Anti-Fuzzy Sub-Implicative Ideals of BCI-Algebras

Samy M. Mostafa, Ragab A.K. Omar and Ahmed I. Marie

Department of Mathematic, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt samymostafa@vahoo.com, ahmedibrahim500@vahoo.com

Abstract: In this paper, we introduce the notion of anti-fuzzy sub-implicative ideal of BCI-algebras, and study some of their properties. We show that a fuzzy subset of BCI-algebra is a fuzzy sub-implicative ideal if and only if the complement of this fuzzy subset is an anti-fuzzy sub-implicative ideal, and any anti-fuzzy ideal of implicative BCI-algebra is anti-fuzzy sub-implicative ideal. We investigate how to deal with the homomorphic image (pre-image) of anti-fuzzy sub-implicative ideal of BCI-algebra. Moreover, we introduce the notion of Cartesian product of anti-fuzzy sub-implicative ideals and then we study some related properties.

[Samy M. Mostafa, Ragab A.K. Omar and Ahmed I. Marie Anti-Fuzzy Sub-Implicative Ideals of BCI-Algebras]. Journal of American Science 2011; 7(11):274-282]. (ISSN: 1545-1003). http://www.americanscience.org.

Keywords: ideal of BCI- algebras, anti-fuzzy sub-implicative ideal, homomorphic image (pre-image) of sub-implicative ideal, Cartesian product of anti-fuzzy sub-implicative ideal.

2000 Mathematics Subject Classification: 03G25, 06F35, 03E72.

1. Introduction

The concept of a fuzzy set was introduced by Zadeh [17] and was used afterwards by many other outhers in various branches of mathematics. In 1966, Imai and Ise'ki [6] introduced the notion of BCI-algebras. Xi [16] applied the concept of fuzzy set to BCI-algebras and gave some properties of it. After that Jun and Meng investigated further properties of fuzzy BCI-algebras and fuzzy ideal [see {[2], [13], [7], [8], [10]}]. S.M.Mostafa [15] gave some properties of a fuzzy implicative ideal in BCK-algebra .Liu and Meng [11] introduced the notion of sub-implicative ideal and sub-commutative ideal in BCI-algebra and investigated the properties of this ideals. [2] Biswas introduced the concept of anti-fuzzy sub-group. Modifying this idea, in this paper, we introduce the concept of anti-fuzzy sub implicative ideal of BCI-algebra and investigate some related properties. We show that in implicative BCI-algebra a fuzzy subset is an anti-fuzzy ideal if and only if it is anti-fuzzy sub-implicative ideal, and a fuzzy subset of a BCI-algebra is a fuzzy sub-implicative ideal if and only if the complement of this fuzzy subset is an anti-fuzzy sub implicative ideal. Moreover, we discuss the homomorphic pre-image (image) of anti-fuzzy sub-implicative ideal. Finally, we introduce the notion of Cartesian product of anti-fuzzy sub-implicative ideal and then we characterize anti-fuzzy sub-implicative ideal by

2. Preliminaries **Definition 2.1.** ([6])

An algebra (X; *, 0) of type (2,0) is called a BCI-algebra if it satisfies the following axioms:

(I)
$$((x * y) * (x * z)) * (z * y) = 0$$
,

(II)
$$(x * (x * y)) * y = 0$$
,

$$(III) \quad x * x = 0,$$

(IV)
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$, for all $x, y, z \in X$.

We can define a partially ordered relation \leq on X as follows:

$$x \le y$$
 if and only if $x * y = 0$.

Proposition 2.2. ([6])

A BCI-algebra X satisfies the following properties:

$$(1)(x * y) * z = (x * z) * y,$$

(2) x * 0 = x,

(3)
$$0 * (x * y) = (0 * x) * (0 * y),$$

(4) $x * (x * (x * y)) = x * y,$

$$(4) \quad x * (x * (x * y)) = x * y.$$

$$(5) (x * z) * (y * z) \le x * y,$$

(6)
$$x * y = 0$$
 implies $x * z \le y * z$ and $z * y \le z * x$.

In what follows, X shall mean a BCI-algebra unless otherwise specified.

Definition 2.3. ([6])

A non-empty subset I of X is called an BCI-ideal of X if it

satisfies:

$$(I_1)$$
 $0 \in I$,

$$(I_2)$$
 $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.4. ([13])

A BCI-algebra is said to be implicative if it satisfies: (x * (x * y)) * (y * x) = y * (y * x).

Definition 2.5. ([11])

A nonempty subset I of X is called a sub-implicative ideal of X if it satisfies:

$$(I_1)$$
 $0 \in I$

(I₃)
$$((x*(x*y))*(y*x))*z \in I$$
 and $z \in I$ imply $y*(y*x) \in I$ for all $x, y, z \in X$.

Theorem 2.6. ([2])

Let I be an ideal of X . Then I is sub-implicative if and only if $((x*(x*y))*(y*x)) \in I$ implies $y*(y*x) \in I$.

Theorem 2.7. ([11])

Any sub-implicative ideal is an ideal, but the converse is not true.

Definition 2.8. ([17])

Let X be a non empty set. A fuzzy set μ of X is a function $\mu: X \to [0,1]$. Let μ be a fuzzy set of X. then for $t \in [0,1]$ the t-level cut of μ is the set

 $\mu_t = \{ x \in X : \mu(x) \ge t \}$, and the complement of μ , denoted by μ^c , is the fuzzy set of X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$.

