(y_{0}^{*}(x_{0}^{*}(x_{0}^{*}y_{0}))))^{*}z_{0}) \lor \mu (z_{0}) < s_{0} \le \mu (z_{0}^{*}(y_{0}^{*}(x_{0}^{*}(x_{0}^{*}(x_{0}^{*}y_{0}))))^{*}z_{0}) \lor \mu (z_{0}) < s_{0} \le \mu (z_{0}^{*}(x_{0}$$

Thus we have

1.

 $\mu \left((\ y_0*(\ y_0*(\ x_0*(\ x_0*(\ y_0))))* \ z_0) < s_0 \ , \ \ \mu \left(z_0 \right) < s_0 \ .$ Which imply that

 $(y_0^*(y_0^*(x_0^*(x_0^*y_0))))^* z_0 \in \mu^{s_0} \text{ and } z_0 \in \mu^{s_0},$ but μ^{s_0} is an sub-commutative ideal of X, thus $x_0^*(x_0^*y_0) \in \mu^{s_0}$ or $\mu(x_0^*(x_0^*y_0)) \leq s_0$. This a contradiction, ending the proof.

Theorem 3.17.

If μ is a doubt fuzzy sub-commutative ideal of a BCI-algebra X. then $\mu_{\mu^{t}}$ is also a doubt fuzzy sub-commutative ideal of X where $t \in [0,1]$, and $t \ge \mu(0)$.

Proof.

From theorem 3.16, it is sufficient to show that $(\mu_{\mu^{i}})^{\delta}$ is a sub-commutative ideal of X , where $\delta \in [0,1]$ and $\delta \ge \mu_{\mu^{i}}$ (0).Clearly , $0 \in (\mu_{\mu^{i}})^{\delta}$. Let x, y, z \in X be such that $(y^{*}(y^{*}(x^{*}(x^{*}y))))^{*}z \in (\mu_{\mu^{i}})^{\delta}$ and $z \in (\mu_{\mu^{i}})^{\delta}$. Thus $\mu_{\mu^{i}} ((y^{*}(y^{*}(x^{*}(x^{*}y))))^{*}z) \le \delta$ and $\mu_{\mu^{i}} (z) \le \delta$. We claim that $x^*(x^*y) \in (\mu_{\mu^t})^{\delta}$ or $\mu_{\mu^t} (x^*(x^*y)) \leq \delta$. If $(x^*(x^*y) \in (\mu_{\mu^t})^{\delta} = (x^*(x^*y))^{\delta}$

 $(y^*(y^*(x^*(x^*y))))^*z \in \mu^t \text{ and } z \in \mu^t$, then

 $x^*(x^*y) \in \mu^t$, because μ^t is a sub-commutative ideal of X. and hence

$$\begin{array}{lll} \mu_{\mu'} & (x^*(x^*y)) &= & \mu & (x^*(x^*y)) &\leq \\ \mu & ((y^*(y^*(\ x^*(x^*y))))^*z) & \lor & \mu & (z) = \\ \mu_{\mu'} & ((y^*(y^*(\ x^*(x^*y))))^*z) & \lor & \mu_{\mu'} & (z) \leq & \delta \\ \text{and so } x^*(x^*y) &\in (\mu_{\mu'})^{\delta}. \end{array}$$

If $(y^*(y^*(x^*(x^*y))))^*z \notin \mu^t$ or $z \notin \mu^t$, then $\mu_{\mu^t}((y^*(y^*(x^*(x^*y))))*z) = 0$ or $\mu_{\mu^t}(z) = 0$, and so $\mu_{\mu^t}(x^*(x^*y)) \leq \delta$ and so $x^*(x^*y) \in (\mu_{\mu^t})^{\delta}$. Therefor $(\mu_{\mu^t})^{\delta}$ is a sub-commutative ideal of X.

4. Homomorphism of doubt fuzzy sub-commutative ideal of BCI-algebra Definition 4.1.

Let f be a mapping of BCI-algebra X into BCI-algebra Y and A \subseteq X, B \subseteq Y. The image of A in Y is $f(A) = \{f(a) \mid a \in A\}$ and the inverse image of B is $f^{-1}(B) = \{g \in X \mid f(g) \in B\}.$

Definition 4.2.

Let (X, *, 0) and $(Y, *^{\setminus}, 0^{\setminus})$ be a BCI-algebras. A mapping $f: X \rightarrow Y$ is said to be a homomorphism if $f(x * y) = f(x) *^{\setminus} f(y)$ for all $x, y \in X$.

