
Journal of American Science, 2011;7(10) http://www.americanscience.org

 599

Analysis of various dynamic load balancing strategies used in parallel systems

Atul Kumar Singh, Akhil Jain, Mohammad Haroon, Garima Singh

Department of Computer Science, College of Engineering, Teerthanker Mahaveer University, Moradabad (U.P.),
India

Email: er.atul.kumar.singh@gmail.com, toakhiljain@gmail.com, haroonayme@gmail.com,
garimasingh.0606@gmail.com

Abstract: In this paper the dynamic load balancing strategies are discussed to minimize the execution time of single
applications running in parallel on multicomputer systems. Dynamic load balancing is important for the efficient use
of parallel systems. Dynamic load balancing schemes are needed to solve non-uniform problems on multiprocessor
systems. Distribution of the work load is known as Load Balancing. An appropriate distribution of workloads across
the various processing elements is very important as disproportional workloads can eliminate the performance
benefit of parallelizing the job. Load balancing on parallel systems is a critical and challenging activity. Load
balancing policies may be categorized as static or dynamic. Static load balancing algorithms distribute the tasks to
processing elements at compile time and are generally based on the information about average behavior of the
system, while dynamic algorithms bind tasks to processing elements at run time and react to the actual current
system state in making transfer decisions.
[Atul Kumar Singh, Akhil Jain, Mohammad Haroon, Garima Singh. Analysis of various dynamic load balancing

strategies used in parallel systems. Journal of American Science 2011; 7(10):599-606]. (ISSN: 1545-1003).

http://www.americanscience.org.

Keywords: Dynamic Load Balancing, Parallelism, Microprocessors.

Introduction:-
One of the most important issues is how to
effectively utilized parallel computers that have
become increasingly complex to improve the
performance. Such systems are constructed by
different processor connected with communication
link to operate in parallel with relatively low cost
known as multi processor system.

The parallel computer is one of the remarkable
developments of methodology and technology in
computer science in recent years. Due to
multiprocessor structure of the computer architecture,
this computer has a capability to execute multiple
instructions or multiple data simultaneously. The
parallel computer not only provides support for
efficient computation of mathematical, economical,
industrial, and ecological problems but also aims new
computer architecture beyond the traditional von
Neumann type.

And multiprocessor system be very efficient at
solving problems that can be partitioned into tasks
with uniform computation and communication
patterns. However, there exists a large class of non
uniform problems with uneven and unpredictable
computation and communication requirements.
Therefore Dynamic load balancing (DLB) schemes
are needed to efficiently solve non-uniform problems
on multiprocessor systems.

In the present project, efforts are concentrated on the
design of a novel multiprocessor architecture and to
schedule the arriving load on to it, in order to achieve
higher performance. In addition to designing an
appropriate network, the efficient management of
parallelism on the network involves optimizing
performance needed like the minimization of
communication and scheduling overhead.
In addition to the simulation studies are carried out to
compare the performance of proposed triangular
network and these scheduling schemes with standard
hypercube multiprocessor architecture.
Need For Parallelism:

• Need of parallelism arise from the need to
build faster and faster machines and achieve
higher computing speed.

• When applications require throughput rates
that are not easily obtained with today’s
sequential machines, parallel processing
offers a solution.

• Parallel processing is based on
Multiprocessor processors working together
to accomplish a task to gain high
performance.

• Exploiting parallelism is now a necessity to
improve the performance of computer
systems.

Journal of American Science, 2011;7(10) http://www.americanscience.org

 600

That’s why we need to develop a
multiprocessor architecture with low cost
and high performance.

Generally stated, parallel processing is based on
several processors working together to accomplish a
task. The basic idea is to break down, or partition, the
computation into smaller units that are distributed
among the processors. In this way, computation time
is reduced by a maximum factor of p, where p is the
number of processors present in the multiprocessor
system.

Most parallel algorithms incur two basic cost
components:

1. Computation delay—under which we
subsume all related arithmetic/logic
operations, and

2. Communication delay—which includes data

movement.

