# Rotational Behavior at High Angular Momentum in Even-Even Nuclei in the Region of Nuclear Shells N=78-98

## N. A. Mansour<sup>\*</sup> and N. M. Eldebawi

Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt nassif\_mansour@hotmail.com

Abstract: The yrast sequence in the even-even nuclei with N=78-98 has been extended to  $I_x>32$  and at studying their properties are presented. At high rotational frequencies the +ve band has little spin alignment and have moments of inertia which remain constant as a function of frequency. Information obtained suggests the existence of a deformation close to the neutron shell N=82. In the band of <sup>160</sup>Yb displays a strong up bending at  $\hbar\omega \simeq 0.40$ MeV, where as in the <sup>158</sup>Er at  $\hbar\omega \simeq 0.35$  MeV. In the odd – Z nucleus <sup>150</sup>Tm, no alignment effect has been observed between  $\hbar\omega \simeq 0.35$ -0.45 Mev. The second backbending in the yrast band of even-even nuclei near A $\cong$  158 (<sup>158</sup>Er, <sup>160</sup>Yb) due to an h<sub>11/2</sub> proton. The second backbending in the yrast band in the same even-even nuclei alignment [N. A. Mansour and N. M. Eldebawi Rotational Behavior at High Angular Momentum in Even-Even Nuclei in the Region of Nuclear Shells N=78-98]. Journal of American Science 2011; 7(11):265-268]. (ISSN: 1545-1003). http://www.americanscience.org.

Keywords: Moment of inertia - Nuclear shells-Shape transition - Alignment- Backbending. PACS No: 21.00, 21.10 f.

#### 1. Introduction

The  $\gamma$ -ray decay de-exciting a deformed nucleus with large angular momentum proceeds along a sequence which is composed of various rotational bands [2]. Following the discovery of the second backbending in the vrast band in some even-even nuclei, most experimental and theoretical [3,4] work has focused on an understanding of the rotational frequencies [2] at which such a decay crosses from one rotational band to another i.e., band crossing frequencies. Even-even isotopes was chosen for the present study as, by virtue of its deformation and the positions of its Fermi levels for neutrons and protons, it is expected to be a case where the frequency different between the lowest and next-lowest band crossings along the yrast sequence is as large as possible. This feature allows the study of rotational bands over a large range of angular momentum (or angular frequency  $\hbar\omega$  $\sim E_{\nu}/2$  ). In the present work, we report on an calculated investigation of the yrast bands in the odd-neutron nucleus  ${}^{157}_{68}Er_{89}$  and in  ${}^{159}_{69}Tm_{90}$  odd-proton nucleus, up to the range of rotational frequencies [5] where the second backbending has been seen in the neighboring even-even nuclei  $(\hbar\omega \simeq 0.40 \text{ MeV}).$ 

These two odd-mass nuclei were selected because both of them between even-even nuclei that are known to display a second backbending, i.e., <sup>156</sup>Er [6,7] and <sup>158</sup>Er for <sup>159</sup>Er, and <sup>158</sup>Er and <sup>160</sup>Yb for <sup>159</sup>Tm [6]. In these two nuclei the based extended up to  $69^+/2$  in <sup>157</sup>Er and  $43^+/2$  in <sup>159</sup>Tm, corresponding to [7,9] rotational frequencies well above the critical value for

the second backbending.

#### 2- Results and Discussion

## 2-1) Calculated Alignments:

The aligned spin  $I_x$  of the yrast states in the even-even isotopes <sup>156,158</sup>Er, <sup>160</sup>Yb [6,7,8] is plotted as a function of the rotational frequency  $\hbar\omega$  in Fig (1). For comparison the results in ref.[11] are also included in the figure. The following interesting features can be observed:

(i)With decreasing mass number (decreasing deformation and decreasing moments of inertia in the ground band) the first backbending become sharpers which reflects decreasing interaction energy between the ground band and the two neutron  $i_{13/2}$  band (s-band). The decrease in the interaction energy is predicted by Cranked shell model [12]

At high frequencies the behavior of the three nuclei is rather different. In the range between 0.38 and 0.45 MeV I<sub>x</sub> depends linearly on  $\hbar\omega$  for <sup>156</sup>Er. In this frequency region <sup>158</sup>Er shows a gradual increase of Ix, where <sup>160</sup>Yb and <sup>159</sup>Tm show a sharp backbending. The yrast bands of <sup>157</sup>Er and <sup>159</sup>Tm are compared with the yrast bands of the even-even nuclei <sup>156</sup>Er and <sup>158</sup>Er (Z=68 isotopes), and of <sup>158</sup>Er and <sup>160</sup>Yb (N=90 isotones) respectively.