Theorem 4.3.

Let f be a homomorphism of BCI-algebra X into a BCI-algebra Y, then:

- (i) If 0 is the identity in X, then f(0) is the identity in Y.
- (ii) If A is sub-commutative ideal of X, then f(A) is sub-commutative ideal of Y.
- (iii) If B is sub-commutative ideal of Y, then $f^{-1}(B)$ is sub-commutative ideal of Y.
- (vi) If X is commutative BCI-algebra, then ker f is sub-commutative ideal of X.

Proof.

- (i) By using Definition 2.1 and Definition 4.2, we
- have $f(0) = f(0*0) = f(0)*^{1}f(0) = 0^{1}$. (ii) Let A be an sub-commutative ideal of X. Clearly $0^{1} \in f(A)$. If

$$(f(y)*^{\backslash}(f(y)*^{\backslash}(f(x)*^{\backslash}(f(x)*^{\backslash}f(y)))))*^{\backslash}f(z) \in$$

f(A)

and $f(z) \in f(A)$, then

 $f ((y^*(x^*(x^*y))))^*z) \in f(A)$, since f is a homomorphism, we have $(y^*(y^*(x^*(x^*y))))^*z \in A$ and $z \in A$. Since A is sub-commutative ideal, then $x^*(x^*y) \in A$, and hence

 $f(\mathbf{x}^*(\mathbf{x}^*\mathbf{y})) = f(\mathbf{x})^{*'}(f(\mathbf{x})^{*'}f(\mathbf{y})) \in f(A).$

Then f(A) is sub-commutative ideal of Y.

(iii) Let B be an sub-commutative ideal of f(X), since $f(0) = 0^{\setminus}, 0 \in f^{-1}(B)$.

Let $(y^*(y^*(x^*(x^*y))))^*z \in f^{\neg}(B), z \in f^{\neg}(B)$ for all x, y, z \in X, then

 $f((y^*(y^*(x^*(x^*y))))^*z) \in B, f(z) \in B$, but f is homomorphism, then

 $(f(y) * (f(y) * (f(x) * (f(x))))) * f(z) \in B$ and $f(z) \in B$, since B is sub-commutative ideal, we have

 $f(x) *^{(f(x) * f(y))} = f(x*(x * y)) \in B.$ Hence $x*(x * y) \in f^{(B)}$, then $f^{(B)}$ is sub-commutative ideal.

(iv) Let $x, y, z \in X$ such that

 $(y^{*}(x^{*}(x^{*}y))))^{*}z \in \ker f, z \in \ker f, \text{ then}$ $f((y^{*}(y^{*}(x^{*}(x^{*}y))))^{*}z) = 0^{\setminus}, f(z) = 0^{\setminus},$

since f is homomorphism we have

 $(f(y) *^{(f(y))}(f(x) *^{(f(x))}(f(x))))) *^{(f(y))}(f(x)))) *^{(f(y))}(f(x)) = 0^{((f(y)))}$. Then,

$$(f(y) *^{(f(y))}(f(x) *^{(f(x))}(f(x))))) *^{(0)} = (f(y) *^{(f(y))}(f(x) *^{(f(x))}(f(x)))) = f(x) + (f(x)) + (f(x)) = 0) = 0, b =$$

using theorem 2.5, then we have $x^*(x^*y) \in \ker f$. So ker *f* is sub-commutative ideal of X.

Definition 4.4.

Let $f: X \to Y$ be a homomorphism of BCI-algebras and β be a fuzzy set of Y, then β^f is called the pre-image of β under f and its denoted by

$$\beta^{f}(\mathbf{x}) = \beta(f(\mathbf{x})), \text{ for all } \mathbf{x} \in \mathbf{X}.$$

Theorem 4.5.

Let $f : X \rightarrow Y$ be a homomorphism of BCI-algebras. If β is a doubt fuzzy sub-commutative ideal of Y, then β^{f} is a doubt fuzzy sub-commutative ideal of X.

Proof.

Since β is a doubt fuzzy sub-commutative ideal of

Then β^f is a doubt fuzzy sub-commutative ideal of X.

Theorem 4.6.

Let $f : X \rightarrow Y$ be an epimorphism of BCI-algebras. If β^f is a doubt fuzzy sub-commutative ideal of X, then β is a doubt fuzzy sub-commutative ideal of Y.

Proof.