In a realistic analysis, both factors should be
considered.

Dynamic load Balancing
Dynamic load balancing (DLB) is essential for the
efficient use of highly parallel systems when solving
non-uniform problems with unpredictable load
estimates. Dynamic load balancing schemes which
seek to minimize total execution time of a single
application running in parallel on a multicomputer
system.
Multiprocessor system be very efficient at solving
problems that can be partitioned into tasks with
uniform computation and communication patterns.
However, there exists a large class of non uniform
problems with uneven and unpredictable computation
and communication requirements. Therefore
Dynamic load balancing (DLB) schemes are needed
to efficiently solve non-uniform problems on
multiprocessor systems
To do so, an optimal tradeoff between the processing
& communication overhead and the degree of
knowledge used in the balancing process must be
sought.

A GENERAL DYNAMIC LOAD BALANCING
MODEL:-
We have developed a general model for dynamic
load balancing.
This model is organized as a four phase process:

1) Processor load evaluation
2) Load balancing profitability Determination
3) Task migration strategy

4) Task selection strategy
Phase1: Processor Load Evaluation

• A load value is estimated for each processor
in the system.

• These values are used as input to the load
balancer to detect load imbalances and make
load migration decisions.

 Phase2: Load Balancing Profitability
Determination:

• The imbalance factor quantifies the degree
of load imbalance within a processor domain.

• It is used as an estimate of potential speedup
obtainable through load balancing

• It is weighed against the load balancing
overhead to determine whether or not load
balancing is profitable at that time.

 Phase 3: Task Migration Strategy:
Sources and destinations for task migration
are determined. Sources are notified of the
quantity and destination of tasks for load
balancing.

Phase 4: Task Selection Strategy:
 Source processors select the most suitable
tasks for efficient and effective load
balancing and send them to the appropriate
destinations.

• The first and fourth phases of the model are
application dependent and purely distributed.
Both of these phases can be executed
independently on each individual processor.

• Our focus is on the Profitability
Determination and Task Migration phases,
the second and third phases, of the load
balancing process

• As the program execution evolves, the
inaccuracy of the task requirement estimates
leads to unbalanced load distributions.

• The imbalance must be detected and
measured (Phase 2) and an appropriate
migration strategy devised to correct the
imbalance (Phase 3).

• During the Profitability Determination Phase
a decision is made as to whether or not to
invoke the load balancer.

• The load imbalance factor Ф(t) is an
estimate of the potential speedup obtainable
through load balancing at time t .

• It is defined as the difference between the
maximum processor loads before and after
load balancing, Lmax and Lbal , respectively.
 Ф(t)= Lmax - Lbal

A decision on whether or not to load balance is made
based on the value of Ф(t) relative to the balancing
overhead, Loverhead, required to perform the load
balancing. In general, load balancing is profitable if
the savings is greater than the overhead, i.e.

Journal of American Science, 2011;7(10) http://www.americanscience.org

 601

 Ф(t)> Loverhead

The responsibility of invoking the balancer may
either be authorized to all processors in the system or
only to designated processors containing the
necessary information. For highly parallel systems it
is desirable to distribute the responsibility to multiple
points in the system. This may be accomplished by
Partitioning the system into independent groups of
processors called balancing domains. The size of a
balancing domain may range anywhere from a few
processors to the entire system.

Load balancing decisions are based solely on
information pertaining to those processors within
each domain. The notion of balancing domains is a
way of distributing the balancing process.
Furthermore, by decreasing the number of processors
being considered in the balancing process, balancing
domains reduce the complexity of calculating the
imbalance factor as well as the complexity of phase 3,
the Load Migration Strategy.

Potentially more accurate migration strategies are
made possible by larger balancing domains. However,
larger domains may increase the aging period of
information and cause the load balancing overhead to
be more unevenly distributed. These tradeoffs are
illustrated by the different strategies to be discussed.

DYNAMIC LOAD BALANCING STRATEGIES:
The following five DLB strategies are designed to
support highly parallel systems.