## 2-2) The structure changes far from stability line.

One of the most challenging goals of nuclear structure physics is to determine how the structure of nuclei changes [13] far away from the stability line. Recent results on such nuclei suggest that some major shell gaps are weakened when large isospin values are encountered (large neutron excess). Figure (2) displays the gamma ray energy of the first  $2^+$  level for even-even nuclei for the N range 78-98. We can clearly see a peak corresponding to doubly magic nuclei Z, N=64, 82 respectively.

The  $S_{2n}$  values deduced from the calculations are shown in figure (3). If we consider the behavior of  $S_{2n}$  for Dy isotopes as a reference of the standard shell structure. From N=86 to N=90 the  $S_{2n}$  values include an extra energy given by deformation, which allows the nuclei to minimize their binding energy with one more degree of freedoms. At N > 90 a strong decrease is observed. This may be result of the possible vanishing of shell closure.

In figure (4) we plotted the energy gap for proton  $\Delta_p$  versus the angular frequency. It shows that  $\Delta_p$  decreases gradually at first, for small values of  $\boldsymbol{\omega}$ . As  $\boldsymbol{\omega}$  increases  $\Delta p$  has a constant value and suddenly falls off sharply, and at certain critical value of  $\boldsymbol{\omega}$ ,  $\Delta_p$  approach to zero.

Table (1): Comparison between the calculated values of  $\hbar\omega$  vs. I<sub>x</sub> for (Z = 68) <sup>156</sup>Er, <sup>157</sup>Er and <sup>158</sup>Er Isotopes, and for (N = 90) <sup>160</sup>Er, <sup>158</sup>Yb and <sup>159</sup>Tm Isotones.

|   |                   | <i>, , , , , , , , , , , , , , , , , , , </i> |                   |    |                   |      |            |    |            |    |                   |      |
|---|-------------------|-----------------------------------------------|-------------------|----|-------------------|------|------------|----|------------|----|-------------------|------|
|   | <sup>156</sup> Er |                                               | <sup>158</sup> Er |    | <sup>157</sup> Er |      | 160        | Er | 158        | ŕb | <sup>159</sup> Tm |      |
|   | $\hbar \omega$    | Ix                                            | $\hbar\omega$     | Ix | ħ <b>ω</b>        | Ix   | ħ <b>ω</b> | Ix | ħ <b>ω</b> | Ix | ħ <b>ω</b>        | Ix   |
| ĺ | 0.233             | 4                                             | 0.173             | 4  | 0.134             | 8.5  | 0.136      | 4  | 0.246      | 4  | 0.107             | 8.5  |
|   | 0.275             | 6                                             | 0.224             | 6  | 0.208             | 10.5 | 0.19       | 6  | 0.288      | 6  | 0.247             | 10.5 |
|   | 0.311             | 8                                             | 0.264             | 8  | 0.264             | 12.5 | 0.233      | 8  | 0.324      | 8  | 0.282             | 12.5 |
|   | 0.339             | 10                                            | 0.291             | 10 | 0.534             | 14.5 | 0.267      | 10 | 0.35       | 10 | 0.302             | 14.5 |
|   | 0.342             | 12                                            | 0.406             | 12 | 0.353             | 16.5 | 0.29       | 12 | 0.342      | 12 | 0.221             | 16.5 |
|   | 0.262             | 14                                            | 0.155             | 14 | 0.383             | 18.5 | 0.392      | 14 | 0.255      | 14 | 0.181             | 18.5 |
|   | 0.273             | 16                                            | 0.236             | 16 | 0.402             | 20.5 | 0.267      | 16 | 0.284      | 16 | 0.246             | 20.5 |
|   | 0.313             | 18                                            | 0.284             | 18 | 0.405             | 22.5 | 0.328      | 18 | 0.314      | 18 | 0.308             | 22.5 |
|   | 0.356             | 20                                            | 0.329             | 20 | 0.403             | 24.5 | 0.341      | 20 | 0.367      | 20 | 0.361             | 24.5 |
|   | 0.387             | 22                                            | 0.371             | 22 | 0.397             | 26.5 | 0.37       | 22 | 0.363      | 22 | 0.107             | 26.5 |
|   | 0.414             | 24                                            | 0.403             | 24 | 0.417             | 28.5 | 0.4        | 24 | 0.367      | 24 | 0.247             | 28.5 |
|   | 0.383             | 26                                            | 0.423             | 26 | -                 | -    | 0.383      | 26 | 0.371      | 26 | -                 | -    |
|   | 0.442             | 28                                            | 0.43              | 28 | -                 | -    | 0.422      | 28 | 0.393      | 28 | -                 | -    |
|   | 0.45              | 30                                            | 0.438             | 30 | -                 | -    | 0.43       | 30 | 0.397      | 30 | -                 | -    |
|   | -                 | -                                             | 0.453             | 32 | -                 | -    | 0.452      | 32 | 0.393      | 32 | -                 | -    |