Let β^f be a doubt fuzzy sub-commutative ideal of X and y \in Y, there exist x \in X such that f(x) = y, then $\beta(y) = \beta(f(x)) = \beta^f(x) \leq \beta^f(0) = \beta(f(0)) = \beta(0^{\vee})$. Let $x^{\vee}, y^{\vee}, z^{\vee} \in$ Y, then there exist x, y, z \in X such that $f(x) = x^{\vee}, f(y) = y^{\vee}$ and $f(z) = z^{\vee}$. It follows that

$$\begin{split} \beta \left(x^{\setminus *^{\setminus}} \left(x^{\setminus *^{\setminus}} y^{\setminus} \right) \right) &= \beta \left(f(x) *^{\setminus} \left(f(x) *^{\setminus} f(y) \right) \right) \\ &= \beta \left(f \left(x^{*}(x * y) \right) = \beta^{f} \left(x^{*}(x * y) \right) \\ &\leq \beta^{f} \left(\left(y * \left(y * \left(x * \left(x * y \right) \right) \right) * z \right) \lor \beta^{f} (z) \\ &= \beta \left(f \left(\left(y * \left(y * \left(x * \left(x * y \right) \right) \right) * z \right) \lor \beta \left(f(z) \right) \\ &= \beta \left(\left(f(y) *^{\setminus} \left(f(y) *^{\setminus} \left(f(x) *^{\setminus} \left(f(x) *^{\setminus} f(y) \right) \right) \right) * \right) * f(z) \right) \\ &\lor \beta \left(f(z) \right) \end{split}$$

 $= \beta \left((y^{\setminus} *^{\setminus} (y^{\setminus} *^{\setminus} (x^{\setminus} *^{\setminus} (x^{\setminus} *^{\setminus} y^{\setminus}))) *^{\setminus} z^{\setminus} \right) \lor \beta (z^{\setminus})$ and hence β is a doubt fuzzy sub-commutative ideal of Y.

5. Cartesian product of DFSC-ideals

Definition 5.1. ([1]).

A fuzzy relation on any set X is a fuzzy subset $\mu: X \times X \rightarrow [0,1]$.

Definition 5.2.

If μ is a fuzzy relation on a set X and β is a fuzzy subset of X, then μ is a doubt fuzzy relation on β if $\mu(x, y) \ge \beta(x) \lor \beta(y)$ for all $x, y \in X$.

Definition 5.3.

Let μ and λ be doubt fuzzy subsets of a set X. The Cartesian product $\mu \times \lambda : X \times X \rightarrow [0,1]$ is defined by $(\mu \times \lambda)(x, y) = \mu(x) \vee \lambda(y)$ for all $x, y \in X$.

Iemma 5.4.([1])

Let μ and λ be fuzzy subsets of a set X. Then,

- (i) $\mu \times \lambda$ is a fuzzy relation on X,
- (ii) $(\mu \times \lambda)_t = \mu_t \times \lambda_t$ for all $t \in [0,1]$.

Definition 5.5.

If β is a fuzzy subset of a set X, the strongest doubt fuzzy relation on X (that is a doubt fuzzy relation on β) is μ_{β} , given by μ_{β} (x, y) = β (x) $\vee \beta$ (y) for all x, y \in X.

Proposition 5.6. For a given fuzzy subset β of a BCI-algebra X, let μ_{β} be the strongest doubt fuzzy relation on X. If μ_{β} is a doubt fuzzy sub-commutative ideal of X × X, then $\beta(x) \ge \beta(0)$ for all $x \in X$.

Proof. Since μ_{β} is doubt fuzzy sub-commutative ideal of X × X, then from (DF₁) that $\mu_{\beta}(\mathbf{x},\mathbf{x}) = \beta(\mathbf{x}) \lor \beta(\mathbf{x}) \ge \mu_{\beta}(0,0) = \beta(0) \lor \beta(0)$

where $(0,0) \in X \times X$, then $\beta(x) \ge \beta(0)$.

Remark 5.7.

Let X and Y be BCI-algebras, we define * on $X \times Y$ by,for every (x, y), $(u, v) \in X \times Y$, $(x, y)^*(u, v) = (x^*u, y^*v)$. Then clearly $(X \times Y; *, (0, 0))$ is a BCI-algebra.

Theorem 5.8.