1. Sender Initiated Diffusion (SID)
2. Receiver Initiated Diffusion (RID)
3. Hierarchical Balancing Method (HBM)
4. Gradient Model (GM)
5. Dimension Exchange Method (DEM)
The schemes presented vary in the amount of
processing and communication overhead and in
the degree of knowledge used in making
balancing decisions.

 (1) Knowledge- The accuracy of each balancing
decision
 (2) Overhead- The amount of added
processing and communication incurred by the
balancing process.

The load balancing overhead includes the
communication costs of acquiring load information
and of informing processors of load migration
decisions, and the processing costs of evaluating load
information to determine task transfers.

1. Sender Initiated Diffusion (SID)

The SID strategy is a, local, near-neighbor diffusion
approach which employs overlapping balancing
domains to achieve global balancing. A similar
strategy, called Neighborhood averaging, is proposed
in. The scheme is purely distributed and
asynchronous. Each processor acts independently,
apportioning excess load to deficient neighbors.

It has been shown in, that for an N processor system
with a total system load L unevenly distributed across
the system, a diffusion approach, such as the SID
strategy, will eventually cause each processor’s load
to converge to L/N.

Balancing is performed by each processor whenever
it receives a load update message from a neighbor
indicating that the neighbors load, 1i<Ideal Load ,
where Ideal Load is a preset threshold. Each
processor is limited to load information from within
its own domain, which consists of itself and its
immediate neighbors. All processors inform their
neighbors of their load levels and update this
information throughout program execution. The
profitability of load balancing is determined by first
computing the average load in the domain, Lp,

2. Receiver Initiated Diffusion (RlD):

The RID strategy can be thought of as the converse
of the SID strategy in that it is a receiver initiated
approach as opposed to a sender initiated approach.
However, besides the fact that in the RID strategy
under loaded processors request load from
overloaded neighbors, certain subtle differences exist
between the strategies. First, the balancing process is
initiated by any processor whose load drops below a
pre specified threshold (L L o w) .

Second, upon receipt of a load request, a processor
will fulfill the request only up to an amount equal to
half of its current load (this reduces the effect of the
aging of the data upon which the request was based).
Finally, in the receiver initiated approach the under
loaded processors in the system take on the majority
of the load balancing overhead, which can be
significant when the task granularity is fine.

Journal of American Science, 2011;7(10) http://www.americanscience.org

 602

As with the SID strategy, each processor is limited to
load information from within its own domain, which
consists of itself and its immediate neighbors. All
processors inform their near-neighbors of their load
levels and update this information throughout
program execution.

The RID strategy differs from its counterpart SID in
the task migration phase. Here, an under loaded
processor first sends out requests for load and then
receives acknowledgment for each request.

3. The Gradient Model (GM)

• The gradient model is a demand driven
approach.

• The basic concept is that under loaded
processors inform other processors in the
system of their state, and overloaded
processors respond by sending a portion of
their load to the nearest lightly loaded
processor in the system.

• This model employs a gradient map of the
proximities of under loaded processors in
the system to guide the migration of tasks
between overloaded and under loaded
processors.

The resulting effect is a form of relaxation where
tasks migrating through the system are guided by
the proximity gradient and gravitate
towards under loaded points. The scheme is
based on two threshold parameters: the Low-
Water-Mark (LWM) and the High- Water-Mark
(HWM). A processor’s state is considered light if
its load is below the LWM, heavy if above the
HWM, and moderate otherwise. A node’s
proximity is defined as the shortest distance from
itself to the nearest lightly loaded node in the
system. All nodes are initialized with a proximity
of wmax, a constant equal to the diameter of the
system. The proximity of a node is set to 0 if its
state becomes light. All other nodes p with near-
neighbors n2 compute their proximity as

 proximity(p) = min (proximity(ni)) + 1.