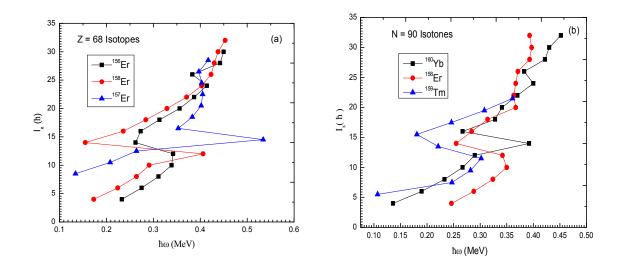



Fig. (1): Comparison between the alignment plots of  $I_x$  vs  $\hbar\omega$ (a) For the Z = 68 Isotopes (b) For the N = 90 Isotones (positives band).

|                  | <i>z</i> ,, <u>z</u> | ))               | una III |                  |         |                  |         |                  |         |                  |         |                  |         |                  |         |
|------------------|----------------------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|
| <sub>58</sub> Ce |                      | <sub>60</sub> Nd |         | <sub>62</sub> Sm |         | <sub>64</sub> Gd |         | <sub>66</sub> Dy |         | <sub>68</sub> Er |         | <sub>70</sub> Yb |         | <sub>72</sub> Hf |         |
| Ν                | $E_2^+$              | Ν                | $E_2^+$ | Ν                | $E_2^+$ | Ν                | $E_2^+$ | Ν                | $E_2^+$ | Ν                | $E_2^+$ | Ν                | $E_2^+$ | Ν                | $E_2^+$ |
| 86               | 0.397                | 84               | 0.697   | 82               | 1.66    | 80               | 0.743   | 78               | 0.493   | 80               | 0.647   | 82               | 1.532   | 82               | 1.513   |
| 88               | 0.259                | 86               | 0.454   | 84               | 0.747   | 82               | 1.972   | 80               | 0.683   | 82               | 1.579   | 84               | 0.821   | 84               | 0.858   |
| 90               | 0.159                | 88               | 0.302   | 86               | 0.55    | 84               | 0.784   | 82               | 1.677   | 84               | 0.808   | 86               | 0.536   | 86               | 0.557   |
| 92               | 0.097                | 90               | 0.13    | 88               | 0.334   | 86               | 0.638   | 84               | 0.804   | 86               | 0.561   | 88               | 0.358   | 88               | 0.39    |
| 94               | 0.082                | 92               | 0.073   | 90               | 0.122   | 88               | 0.344   | 86               | 0.614   | 88               | 0.345   | 90               | 0.243   | -                | -       |
| -                | -                    | 94               | 0.071   | 92               | 0.082   | 90               | 0.123   | 88               | 0.335   | 90               | 0.192   | -                | -       | -                | -       |
| -                | -                    | 96               | 0.067   | 94               | 0.076   | 92               | 0.089   | 90               | 0.138   | 92               | 0.126   | -                | -       | -                | -       |
| -                | -                    | -                | -       | 96               | 0.073   | 94               | 0.08    | 92               | 0.099   |                  | -       | -                | -       | -                | -       |
| -                | -                    | -                | -       | 98               | 0.071   | 96               | 0.075   | 94               | 0.087   | -                | -       | -                | -       | -                | -       |

Table (2): Experimental  $\nu$ -ray transition energy of the first 2<sup>+</sup> level for even – evennuclei Ce, Nd, Gd,Dy, Er, Yb, and Hfisotopic nuclei [ 6, 7, 8, 9 ].