Definition 2.9. ([16])

A fuzzy set μ of a BCI-algebra X is called a fuzzy sub-algebra of X if $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 2.10. ([8])

A fuzzy set μ in a BCI-algebra X is said to be a fuzzy ideal in X if it satisfies

$$(F_1) \mu(0) \ge \mu(x),$$

$$(F_2) \mu(x) \ge \min \{ \mu(x * y), \mu(y) \} \text{ for all } x, y \in X.$$

Definition 2.11. ([9])

A fuzzy set μ of X is called a fuzzy sub-implicative ideals (briefly, FSI-ideals) of X if it satisfies:

$$(F_1)$$
 $\mu(0) \ge \mu(x)$ and

$$(F_3) \mu (y * (y * x)) \ge \min \{ \mu (((x * (x * y)) * (y * x)) * z),$$

$$\mu$$
 (z)} for all x, y, z \in X.

Definition 2.12. ([5])

A fuzzy set μ of a BCI-algebra X is called an anti-fuzzy sub-algebra of X if :

$$\mu(x * y) \le \max{\{\mu(x), \mu(y)\}}$$
 for all $x, y \in X$.

Definition 2.13. ([5])

A fuzzy set μ of a BCI-algebra X is called an anti-fuzzy ideal of X if it satisfies:

$$(AF_1)$$
 $\mu(0) \leq \mu(x)$,

$$(AF_2) \mu(x) \le \max \{ \mu(x * y), \mu(y) \}, \text{ for all } x, y \in X.$$

Proposition 2.14. ([5])

Every anti-fuzzy ideal of a BCI-algebra X is an anti-fuzzy sub-algebra of X.

Definition 2.15. ([5])

Let μ be a fuzzy set of a BCI-algebra X. Then for $t \in [0,1]$ the lower t-level cut of μ is the set

$$\mu^{t} = \{x \in X \mid \mu(x) \le t \}.$$

Definition 2.16.([5])

Let μ be a fuzzy set of a BCI-algebra X. The fuzzification of μ^t , $t \in [0,1]$ is the fuzzy subset μ_{il} of X defined by:

$$\mu_{\mu^t} = \begin{cases} \mu(x) & \text{if } x \in \mu^t \\ 0 & \text{other wise} \end{cases}.$$

3. Anti-fuzzy sub-implicative ideals

Definition 3.1.

A fuzzy set μ of a BCI-algebra X is called an anti-fuzzy sub-implicative ideal of X (briefly, AFSI-ideal) if it satisfies (AF_1) and (AF_3) μ $(y*(y*x)) \le \max\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\}$ for all $x, y, z \in X$.

Example 3.2. Let $X = \{0, 1, 2\}$ be a BCI-algebra with Cayley table as follows:

*	0	1	2		
0	0	0	2		
1	1	0	2		
2	2	2	0		

Define $\mu: X \to \overline{[0,1]}$ by $\mu(0) = \mu(1) = t_0$ and $\mu(2) = t_1$, where $t_0, t_1 \in [0,1]$ and $t_0 < t_1$. By routine calculations give that μ is an AFSI-ideal of X.

Proposition 3.3.

Every an anti-fuzzy sub-implicative ideal of a BCI-algebra X is order preserving.

Proof.

Let μ be AFSI-ideal of X and let x, y, $z \in X$ be such that $x \le z$, then x * z = 0 and by (AF_3) $\mu(y * (y * x)) \le \max\{\mu(((x * (x * y)) * (y * x)) * z), \mu(z)\}$.-----(W)

Let
$$y = x$$
 in (W), and using (III), (2), we get $\mu(x) \le \max \{ \mu(((x*(x*x))*(x*x))*z), \mu(z) \}$
= $\max \{ \mu(x*z), \mu(z) \} = \max \{ \mu(0), \mu(z) \}$
= $\mu(z)$.

275

Proposition 3.4.

Every anti-fuzzy sub-implicative ideal of BCI-algebra X is an anti -fuzzy ideal.

Proof.

Let μ be an anti-fuzzy sub-implicative ideal of a BCI-algebra X, for all x, y, $z \in X$, μ (y * (y * x)) $\leq \max\{\mu$ (((x * (x * y)) * (y * x)) * z), μ (z) }, put y = x , and using (III), (2) we get μ (x) $\leq \max\{\mu$ (((x * (x * x)) * (x * x)) * z), μ (z)} = $\max\{\mu$ (x * z), μ (z)}, for all x, $z \in X$. Hence μ is an anti-fuzzy ideal of X.

The following example shows that the converse of proposition 3.4 may not be true.

Example 3.5.

Let $X = \{0,1,2,3\}$ be a BCI-algebra with Cayley table as follows:

*	0	1	2	3
0	0	0	0	3
1	1	0	0	3
2	2	2	0	3
3	3	3	3	0

Define a fuzzy set $\mu: X \rightarrow [0,1]$ by $\mu(0) = 0.2$ and $\mu(x) = 0.7$ for all $x \neq 0$. Then μ is an anti-fuzzy ideal of X, but it is not an anti fuzzy sub-implicative ideal of X because $\mu(1*(1*2)) > \max\{\mu(((2*(2*1))*(1*2))*0\},$

$$\mu$$
 (1 * (1 * 2)) > max{ μ (((2 * (2 * 1)) * (1 * 2)) * 0), μ (0) }.

Proposition 3.6.

Let μ be an AFSI-ideal of BCI-algebra X. Then μ satisfies the inequality

$$\mu(y*(y*x)) \leq \mu((x*(x*y))*(y*x)).$$

Proof. Clear.

We now give a condition for an anti-fuzzy ideal to be an anti-fuzzy sub-implicative ideal.

Theorem 3.7.

Every anti fuzzy-ideal μ of X satisfies the inequality μ $(y*(y*x)) \le \mu$ ((x*(x*y))*(y*x)) for all x, $y \in X$, is an anti-fuzzy sub-implicative ideal of X. **Proof.**

Let μ be an anti-fuzzy ideal of X satisfying the inequality , $\mu(y*(y*x)) \leq \mu((x*(x*y))*(y*x)) \leq \max\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\}$ by (AF_2) which proves the condition (AF_3) . This completes the proof .

Lemma 3.8.