A node’s proximity may not exceed wmax. A
system is saturated, and does not require load
balancing if all nodes report a proximity of
wmax.If the proximity of a node changes it must
notify its near-neighbors. Hence, the balancing
process is initiated by lightly loaded processors
reporting a proximity of 0. In order for load
balancing to take place, there must be at least
one overloaded processor and one under loaded
processor in the system. No measure of the
degree of imbalance is made, only that one exists.

This criterion is characterized by the simplified
version of the load balancing profitability
determination phase, where, given an overloaded
processor p and an under loaded processor q,

 Lp - Lq > HWM - LWM.

The proximity map is used to perform the
migration phase. If a processor’s state is heavy
and any of its near-neighbors report a proximity
less than wmax, then it sends a unit of its load to
the neighbor of lowest proximity. Tasks are
routed through the system in the direction of the
nearest under loaded processors. A task
continues to migrate until it reaches an under
loaded processor or it reaches a node for which
no neighboring nodes report a lower proximity.
The scheme is illustrated in Figure below. In this
example, there are two overloaded nodes in the
system and one under loaded node. The
overloaded nodes are at different proximities
from the under loaded node, but both send a
fraction of load, 6, in the direction of the under
loaded processor. The value of 5 can be
determined as either a percentage of the initial
load, or as a fixed number of tasks. The scheme
may perform inefficiently when either too much
or too little work is sent to an under loaded
processor.

Given N processors interconnected using a
hypercube topology, in the worst case, an update
of the gradient map, to recognize the presence of
a new under loaded processor, would require,

 CtOt(update) = N log Nmessages.

The worst case occurs when there are no other
under loaded processors in the system.
The migration of tasks from overloaded to under
loaded processors incurs added overhead due to
the asynchronous nature of the algorithm.

Journal of American Science, 2011;7(10) http://www.americanscience.org

 603

 At the other extreme, an overloaded processor,
in transferring a preset portion of load, may not
send enough to solve the imbalance. Hence, the
degree of information used in the balancing
process may lead to inefficient migration
decisions.

4. Hierarchical Balancing Method (HBM)

• It is an asynchronous global, approach
which organizes the system into a hierarchy
of subsystems.

• Load balancing is initiated at the lowest
levels in the hierarchy with small subsets of
processors and ascends to the highest level
which encompasses the entire system.

• Specific processors are designated to control
the balancing operations at different levels
of the hierarchy.

• The hierarchical balancing scheme functions

asynchronously.
• The balancing process is triggered at

different levels in the hierarchy by the
receipt of load update messages indicating
an imbalance between lower level domains.

• All load levels are initialized with each
processor sending its load information up
the tree.

5. Dimension Exchange Method (DEM)
• It is a global, fully synchronous approach.
• Load balancing is performed in an iterative

fashion by “folding” an N processor system
into log N dimensions and balancing one
dimension at a time.

Journal of American Science, 2011;7(10) http://www.americanscience.org

 604

• In this scheme small domains are balanced

first and these then combine to form larger
domains until ultimately the entire system is
balanced.

• In this scheme Balancing is initiated by any
under loaded processor which has a load that
drops below a preset threshold ,

 Lp < LThreshold
• This processor broadcasts a load balancing

request to all other processors in the system.

Comparison analysis:

The differences between the five schemes are
categorized into the following areas: sender or
receiver initiation of the balancing, type of balancing
domain, degree of knowledge used in the decision
process, aging of information in the decision process,
and overhead distribution and complexity. This
comparison is summarized in Table

A. Balancing Initiation:

Our results indicate that the receiver initiated
diffusion approach (RID) outperforms the sender
initiated approach (SID) over the entire range of task
granularities tested.

In theory, both approaches should yield
similar results. Practical implementation issues,
however, distinguish these approaches from one
another. The strategy, receives load update messages
from neighbors as in the 'ID strategy, but Operations
are triggered by changes in the processor's own load
(i.e., when it drops below a preset threshold).

Journal of American Science, 2011;7(10) http://www.americanscience.org

 605

Both the 'ID and the strategies make load
decisions based on the load status of their near
neighbors. This load information suffers from the
aging process.