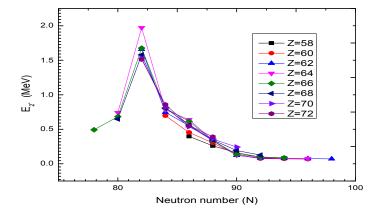
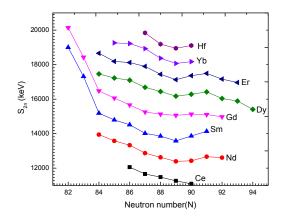




Fig. (2): Gamma-ray energy of the first 2<sup>+</sup> level for even – even nuclei Ce, Nd, Gd, Dy, Er, Yb, and Hf

Table (3): The calculated two neutron separation energy  $(S_{2n})$  values for the isotopic nuclei between the N = 82 and N = 94 shell closures.

| <sub>58</sub> Ce |                 | <sub>60</sub> Nd |                 | <sub>62</sub> Sm |          | <sub>64</sub> Gd |                 | <sub>66</sub> Dy |                 | <sub>68</sub> Er |                 | <sub>70</sub> Yb |                 | <sub>72</sub> Hf |                 |
|------------------|-----------------|------------------|-----------------|------------------|----------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|
| Ν                | S <sub>2n</sub> | Ν                | S <sub>2n</sub> | Ν                | $S_{2n}$ | Ν                | S <sub>2n</sub> |
|                  | (KeV)           |                  | (KeV)           |                  | (KeV)    |                  | (KeV)           |                  | (KeV)           |                  | (KeV)           |                  | (KeV)           |                  | (KeV)           |
| 86               | 12059           | 84               | 13943           | 82               | 19002    | 82               | 20140           | 84               | 17460           | 84               | 18660           | 85               | 19260           | 87               | 19840           |
| 87               | 11660           | 85               | 13577           | 83               | 17313    | 83               | 18428           | 85               | 17224           | 85               | 18190           | 86               | 19220           | 88               | 19190           |
| 88               | 11479           | 86               | 13326           | 84               | 15187    | 84               | 16479           | 86               | 17101           | 86               | 18120           | 87               | 18930           | 89               | 18950           |
| 89               | 11260           | 87               | 12868           | 85               | 14796    | 85               | 16062           | 87               | 16685           | 87               | 17900           | 88               | 18370           | 90               | 19110           |
| 90               | 11090           | 88               | 12626           | 86               | 14513    | 86               | 15660           | 88               | 16438           | 88               | 17440           | 89               | 18070           | -                | -               |
| -                | -               | 89               | 12392           | 87               | 14013    | 87               | 15254           | 89               | 16175           | 89               | 17130           | 90               | 18170           | -                | -               |
| -                | -               | 90               | 12424           | 88               | 13859    | 88               | 15129           | 90               | 16282           | 90               | 17360           | -                | -               | -                | -               |
| -                | -               | 91               | 12665           | 89               | 13578    | 89               | 15063           | 91               | 16416           | 91               | 17490           | -                | -               | -                | -               |
| -                | -               | 92               | 12607           | 90               | 13861    | 90               | 15128           | 92               | 16036           | 92               | 17160           | -                | -               | -                | -               |
| -                | -               | -                | -               | 91               | 14136    | 91               | 15106           | 93               | 15887           | 93               | 16965           | -                | -               | -                | -               |
|                  | -               | -                | -               | -                | -        | 92               | 14973           | 94               | 15408           | -                | -               | -                | -               | -                | -               |



94 shell closures.