Every AFSI-ideal of BCI-algebra is an anti-fuzzy sub-algebra of X.

Proof.

Let μ be an AFSI-ideal of BCI-algebra X, then μ (y*(y*x)) \leq max { μ (((x*(x*y))*(y*x))*z), μ (z) }, put y = x , we have μ (x) \leq max { μ (x * z), μ (z)}, which imply that μ (x * z) \leq max { μ ((x * z) * z), μ (z)}. But (x * z) * z \leq x * z \leq x, then μ ((x * z) * z) \leq μ (x) [by proposition 3.3]. So μ (x * z) \leq max { μ (x), μ (z)}, then μ is an anti-fuzzy sub-algebra of X.

Lemma 3.9.

If X is implicative BCI-algebra, then every anti-fuzzy ideal of X is an AFSI-ideal of X.

Let μ be an anti-fuzzy ideal of X, then $\mu(x) \le \max\{\mu(x*z), \mu(z)\}$ for all $x, z \in X$. So $\mu(y*(y*x)) \le \max\{\mu((y*(y*x))*z), \mu(z)\}$, but X is implicative BCI-algebra, then (x*(x*y))*(y*x) = y*(y*x), and hence $\mu(y*(y*x)) \le \max\{\mu(((x*(x*y))*(y*x))*z), \mu(z)\}$. Which shows that μ is AFSI-ideal of X.

By applying proposition (3.4) and lemma (3.8), we have the following Theorem:

Theorem 3.10.

If X is an implicative BCI-algebra, then a fuzzy set μ of X is an anti-fuzzy ideal of X if and only if it is an anti-fuzzy sub-implicative ideal of X.

Definition 3.11.

A fuzzy set μ in X is called an anti-fuzzy positive implicative if it satisfies:

$$(AF_1) \mu (0) \le \mu (x),$$

$$(AF_4) \mu (x*z) \le \max \{ \mu (((x*z)*z)*(y*z)), \mu (z) \}$$
 for all x, y, z $\in X$.

Analogous to (theorem 3.5 [11]), we have a similar result for an anti-fuzzy positive implicative ideal which can be proved in a similar manner, we state the result without proof.

Lemma 3.12.

Let μ be an anti-fuzzy ideal of X. Then the following are equivalent:

(i) μ is an anti-fuzzy positive implicative ideal of X,

(ii)
$$\mu$$
 ((x * y) * z) $\leq \mu$ (((x * z) * z) * (y * z))

for all $x, y, z \in X$,

(iii) μ (x * y) $\leq \mu$ (((x * y) * y) * (0 * y))

for all $x, y \in X$.

Theorem 3.13.

Every anti-fuzzy sub-implicative ideal of \boldsymbol{X} is anti-fuzzy positive implicative ideal of \boldsymbol{X} .

Proof.

Let μ be an AFSI-ideal of BCI-algebra X. Then μ is an anti-fuzzy ideal of X. for all $x, y \in X$, $\mu(x*y) = \mu(x*(x*(x*y))) \text{ [by Proposition 2.2.(4)]}$ $\leq \mu(((x*y)*((x*y)*x))*(x*(x*y))) \text{ [proposition 3.6.]}$ $= \mu(((x*y)*(x*(x*y)))*((x*y)*x))$ $= \mu(((x*(x*(x*y))*y)*((x*x)*y))$ $= \mu(((x*y)*y)*(0*y)), \text{(by lemma 3.12), then } \mu \text{ is an anti fuzzy positive implicative ideal of X.}$

We can easily check that the anti-fuzzy set μ in Example 3.5 is an anti-fuzzy positive implicative ideal of X. Hence we know that the converse of Theorem 3.13 may not true.

Definition 3.14.

A fuzzy set μ in X is called anti fuzzy p-ideal of X if it satisfies:

$$(AF_1)$$
 $\mu(0) \leq \mu(x)$,

(AF₅) $\mu(x) \le \max\{\mu((x*z)*(y*z)), \mu(y)\}\$ for all $x, y, z \in X$.

Remark(1)

Every anti-fuzzy p-ideal is anti fuzzy ideal, but the converse does not hold.

Remark(2)

Take z = x and y = 0 in (AF₅), then every anti-fuzzy p-ideal in X satisfies the inequality $\mu(x) \le \mu(0 * (0 * x))$ for all $x \in X$.

Theorem 3.15.

Every anti-fuzzy p-ideal of X is anti-fuzzy sub-implicative ideal of X.

Proof.

Let μ be an anti-fuzzy p-ideal of X. Then μ is an anti-fuzzy ideal of X, and (0*(0*(y*(y*x))))*((x*(x*y))*(y*x))= (0 * ((x * (x * y)) * (y * x))) * (0 * (y * (y * x))) [by(1)]= ((0 * (x * (x * y))) * (0 * (y * x))) * ((0 * y) * (0 * (y * x)))[by(3)]=(((0*x)*(0*(x*y)))*(0*(y*x)))*((0*y)*(0*(y*x))) $\leq ((0*x)*(0*(x*y)))*(0*y) [by(5)]$ = ((0*x)*(0*y))*(0*(x*y))[by(1)]= (0 * (x * y)) * (0 * (x * y)) = 0.From remark(2) we have, $\mu(y*(y*x)) \le \mu(0*(0*(y*(y*x))))$. But $(0*(0*(y*(y*x)))) \le ((x*(x*y))*(y*x))$. Since every anti-fuzzy ideal is order preserving, then $\mu(0*(0*(y*(y*x)))) \le \mu((x*(x*y))*(y*x)),$ hence $\mu(y*(y*x)) \le \mu((x*(x*y))*(y*x))$. From theorem 3.7, we get μ is an anti-fuzzy sub-implicative In the following example, we see that the converse of theorem 3.15 may not be true.

Example 3.16.