Let μ and β be doubt fuzzy sub-commutative ideals of BCI-algebra X. Then $\mu \times \beta$ is a doubt fuzzy sub-commutative ideal of X \times X. **Proof.**

Let μ and β be doubt fuzzy sub-commutative ideals of BCI-algebra X, for every $(x, y) \in X \times X$, we have $(\mu \times \beta)(0, 0) = \mu(0) \lor \beta(0) \le \mu(x) \lor \beta(y)$ $= (\mu \times \beta)(x, y)$. Now we let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, then we have $(\mu \times \beta)((x_1, x_2) * ((x_1, x_2) * (y_1, y_2))) =$ $(\mu \times \beta)(x_1 * (x_1 * y_1), x_2 * (x_2 * y_2)) =$ $\mu(x_1 * (x_1 * y_1)) \lor \beta(x_2 * (x_2 * y_2)) \le$ $\{\mu((y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1) \lor \mu(z_1)\} \lor$ $\{\beta((y_2 * (y_2 * (x_2 * (x_2 * y_2)))) * z_2) \lor \beta(z_2)\} =$ $\{\mu((y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 * (x_2 * (x_2 * y_2))))) * z_1) \lor \beta((y_2 * (y_2 * (x_2 *$

· · · · ***** · · · · · · ·

 $(y_1,y_2)))))*(z_1,z_2)) \lor (\mu \times \beta)(z_1,z_2).$ Hence $\mu \times \beta$ is a doubt fuzzy sub-commutative ideal of $X \times X$.

Analogous to theorem 3.2[10], we have a similar result for doubt fuzzy sub-commutative ideals, which can be proved in a similar manner, we state the result without proof.

Theorem 5.9.

Let μ and β be a fuzzy subsets of a BCI-algebra X such that $\mu \times \beta$ is a doubt fuzzy sub-commutative ideal of $X \times X$. Then,

(i) Either
$$\mu(\mathbf{x}) \ge \mu(0)$$
 or $\beta(\mathbf{x}) \ge \beta(0)$
for all $\mathbf{x} \in \mathbf{X}$,

- (ii) If $\mu(x) \ge \mu(0)$ for all $x \in X$, then either $\mu(\mathbf{x}) \geq \beta(0)$ or $\beta(\mathbf{x}) \geq \mu(0)$,
- (iii) If $\beta(x) \ge \beta(0)$ for all $x \in X$, then
- either $\mu(\mathbf{x}) \geq \mu(0)$ or $\beta(\mathbf{x}) \geq \mu(0)$, (iv) Either μ or β is a doubt fuzzy

sub-commutative ideal of X.

Theorem 5.10.

Let β be a fuzzy subset of a BCI-algebra X and let μ_{β} be the strongest doubt fuzzy relation on X. Then β is a doubt fuzzy sub-commutative ideal of X if and only if μ_{β} is doubt fuzzy sub-commutative ideal of $X \times X$

Proof.

Assume that β is a doubt fuzzy sub-commutative ideal of X. We note from (DF_1) , that $\mu_{\beta}(0,0) = \beta(0) \lor \beta(0) \le \beta(x) \lor \beta(y) =$

 $\mu_{\beta}(\mathbf{x},\mathbf{y})$ for all $(\mathbf{x},\mathbf{y}) \in \mathbf{X} \times \mathbf{X}$.

For all $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, we get $\mu_{\beta}((x_1, x_2) * ((x_1, x_2) * (y_1, y_2)))$

$$\leq \{ \beta ((y_1^{*}(y_1^{*}(x_1^{*}(x_1^{*}y_1))))^{*}z_1) \lor \beta (z_1) \} \land$$

 $\{\beta((y_2^*(y_2^*(x_2^*(x_2^*y_2))))^*z_2) \lor \beta(z_2)\}$

$$= \{ \beta ((y_1^*(y_1^*(x_1^*(x_1^*y_1))))^*z_1) \lor \beta ((y_2^*(y_2^*(x$$

 $= \mu_{\beta} \left(\left(y_1^{*}(y_1^{*}(x_1^{*}(x_1^{*}y_1))) \right)^{*} z_1, \left(y_2^{*}(y_2^{*}(x_2^{*}(x_2^{*}y_2))) \right) \right)$ $*z_2) \vee \mu_{\beta}(z_1, z_2)$

 $= \mu_{\beta} \left(((y_1, y_2) * ((y_1, y_2) * ((x_1, x_2) * ((x_1, x_2) * (y_1, y_2))))) \right)$