 In minimizing execution time it is
beneficial to spare overloaded processors the burden
of load balancing responsibilities. The extent of the
overhead is dependent on the task granularity, and
may become significant if tasks are small.

The study concludes that the Receiver Initiated policy
is preferable to the Sender Initiated policy at high
system loads when the transfers of tasks under the
two strategies are comparable. This is understandable
since in a heavily loaded system there will be fewer
under loaded" nodes that are hard to find and a
Receiver initiated approach would be more effective.

The GM and DEM strategies are also
receiver initiated, but migration decisions are not the
sole responsibility of the receiver. In the DEM
scheme, once the balancer is invoked, migration
decisions are made synchronously by designated
processors. The GM scheme is slightly more difficult
to characterize since under loaded processors
(receivers) alert the system of their presence, but no
explicit request is made to any particular overloaded
processor (sender). Senders simply release tasks into
the system in the presence of an under loaded node.
Finally, in the HBM scheme migration decisions are
made by designated processors in the system.

B. Balancing Domains:

The use of balancing domains is a means of
decentralizing the balancing process and reducing its
complexity. Two types of domains exist; overlapping
domains which achieve global balancing through the
process of diffusion and variable domains which
change shape and/or members in subsequent
balancing iterations. It has been shown in , where
they refer to the balancing domains as buddy sets,
that for a hypercube system using overlapping
domains, there exists a maximum size domain
beyond which the balancing process no longer
benefits by using larger domains. The SID and RID
approaches employ overlapping domains while all
three other approaches use variable domains. The
balancing domains in the HBM strategy vary to
include a larger subset of processors at higher levels
in the hierarchy. The same is true for the DEM
strategy where each dimension is balanced in turn.
Finally, the GM domains vary according to the
location of the nearest under loaded processor.

C. Degree of Knowledge:

The degree of global knowledge, also referred to as
information dependency, used in the balancing
process is critical to the accuracy of balancing
decisions. The more knowledge available in the
decision process the more effectively the balancer
can correct imbalances in the global load distribution.
The SID and RID strategies only make use of a small
degree of knowledge (load levels of h-neighbors) in
each balancing decision. Both the HBM and DEM
strategies use only a small degree of knowledge in
each balancing step, but some additional knowledge
is implicitly known. The HBM strategy is structured
in such a way that, while the technique is
asynchronous, lower level domains will balance
themselves before upper level domains when
imbalances exist.

D. Aging of Information:

The accuracy of the information used by the load
balancer is vital to its effectiveness. Three of the four
strategies described make use of a periodic update
strategy. This update strategy is critical to the
accuracy of load information in terms of the aging
period. The aging of information specifically refers to
the length of the delay from the time of load
information determination to the time it is used in
making balancing decisions. This delay is particularly
critical when the load levels are changing at a rapid
rate and the load information is only valid for a short
period of time. Aside from the update interval, u(t),
on the delay depends both the system communication
latency as well as on the amount
of information being acquired. For the SID, RID, and
HBM strategies the aging period depends primarily
on the length of the update interval, u(t).

For the RID and SID strategies the aging period is
also affected by the number of processors per domain,
O(K).The HBM strategy aging period depends on the
hierarchical organization, including the number of
levels in the hierarchy as well as on the number of
processors per branch (e.g.. O(log N)for a binary-tree
organization). The aging period of the DEM strategy,
because it operates synchronously, is constant, while
that of the GM scheme is O(diameter(N)), where
diameter(N) is the maximum number of hops
between any two processors in the system.

E. Overhead Distribution and Complexity:

It is desirable to both minimize the load balancing
overhead as well as to distribute it evenly across all
processors in the system. This eliminates any
bottlenecks in the balancing process and increments

Journal of American Science, 2011;7(10) http://www.americanscience.org

 606

in the overhead will not severely impact system
performance.