Consider a BCI-algebra $X = \{0,a,1,2,3\}$ with Cayley table

*	0	a	1	2	3
0	0	0	3	2	1
a	a	0	3	2	1
1	1	1	0	3	2
2	2	2	1	0	3
3	3	3	2	1	0

Define an anti-fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = 0.2$, $\mu(a) = 0.5$ and $\mu(1) = \mu(2) = \mu(3) = 0.7$. Then μ is a anti-fuzzy ideal of X in which the inequality $\mu(y*(y*x)) \le \mu((x*(x*y))*(y*x))$ holds for all x, $y \in X$. Using theorem 3.7, we see that μ is an anti-fuzzy sub-implicative ideal of X. μ is not anti-fuzzy p-ideal of X, since $\mu(a) > \max\{\mu((a*1)*(0*1)), \mu(0)\}$.

$$\mu$$
 (a) $\geq \max\{ \mu \ ((a*1)*(0*1)), \ \mu(0) \}$

Theorem 3.17.

For any AFSI-ideal μ of X , the set $X_{\mu} = \{x \in X \mid \mu(x) = \mu(0)\} \text{ is sub-implicative ideal of }$

X.

Proof.

Clearly $0 \in X_{\mu}$. Let $x, y, z \in X$ be such that

$$((x*(x*y))*(y*x))*z\in X_{_{\mathcal{U}}} \ \ \text{and} \ z\in X_{_{\mathcal{U}}}.$$

By (AF_3) , we have

$$\mu (y * (y * x)) \le \max \{ \mu (((x * (x * y)) * (y * x)) * z), \mu (z) \}$$

= $\mu (0)$, which implies from (AF₁) that

$$\mu (y * (y * x)) = \mu (0)$$
. Then $y * (y * x) \in X_{\mu}$,

therefore X_{μ} is a sub-implicative ideal of X.

Applying Theorems 3.15 and 3.17, we have the following corollary.

Corollary 3.18. If μ is an anti-fuzzy p-ideal of X, then the set $X_{\mu} = \{ x \in X \mid \mu(x) = \mu(0) \}$ is a sub-implicative ideal of X.

Theorem 3.19.

A fuzzy set μ of a BCI-algebra X is a fuzzy sub-implicative ideal of X if and only if its complement μ^c is an AFSI-ideal of X.

Proof.

Theorem 3.20.

Let μ be a fuzzy set of BCI-algebra X. Then μ is an AFSI-ideal of X if and only if for each $t \in [0,1], t \geq \mu(0)$, the lower t-level cut μ^t is a sub-implicative ideal of X.

Proof.

Let μ be an AFSI-ideal of X and let $t \in [0,1]$ with μ (0) \leq t. By (AF₁), we have $\mu\left(0\right) \leq \mu\left(x\right)$ for all $x \in X$, but $\mu\left(x\right) \leq t$ for all $x \in \mu^t$ and so $0 \in \mu^t$. Let x, y, $z \in X$ be such that $((x * (x * y)) * (y * x)) * z \in \mu^t$ and $z \in \mu^t$, then $\mu(((x*(x*y))*(y*x))*z) \le t \text{ and } \mu(z) \le t. \text{ Since }$ μ is an AFSI-ideal, it follow that $\mu(y * (y * x)) \le \max\{\mu(((x * (x * y)) * (y * x)) * z), \mu(z)\}$ $\leq t$, and hence $y * (y * x) \in \mu^t$. Therefore μ^t is subimplicative ideal of X. Conversely, let μ^t be a sub-implicative ideal of X. We only need to show that (AF_1) , (AF_3) are true. If (AF_1) is false, then there exist $x_0 \in X$ such that $\mu(0) > \mu(x_0)$. If we take $t_0 = \frac{1}{2} \{ \mu(0) + \mu(x_0) \},\$ then $\mu(0) > t_0$ and $0 \le \mu(x_0) < t_0 \le 1$. Hence $x_0 \in \mu^{t_0}$ and $\mu^{t_0} \neq \phi$. But μ^{t_0} is sub-implicative ideal of X, we have $0 \in \mu^{t_0}$ and so $\mu(0) \le t_0$, contradiction. Hence $\mu(0) \le \mu(x)$ for all $x \in X$. Now, assume (AF₃) is not true, then there exist $x_0, y_0, z_0 \in X$ such that $\mu (y_0 * (y_0 * x_0)) > \max \{ \mu (((x_0 * (x_0 * y_0)) * (y_0 * x_0)) * z_0),$ μ (z₀)}. Putting

 $S_0 = \frac{1}{2} \left\{ \mu \left(y_0 * (y_0 * x_0) \right) + \max \left\{ \mu \left(\left((x_0 * (x_0 * y_0)) * (y_0 * x_0) \right) \right) * \right\} \right\}$

 $\begin{array}{l} z_0), \ \mu\left(z_0\right)\}, \ then \ s_0 \le \ \mu\left(y_0*(y_0*x_0)\right) \ and \\ 0 \le \max\{ \mu\left(((x_0*(x_0*y_0))*(y_0*x_0))*z_0\right), \ \mu\left(z_0\right)\} \\ \le s_0 \le 1. \ Thus \ we \ have \\ \max\{ \mu\left(((x_0*(x_0*y_0))*(y_0*x_0))*z_0\right) \le s_0 \ , \ \mu\left(z_0\right) \le s_0 \ , \\ but \ \mu^{s_0} \ is \ an \ sub-implicative \ ideal \ of \ X, \ thus \\ y_0*(y_0*x_0) \ \in \ \mu^{s_0} \ or \ \mu\left(\ y_0*(y_0*x_0)\right) \le s_0 \ . This \ a \ contradiction, \ ending \ the \ proof. \end{array}$

Theorem 3.21.

If μ is an AFSI-ideal of a BCI-algebra X, then $\mu_{\mu'}$ is also an AFSI-ideal of X, where $t \in [0,1]$ and $t \ge \mu(0)$.