*(z_1, z_2)) $\vee \mu_{\beta}(z_1, z_2)$ }.Hence, μ_{β} is a doubt fuzzy

sub-commutative ideal of $X \times X$. Conversely, suppose that μ_{β} is a doubt fuzzy sub-commutative ideal of $X \times X$. Then for all $(x, y) \in X \times X$, $\beta(0) \vee \beta(0) =$ $\mu_{\beta}(0, 0) \leq \mu_{\beta}(\mathbf{x}, \mathbf{y}) = \beta(\mathbf{x}) \vee \beta(\mathbf{y})$, it follows that $\beta(0) \leq \beta(x)$ for all $x \in X$, which proves (DF₁). Now, let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$. Then, $\beta (x_1 * (x_1 * y_1)) \lor \beta (x_2 * (x_2 * y_2))$ $= \mu_{\beta} (x_1 * (x_1 * y_1), x_2 * (x_2 * y_2))$ $= \mu_{\beta} ((\mathbf{x}_1, \mathbf{x}_2) * ((\mathbf{x}_1, \mathbf{x}_2) * (\mathbf{y}_1, \mathbf{y}_2)))$ $\leq \mu_{\beta} (((y_1, y_2) * ((y_1, y_2) * ((x_1, x_2) * ((x_1, x_2) *$ $(y_1, y_2)))) * (z_1, z_2)) \lor \mu_{\beta}(z_1, z_2)$ $= \mu_{\beta} \left((y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1, \right)$ $(y_2 * (y_2 * (x_2 * (x_2 * y_2)))) * z_2) \lor \mu_\beta (z_1, z_2)$ = { β (($y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1) <math>\lor$ $\beta ((y_2 * (y_2 * (x_2 * (x_2 * y_2)))) * z_2)) \vee \{\beta (z_1) \vee \beta (z_2)\}$

)} $= \{ \beta ((y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1) \lor \beta (z_1) \} \lor$ $\{\beta((y_2 * (y_2 * (x_2 * (x_2 * y_2)))) * z_2)\} \lor \beta(z_2)\}.$ Take $x_2 = y_2 = z_2 = 0$, then $\beta \left(\mathbf{x}_1 \ast (\mathbf{x}_1 \ast \mathbf{y}_1) \right)$ $\leq \beta ((y_1 * (y_1 * (x_1 * (x_1 * y_1)))) * z_1) \lor \beta (z_1).$ Then β is a doubt fuzzy sub-commutative ideal of X.

Corresponding author

Ahmed I. Marie Department of Mathematic, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt samymostafa@yahoo.com ahmedibrahim500@yahoo.com

References

- [1] p. Bhattacharya and N.P. Mukherjee, Fuzzy relations and fuzzy group, Inform. Sci. 36(1985) 267 - 282.
- [2] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyung. Pook. Math. J. 38(1998), 145 - 150.
- [3] Sabahattim Ilbira, Alev Firat and Y. B. Jun, On symmetric Bi-derivations of BCI- algebras, Applied Mathematical Science. 5(2011) no. 2957 - 2966.
- [4] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon, 23(1978), 1 - 26.
- [5] Zhan Jianming and Tan Zhisong, Doubt FuzzyBCI-algebras,IJMMS30:1(2002) 49-56.
- [6]Y. B. Jun and E. H. Roh, Fuzzy

 $y_2))\}$

- Y. B. Jun, Doubt fuzzy
 BCK/BCI-algebras, Soochow J. Math. 20(1994),no.3,351–358.
- [8] Y. L. Liu and J. Meng, Sub-implicative ideals and sub-commutative ideals of BCIalgebras, Soochow J. Math, 26 (2000), 441-453.
- Y. L. Liu, San Yang Liu and J. I. Meng,
 FSI-ideals and FSC-ideals of BCI-algebras, Bull Korean Math. 41(2004), No.1, pp. 167 – 179.

11/11/2011

- [10] J. Meng and X. L. Xin, commutative BCI-algebras, Math.Japon,37(1992), 569 – 572.
- [11] J. Meng and Xiu-e Guo, On fuzzy ideals in BCK/BCI-algebras, Fuzzy Sets and Systems, 149(2005), 509 525.
- [12] Samy M. Mostafa, Fuzzy implicative ideals in BCK-algebras, Fuzzy Sets and Systems, 87(1997) 361 – 368.
- [13] O. G. Xi, Fuzzy BCK-algebras, Math. Japon, 36(1991), 935 – 942.
- [14] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.