Furthermore, the balancing overhead should be
scalable to support large systems. Both the SID and
RID strategies achieve a uniform overhead
distribution that is independent of AV.but increases
instead as O(K),the number of neighbors. The RID
strategy, however, requires two more messages per
task transfer. The HBM scheme also distributes the
load balancing overhead, but some processors incur a
larger portion than others. For a binary tree
organization, the disparity in the overhead
distribution is O(N/logN),or 1 : 3 given a broadcast
mechanism . Nonetheless, the average overhead per
processor increases as O(1ogN).For the DEM
strategy some synchronization mechanism is required
once the load balancer is invoked.

The overhead of the GM scheme is difficult to
measure. In setting up the gradient map each
processor in the GM scheme may need to update its
proximity O(L\T) times. Furthermore, in the GM
scheme, the processors in the path of migration incur
additional overhead in forwarding tasks to their
destinations.

Since these destinations are not fixed, unless a limit
is put on the number of hops a task is permitted to
travel, tasks may continue to migrate through the
system indefinitely.

References:

1. Ardhendu Mandal and Subhas Chandra Pal
“An Empirical Study and Analysis of the
Dynamic Load BalancingTechniques Used
in Parallel Computing Systems” Nov, 2010.

2. A.Samad, M.Q. Rafiq and Omar Farooq
“A novel algorithim for fast retrival of
information from a multiprocessor server”
Proc. Intl. on parallel and distributed system,
U.K. Feb 20 to feb 22, 2008

3. Marc H. Willebeek-LeMair, Member, IEEE,
and Anthony P. Reeves “Strategies for
Dynamic Load Balancing on Highly Parallel
Computers”, Senior Member, IEEE, IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 4, NO. 9,
SEPTEMBER 1993

4. Z. Zeng and B.Veeravalli “Design and
Performance of Queue and Rate Adjustment
Dynamic load Balancing Polices for
Distributed Network”. IEEE trans. On
computer, vol 55 ,no. 11, pp. 1410-1422,nov
2006.

5. Abdel A E and Khaled d,” The Hyperstar
interconnection Network”journal of Parallel
and distributed computing no. 48,pp 175-
199,1998

6. Aebi A., Sarbazi Azad, H., Shamaei, A.,
Meraji, S., XMulator: An Object Oriented
XML-Based Simulator, accessible at
http://www.XMulator.org, 2006.

7. Razi-Azad H., “Constraint-based
performance comparison of multi-
dimensional interconnection networks with
deterministic and adaptive routing
strategies”, Journal of Computers and
Electrical Engineering, vol. 30, pp.167-
82,2004.

8. Meraji S., Sarbazi-Azad H., Nayebi A.,
“Message routing and performance issues in
necklace hypercubes”, Technical Report,
School of Computer Science, IPM,
Tehran,Iran, 2006.

9. Nizadeh M., and Sarbazi-Azad, H., The
necklace hypercube: a well scalable
hypercube-based interconnection network
for multiprocessors, ACM SAC 2005,
pp.729-733, 2005.

10. K. G. Shin and Y.-C. Chang, “Load sharing
in distributed realtime systems with state-
change broadcasts,” IEEE Trans. Comput.,
pp. 1124-1142, Aug. 1989.

11. V. A. Saletore, “A distrubuted and adaptive
dynamic load balancing scheme for parallel
processing of medium-grain tasks,” in Proc.
Fifth Distributed Memory Comput. Conf,
Apr. 1990, pp. 995-999.

12. W. Shu and L. V. Kale, “A dynamic
scheduling strategy for the Charekernel
system,” in Proc. ACM Supercomput. Con$,
1989, pp. 389-398.

13. M. Willebeek-LeMair and A. P. Reeves, “A
general dynamic load balancing model for
parallel computers,” Tech. Rep. EE-CEG-
89- 1,Cornell School of Electrical
Engineering, 1989.

14. D. P. Bertsekas and J. N. Tsitsiklis, Parallel
and Distributed Computation:Numerical
Methods. Englewood Cliffs, NJ: Prentice-
Hall, 1989.K. M. Dragon and J. L.
Gustafson,

10/24/2011