Proof.

From the theorem 3.20, it is sufficient to show that $(\mu_{\mu^t})^{\delta}$ is a sub-implicative ideal of X, where $\delta \in [0,1]$ and $\delta \geq \mu_{\mu^t}(0)$. Clearly, $0 \in (\mu_{\mu^t})^{\delta}$. Let $x, y, z \in X$ be such that $((x*(x*y))*(y*x))*z \in (\mu_{\mu^t})^{\delta}$ and $z \in (\mu_{\mu^t})^{\delta}$. Thus $\mu_{\mu^t}(((x*(x*y))*(y*x))*z) \leq \delta$ and $\mu_{\mu^t}(z) \leq \delta$. We claim that $y*(y*x) \in (\mu_{\mu^t})^{\delta}$ or $\mu_{\mu^t}(y*(y*x)) \leq \delta$. If $((x*(x*y))*(y*x))*z \in \mu^t$ and $z \in \mu^t$, then $y*(y*x) \in \mu^t$, since μ^t is a sub-implicative ideal

of X. we have
$$\mu_{\mu'} (y*(y*x)) = \mu (y*(y*x))$$

$$\leq \max \{ \mu (((x*(x*y))*(y*x))*z), \mu (z) \}$$

$$= \max \{ \mu_{\mu'} (((x*(x*y))*(y*x))*z), \mu_{\mu'} (z) \} \leq \delta$$
 and so $y*(y*x) \in (\mu_{\mu'})^{\delta}$.

If
$$((\mathbf{x}*(\mathbf{x}*\mathbf{y}))*(\mathbf{y}*\mathbf{x}))*\mathbf{z} \notin \mu^t$$
 or $\mathbf{z} \notin \mu^t$, then $\mu_{\mu^t}(((\mathbf{x}*(\mathbf{x}*\mathbf{y}))*(\mathbf{y}*\mathbf{x}))*\mathbf{z}) = 0$ or $\mu_{\mu^t}(\mathbf{z}) = 0$, then clearly $\mu_{\mu^t}(\mathbf{y}*(\mathbf{y}*\mathbf{x})) \leq \delta$ and so $\mathbf{y}*(\mathbf{y}*\mathbf{x}) \in (\mu_{\mu^t})^{\delta}$. There for $(\mu_{\mu^t})^{\delta}$ is a sub-implicative ideal of \mathbf{X} .

Definition 3.22.

A fuzzy set μ of a BCI-algebra X is called an anti-fuzzy sub-commutative ideal of X (briefly, AFSC-ideal) if it satisfies (AF_1) and (AF_6) μ $(x*(x*y)) \leq \max\{\mu ((y*(y*(x*(x*y))))*\mu (z)\}$ for all $x, y, z \in X$.

Theorem 3.23.

Every anti-fuzzy sub-implicative ideal of X is anti-fuzzy sub-commutative ideal of X, but the converse is not true.

Proof.

Let μ be an AFSI-ideal of X. Then it satisfies (AF_1) and by (AF_3) we have $\mu (x * (x * y)) \le \max \{ \mu (((y * (y * x)) * (x * y)) * z), \mu (z) \}$ for all x, y, $z \in X$. But by using (1) and (4) we have [(y*(y*x))*(x*y))] * [y*(y*(x*(x*y))) =[(y*(y*(y*(x*(x*y)))))*(y*x)]*(x*y) =[(y*(x*(x*y)))*(y*x)]*(x*y) = $[(y*(y*x))*(x*(x*y))]*(x*y) \le$ (x * (x * (x * y))) * (x * y) = (x * (x * y)) * (x * (x * y)) =0, we have $(y * (y * x)) * (x * y) \le y * (y * (x * (x * y)))$, which imply that $((y * (y * x)) * (x * y)) * z \le$ (y * (y * (x * (x * y)))) * z, (by proposition 3.3) we get $\mu (((y * (y * x)) * (x * y)) * z) \le \mu ((y * (y * (x * (x * y)))) * z).$ So μ (x * (x * y)) \leq max{ μ ((y * (y * (x * (x * y)))) * z), μ (z)}, hence μ an AFSC-ideal of X. The last part of the theorem is shown by the following example:

Example 3.24.

Let $X = \{0,1,2,3\}$ be a BCI-algebra with Cayley table as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Let μ be a fuzzy set in X defined by $\mu(0) = \mu(3) = 0.2$ and $\mu(1) = \mu(2) = 0.8$. It is easy to verify that μ is an AFSC- ideal of X, but it is not an AFSI-ideal of X since $\mu((1*(1*2))*(2*1)) = \mu(0) = 0.2 < 0.8 = \mu(1) = \mu(2*(2*1))$. The proof is complete.

4.Homomorphism of AFSI-ideal of BCI-algebra

Definition 4.1.

Let f be a mapping of BCI-algebra X into BCI-algebra Y and $A \subseteq X$, $B \subseteq Y$. The image of A in Y is $f(A) = \{ f(a) \mid a \in A \}$ and the inverse image of B is $f^{-1}(B) = \{ g \in X \mid f(g) \in B \}$.

Definition 4.2.

Let (X, *, 0) and $(Y, *^{\setminus}, 0^{\setminus})$ be a BCI-algebras. A mapping $f: X \rightarrow Y$ is said to be a homomorphism if $f(x * y) = f(x) *^{\setminus} f(y)$ for all $x, y \in X$.

Theorem 4.3.

Let f be a homomorphism of BCI-algebra X into a

BCI-algebra Y, then:

- (i) If 0 is the identity in X, then f(0) is the identity in Y
- (ii) If A is sub-implicative ideal of X, then f(A) is sub-implicative ideal of Y.
- (iii) If B is sub-implicative ideal of Y, then $f^{-1}(B)$ is sub-implicative ideal of Y.
- (iv) If X is implicative BCI-algebra, then ker f is sub-implicative ideal of X.