#### **3-Conclusion**

In this work we investigated high angular momentum properties in the odd-N nucleus <sup>157</sup>Er and in the odd-Z nucleus <sup>159</sup>Tm, corresponding to a rotational frequency  $\hbar\omega \approx .42$  MeV, in <sup>157</sup>Er and  $\hbar\omega \approx .45$ MeV in <sup>158</sup>Tb. This is well above the frequency region where a second backbending is known to occur in the neighboring even-even nuclei. A sharp up bending has been observed in favored band of  $^{157}$ Er at  $\hbar\omega$  $\approx$ .40MeV, wheres in <sup>159</sup>Tm, no evidence for a pair alignment in the frequency range 0.30M  $\leq \hbar \omega \leq 0.40 MeV$  has been obtained. The study of the shell closures N = 82 is particularly interesting since the vanishing of the latter one could be the first piece of evidence for the weakening of the spin-orbit force.

## **Corresponding author**

N. A. Mansour

Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt nassif mansour@hotmail.com

#### **4-References**

- 1- Johnson A., H. Ryde, and I. Sztarkier, Evidence for a "singularity" in the nuclear rotational band structure, Phys. Letter 34B, 605(1971).
- 2- Mansour N. A., and A. M. Diab, Phenomenological anharmonic vibrational models description for the ground state band energies of even-even nuclei,
- 3- Mansour N. A. (2008). Search for entrance-and exit -channel effects and the suppression of neutron emission from the decay of the compound nucleus  $^{156}\text{Er*}$  , Bulg. J. Phys., 35: 182.
- 4- Mansour N., and A. F. Saad (2009). Study of the vrast band structure of the Hafnium isotopes, Bulg. J. Phys.,

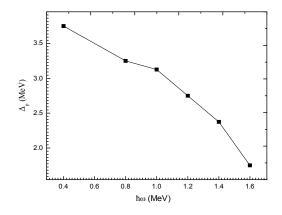



Fig. (3): Calculated  $S_{2n}$  values between the N = 82 and N = Fig. (4): Change of energy gap for proton ( $\Delta_n$ ) with angular frequency

36: 224.

- 5- Holzmann R., M. Loiselet, M. A. Van Hove, and J. Vervier (1989) High-spin states in <sup>157,158</sup>Er and <sup>158,159</sup>Tm , Phys. Rev., C31: 421.
- 6- Byrski T., F. A. Beck, C. Gehringer, J. C.Merdinger, Y. schutz, and J. P. Vivien (1981). Second backbending in the yrast line of <sup>156</sup>Er\* Phys. Let., 102B: 235.
- 7- Dudek J., W. Nazarewicz, and Z. Szymanski(1981). Independent quasiparticale analysis of rotational bands in <sup>156</sup> Er . Phys. Scr., 24:309.
- 8- Lara bee A.J., and J. C. Waddington (1981). h-11/2 Band in <sup>159</sup>Tm and the second yrast crossing in <sup>158</sup>Er and 160Yb . Phys. Rev., C24:2367.
- 9- Grosse E., F. S. Stephens and, and R.O. M. Diamond (1973). Test of backbending models using odd - A nuclei, Phys. Rev. lett., 31:840.
- 10- Beuscher H., W. F. Davidson, R.M. Lieder, and A. Neskakis (1974), High-spin coriolis-decoupled bands in <sup>190-194</sup>Hg. states and Phys. Rev. Lett., 32:843-845.
- 11- Lee I. Y., M. M. Aleonard, M. A. Deleplanque, Y. El masri, J. O. Newton, R. S. Sinon, R. M. Diamond, and F. S. Stephen (1977). Second discontinuity in the yrast levels of <sup>158</sup>Er. Phys. Rev. Letter., 38:1454.
- 12- Blume K. P., A. Hübel, M. Murzei, J. Recht, and K. Theine, H. Kluge, A. Kuhnert, K. H. Maier and A. Maj, M. Guttormsen, A. P. Delima (1987). Averag magnetic moments of pre-yrast high spin states in 166,165 Hf, Nuclear Phys., A464:445.
- 13- Piepke A., N. A. Mansour, A Moussavi, H. Sanchez, H. Streecker, K. Grotz, J.Metzinger, and H. V. Klapdor(1988). Investigation of High-Spin States in <sup>152153</sup>Ho, Nuclear Physics, A486:335.
- 14- Atomic mass and binding energies for nuclei, Book by Kratsov V.A. Moscow (1974), C.344, page 62 – 154.

11/2/2011