Proof.

- (i) By using Definition 2.1 and Definition 4.2, we have $f(0) = f(0*0) = f(0)*^{\setminus} f(0) = 0^{\setminus}$.
- (ii) Let A be an sub-implicative ideal of X. Clearly $0^{\setminus} \in f(A)$.If

$$((f(x) *^{\setminus} (f(x) *^{\setminus} f(y))) *^{\setminus} (f(y) *^{\setminus} f(x))) *^{\setminus} f(z) \in f(A) \text{ and } f(z) \in f(A), \text{ then}$$

$$f(((x*(x*y))*(y*x))*z) \in f(A)$$
, since f is a homomorphism, we have

 $((x*(x*y))*(y*x))*z \in A$ and $z \in A$. Since A is sub-implicative ideal, then $y*(y*x) \in A$ and hence

$$f(y*(y*x)) = f(y) *^{(f(y)*^{(f(y)*^{(f(x))})}} \in f(A).$$

We have f(A) is sub-implicative ideal of Y.

(iii) Let B be an sub-implicative ideal of f(X), since $f(0) = 0^{\setminus}$, $0 \in f^{-1}(B)$.

Let
$$((x*(x*y))*(y*x))*z \in f^{-1}(B)$$
, $z \in f^{-1}(B)$

for all x, y, $z \in X$, then $f(((x*(x*y))*(y*x))*z) \in B$, $f(z) \in B$. But f is homomorphism, then

$$((f(x) *^{\setminus} (f(x) *^{\setminus} f(y))) *^{\setminus} (f(y) *^{\setminus} f(x))) *^{\setminus} f(z) \in B$$
 and $f(z) \in B$, since B is sub-implicative ideal,

we have
$$f(y) *^{\setminus} (f(y) *^{\setminus} f(x)) = f(y * (y * x)) \in B$$
,

and hence $y*(y*x) \in f^{\dashv}(B)$, then $f^{\dashv}(B)$ is sub-implicative ideal.

(iv) Let $x, y, z \in X$ be such that

$$((x*(x*y))*(y*x))*z \in \ker f, z \in \ker f$$
, then

 $f(((x*(x*y))*(y*x))*z) = 0^{\setminus}, f(z) = 0^{\setminus}, \text{ since } f \text{ is homomorphism we have}$

$$((f(x) *^{\backslash} (f(x) *^{\backslash} f(y))) *^{\backslash} (f(y) *^{\backslash} f(x))) *^{\backslash} f(z) = 0^{\backslash}$$

$$((f(x) *^{\setminus} (f(x) *^{\setminus} f(y))) *^{\setminus} (f(y) *^{\setminus} f(x))) *^{\setminus} 0)$$

$$((f(x) *^{\setminus} (f(x) *^{\setminus} f(y))) *^{\setminus} (f(y) *^{\setminus} f(x))) =$$

$$f((x*(x*y))*(y*x)) = 0^{\setminus},$$

but X is implicative BCI-algebra, then

$$f(y*(y*x)) = 0$$
 i.e. $y*(y*x) \in \ker f$.

Then ker f is sub-implicative ideal of X.

Definition 4.4.

Let $f: X \to Y$ be a homomorphism of BCI-algebras and β be a fuzzy set of Y, then β^f is called the pre-image of β under f and its denoted by $\beta^f(x) = \beta(f(x))$, for all $x \in X$.

Theorem 4.5.

Let $f: X \to Y$ be a homomorphism of BCI-algebras. If β is an AFSI-ideal of Y, then β^f is an AFSI-ideal of X.

Proof.

Since β is an AFSI-ideal of Y, then $\beta(0^{\setminus}) \leq \beta(f(x))$ for every $x \in X$ and so $\beta^f(0) = \beta(f(0)) = \beta(0^{\setminus}) \leq \beta(f(x)) = \beta^f(x)$. For any $x, y, z \in X$, we have $\beta^f(y*(y*x)) = \beta(f(y*(y*x))) = \beta(f(y*(y*x))) = \beta(f(y)*^{\setminus}(f(y)*^{\setminus}f(x))) \leq \max[\beta(((f(x)*^{\setminus}(f(x)*^{\setminus}f(y)))*^{\setminus}(f(y)*^{\setminus}f(x)))*^{\setminus}f(z)), \beta(f(z))] = \max[\beta(f(((x*(x*y))*(y*x))*z), \beta(f(z))].$ Then β^f is AFSI-ideal of X.

Theorem 4.6.

Let $f: X \to Y$ be an epimorphism of BCI-algebras. If β^f is an anti-fuzzy sub-implicative ideal of X, then β is an AFSI-ideal of Y.

Proof.Let β^f be an AFSI-ideal of X and y ∈ Y, there exist x ∈ X such that f(x) = y. Then $β(y) = β(f(x)) = β^f(x) ≥ β^f(0) = β(f(0)) = β(0)$. Let x^{\setminus} , y^{\setminus} , $z^{\setminus} ∈ Y$, then there exist x, y, z ∈ X such that $f(x) = x^{\setminus}$, $f(y) = y^{\setminus}$ and $f(z) = z^{\setminus}$. It follows that $β(y^{\setminus} *^{\setminus} (y^{\setminus} *^{\setminus} x^{\setminus})) = β(f(y) *^{\setminus} (f(y) *^{\setminus} f(x))) = β(f(y *(y * x)) ≤ \max \{β^f(((x *(x * y)) *(y * x)) * z), β^f(z)\} = \max \{β(((x *(x * y)) *(y * x)) * z), β(f(z))\} = \max \{β(((x *^{\setminus} (x * y)) *^{\setminus} (y *^{\setminus} x *^{\setminus})) *^{\setminus} f(z))\} = \max \{β(((x *^{\setminus} (x * y)) *^{\setminus} (y *^{\setminus} x *^{\setminus})) *^{\setminus} f(z))\} = \max \{β(((x *^{\setminus} (x * y)) *^{\setminus} (y *^{\setminus} x *^{\setminus})) *^{\setminus} f(z))\}$

5. Cartesian product of AFSI-ideals

and hence β is an anti-fuzzy sub-implicative ideal of

Definition 5.1. ([1])

A fuzzy relation on any set X is a fuzzy subset $\mu: X \times X \rightarrow [0,1]$.

Definition 5.2.

If μ is a fuzzy relation on a set X and β is a fuzzy subset of X, then μ is an anti-fuzzy relation on β if $\mu(x, y) \ge \max \{ \beta(x), \beta(y) \}$ for all $x, y \in X$.

Definition 5.3.

Let μ and λ be anti-fuzzy subsets of a set X. The Cartesian product $\mu \times \lambda : X \times X \longrightarrow [0,1]$ is defined by $(\mu \times \lambda)(x, y) = \max{\{\mu(x), \lambda(y)\}}$ for all $x, y \in X$.

Iemma 5.4. ([1])

Let μ and λ be fuzzy subsets of a set X. Then,

- (i) $\mu \times \lambda$ is a fuzzy relation on X,
- (ii) $(\mu \times \lambda)_t = \mu_t \times \lambda_t$ for all $t \in [0,1]$.

Definition 5.5.

If β is a fuzzy set of a set X, the strongest anti-fuzzy relation on X that is an anti-fuzzy relation on β is μ_{β} given by $\mu_{\beta}(x, y) = \max\{\beta(x), \beta(y)\}$ for all $x, y \in X$.

Proposition 5.6.

For a given fuzzy set β of a BCI-algebra X, let μ_{β} be the strongest anti-fuzzy relation on X. If μ_{β} is an anti-fuzzy sub-implicative ideal of X × X, then $\beta(x) \ge \beta(0)$ for all $x \in X$.

Proof.

 $\mu_{\beta}(x, x) = \max\{\beta(x), \beta(x)\} \ge \mu_{\beta}(0,0) =$ $\max\{\beta(0), \beta(0)\} \text{ where } (0, 0) \in X \times X, \text{ then }$ $\beta(x) \ge \beta(0) \text{ for all } x \in X.$

Remark 5.7.

Let X and Y be BCI-algebras, we define * on $X \times Y$ by, for every $(x, y), (u, v) \in X \times Y$, (x, y) * (u, v) = (x * u, y * v). Then clearly $(X \times Y; *, (0, 0))$ is a BCI-algebra.

Theorem 5.8.

Let μ and β be AFSI-ideals of BCI-algebra X. Then $\mu \times \beta$ is an anti-fuzzy sub-implicative ideal of X \times X.

Proof.

Let μ and β be AFSI-ideals of BCI-algebra X, for every $(x, y) \in X \times X$, we have $(\mu \times \beta)(0,0) = \max\{\mu(0), \beta(0)\}\$ $\leq \max\{\mu(x), \beta(y)\} = (\mu \times \beta)(x, y)$. Now we let $(x_1,x_2), (y_1,y_2), (z_1,z_2) \in X \times X$, we

Y.

have
$$(\mu \times \beta)((y_1, y_2) * ((y_1, y_2) * (x_1, x_2))) = (\mu \times \beta)(y_1 * (y_1 * x_1), y_2 * (y_2 * x_2)) = \max \{\mu(y_1 * (y_1 * x_1), \beta(y_2 * (y_2 * x_2))\} \le \max \{\max\{\mu(((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1), \mu(z_1)\}, \max\{\beta(((x_2 * (x_2 * y_2)) * (y_2 * x_2)) * z_2), \beta(z_2)\} \} = \max \{\max\{\mu(((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1), \beta(((x * (x_2 * y_2 * (y_2 * x_2)) * z_2)\}, \max\{\mu(z_1), \beta(z_2)\} \} = \max\{(\mu \times \beta)(((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1, ((x_2 * (x_2 * y_2)) * (y_2 * x_2)) * z_2), (\mu \times \beta)(z_1, z_2)\} = \max\{(\mu \times \beta)(((x_1, x_2) * ((x_1, x_2) * (y_1, y_2))) * ((y_1, y_2) * (x_1, x_2))) * (z_1, z_2)\}.$$

Analogous to theorem 3.2[15], we have a similar result for AFSI-ideals, which can be proved in a similar manner, we state the result without proof.

Theorem 5.9.

Let μ and β be a fuzzy sets of a BCI-algebra X such that $\mu \times \beta$ is an AFSI-ideal of X \times X. Then,

- (i) Either $\mu(x) \ge \mu(0)$ or $\beta(x) \ge \beta(0)$ for all $x \in X$,
- (ii) If $\mu(x) \ge \mu(0)$ for all $x \in X$, then either $\mu(x) \ge \beta(0)$ or $\beta(x) \ge \mu(0)$,
- (iii) If $\beta(x) \ge \beta(0)$ for all $x \in X$, then either $\mu(x) \ge \mu(0)$ or $\beta(x) \ge \mu(0)$,
- (iv) Either μ or β is an AFSI-ideal of X.

Theorem 5.10.

Let β be a fuzzy set of a BCI-algebra X and let μ_{β} be the strongest anti-fuzzy relation on X. Then β is an AFSI-ideal of X if and only if μ_{β} is an anti-fuzzy sub-implicative ideal of X × X.

Proof. Assume that β is an AFSI-ideal of X. We note from (AF₁) that μ_{β} (0,0) = max{ β (0), β (0)} \leq max{ β (x), β (y)} = μ_{β} (x, y) for all (x, y) \in X × X. For all (x₁,x₂), (y₁,y₂), (z₁,z₂) \in X × X, we get μ_{β} ((y₁, y₂) * ((y₁, y₂) * (x₁, x₂))) = max { β (y₁ * (y₁ * x₁), y₂ * (y₂ * x₂)) \in max { β (((x₁ * (x₁ * y₁)) * (y₁ * x₁)) * β (z₁)}, β (z₁)}, max { β (((x₂ * (x₂ * y₂)) * (y₂ * x₂)) * z₂), β (z₂)}} = max { α (((x₁ * (x₁ * y₁)) * (y₁ * x₁)) * z₁), β (((x₂ * (x₂ * y₂)) * (y₂ * x₂)}, max { β (z₁), β (z₂)}} = max { μ_{β} ((((x₁ * (x₁ * y₁)) * (y₁ * x₁)) * z₁, ((x₂ * (x₂ * y₂)) * (y₂ * x₂)) * z₂), μ_{β} (z₁, z₂)} = max { μ_{β} ((((x₁ * (x₁ * y₁)) * (y₁ * x₁)) * z₁, ((x₂ * (x₂ * y₂)) * (y₂ * x₂)) * z₂), μ_{β} (z₁, z₂)} = max { μ_{β} ((((x₁, x₂) * ((x₁, x₂) * ((y₁, y₂))) * ((y₁, y₂) * (x₁, x₂))) *

$$(z_1,z_2)$$
, μ_{β} (z_1,z_2) .

Hence, μ_{β} is an anti-fuzzy sub-implicative ideal of $X \times X$. Conversely, suppose that μ_{β} is an AFSI-ideal of $X \times X$. Then for all $(x, y) \in X \times X$, $\max\{\beta(0), \beta(0)\} = \mu_{\beta}(0, 0) \le \mu_{\beta}(x, y) =$ $\max\{\beta(x), \beta(y)\}\$ follows that $\beta(0) \leq \beta(x)$ for all $x \in X$, which proves (AF_1) . Now, let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$. Then, $\max \{\beta(y_1 * (y_1 * x_1)), \beta(y_2 * (y_2 * x_2))\} =$ $\mu_{\beta} (y_1 * (y_1 * x_1), y_2 * (y_2 * x_2)) =$ $\mu_{\beta}\left(\left(y_{1}\;,\,y_{2}\right)\;*\left(\left(y_{1}\;,\,y_{2}\right)\;*\left(x_{1}\;,\,x_{2}\right)\right)\right)\leq$ $\max \{ \mu_{\beta} ((((x_1,x_2)*((x_1,x_2)*(y_1,y_2)))*((y_1,y_2)*(x_1,x_2)))*$ (z_1,z_2) , μ_{β} (z_1,z_2) = $\max \{\, \mu_{\beta} \, (((x_1 \! * (x_1 \! * y_1)) \! * (y_1 \! * x_1)) \! * z_1, \! ((x_2 \! * (x_2 \! * y_2)) \! *$ $(y_2 * x_2)$ * z_2 , μ_β (z_1, z_2) = $\max \{ \max \{ \beta (((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1),$ $\beta (((x_2 * (x_2 * y_2)) * (y_2 * x_2) * z_2)), \max \{\beta (z_1), \beta (z_2)\}\} =$ $\max \{ \max \{ \beta (((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1), \beta (z_1) \},$ $\max\{\beta(((x_2*(x_2*y_2))*(y_2*x_2))*z_2),\beta(z_2)\}\}.$ Take $x_2 = y_2 = z_2 = 0$, then $\beta (y_1 * (y_1 * x_1)) \le$ $\max\{\beta (((x_1 * (x_1 * y_1)) * (y_1 * x_1)) * z_1), \beta(z_1)\}. \text{ Then } \beta \text{ is}$

Corresponding author

an anti-fuzzy sub-implicative ideal of X.

Ahmed I. Marie

Department of Mathematic, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt samymostafa@yahoo.com, ahmedibrahim500@yahoo.com

References

- [1] p. Bhattacharya and N.P. Mukherjee, Fuzzy relations and fuzzy group, Inform. Sci. 36(1985) 267 282.
- [2] R. Biswas, Fuzzy Sub group and anti fuzzy subgroub, Fuzzy Sets and Systems, 35(1990), 121 124.
- [3] P. S. Das, Fuzzy groups and level subgroups, Math. Anal. Appl, 84(1981), 264 269.
- [4] J. A. Goguen, L-fuzzy sets, J. Math.Anal.Appl,18(1967), 145 – 179.
- [5] S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyung Pook Math. J, 38(1998), 145 – 150.
- [6] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon, 23(1978),1–26.
- [7] Y. B. Jun, characterization of fuzzy ideals by their level ideals in BCK(BCI)-algebras, Math. Japon, 38(1993), 67-71.
- [8]Y. B. Jun, Closed fuzzy ideals in BCI-algebras, Math. Japonica, 38(1) (1993), 199 202.
- [9] B. Jun, Fuzzy Sub-implicative ideals of BCI-algebras, Bull. Korean Math, 39(2002). No.2, 185 198.
- [10] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and systems,

- 123(2001), 227 237.
- [11] Y. L. Liu and J. Meng, Sub-implicative ideals and sub-commutative ideals of BCI-algebras, Soochow J. Math, 26 (2000), 441-453.
- [12] D. S. Malik and J. N. Mordeson, Fuzzy relation on rings and groups, Fuzzy Sets and Systems, 43(1991) 117 – 123.
- [13] J. Meng and X. L. Xin, implicative BCI-algebras, Pure Appl. Math.(in china)8:2(1992), 99-103.

11/11/2011

- [14] J. Meng, On ideals in BCK-algebras, Math. Japon, 40(1994), 143 154.
- [15] Samy M. Mostafa, Fuzzy implicative ideals in BCK-algebras, Fuzzy Sets and Systems, 87(1997) 361 – 368
- [16] O. G. Xi, Fuzzy BCK-algebras, Math. Japon, 36(1991), 935 942.
- [17] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.