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Abstract: The finite element is introduced to describe the behavior of circular columns: confined, partially confined 
or reinforced with fiber reinforced polymers (FRP). Geometric and material nonlinearities are taken into 
consideration. The column is analyzed under axial force together with a biaxial moment applied at its ends. This 
paper presents the initial results of a study aimed at quantifying the increase in strength of columns due to 
introducing FRP in different methods. Results show that using FRP as external wrapping gives higher increase in 
strength than using it as embedded reinforcement. 
[Mohamed A. A. El-Shaer Nonlinear Analysis of Circular Composite Columns. Journal of American Science 2011; 
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1. Introduction 
Reinforcing or confining concrete columns with 

FRP have received significant attention for use in 
civil infrastructures due to their unique properties, 
such as the high strength to weight ratio and 
stiffness-to-weight ratio, corrosion and fatigue 
resistance and tailorability. Most of research works in 
field focus on axially loaded columns. Rousakis, 
Karabinis, Kiousis, and Tepfers (2008) used a 
strain-hardening Drucker-Prager model for the 
assessment and calibration of the elasto-plastic 
behavior of FRP confined concrete. Issa and 
Alrousan (2009) presented an experimental and 
nonlinear finite element analysis to determine the 
strength and ductility of circular short concrete 
columns confined externally with carbon 
fiber-reinforced polymer subjected to pure axial 
loading. Harajli (2006) developed a general 
mathematical model to describe the stress-strain 
relationship for FRP confined concrete. Lam and 
Teng (2009) modeled the stress strain behavior of 
FRP-confined concrete under cyclic compression. 
Other researchers focused on retrofitting short 
columns. Binici (2008) conducted a parametric study 
on a typical bridge column for different axial loads, 
reinforcement ratios and FRP amounts. Harajli 
(2009) conducted an experimental program and 
deduced design expression evaluating the minimum 
thickness of FRP jacket required for seismic 
steel-concrete bond strengthening. Tastani and 
Pantazopoulou (2008) used a database of published 
experiments on R.C. beam columns tested under 
cyclic loading after being jacketed by FRPs to assess 
rules for the problem.   

The ultimate strength that defines the 
combinations of axial load and biaxial end moment 
of concrete short and slender columns with FRP is of 
great interest in the present analysis. Interaction 

diagrams are proposed to provide a practical method 
for engineers to evaluate the ultimate strength of the 
column under consideration. 
 
Stress-Strain Relationships of Materials 
Stress strain relationship for concrete 
The stress-strain models of confined and unconfined 
concrete shown in Fig. 1 is based on an equation 
proposed by Popovics (1973) and some relations 
were simplified by the writer. The longitudinal 
compressive concrete stress fc is defined as:  
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Fig. 1 Stress-strain curve for concrete 
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where 

s= the strap width, s/= the uncovered width repeated 
along the column, s,, = the distance between the 
midpoints of the widths of two successive straps. s, s,, 
s,, are shown in Fig.2, f,

cc = compressive strength of 
confined concrete, f,

co = unconfined concrete strength, 
Єc=longitudinal compressive strain of concrete, Єcu= 
strain at maximum concrete stress, Єco= 0.002, is the 
strain at maximum concrete stress f,

co of unconfined 
concrete, Ec =tangent modulus of elasticity of 
concrete, Esec= secant modulus of confined concrete 
at peak stress and fl

/= effective lateral confining 
pressure from transverse reinforcement assumed to 
be uniformly distributed over the surface of the 
concrete core.  
 Mander, Priestly and Park (1988) proposed 
an effective lateral confining pressure by transverse 
reinforcements on the concrete section. This effective 
pressure is defined as  
 
 

 
 
Fig. 2 Longitudinal Section of the Column 
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where 

f,
l= lateral pressure from transverse reinforcement; 

Ke= confinement effectiveness coefficient; Ae= area 
of effectively confined concrete core; and Acc= 
effective area of concrete enclosed by composite 
strap given by 

)1( ccccc AA                       (9)  

where 

ρcc= ratio of area of longitudinal reinforcement 
to gross area of concrete and Ac= area of concrete 
enhanced by composite strap. 

The confining pressure induced on the concrete 
core by the composite strap is calculated by 
considering the free body of the column cross section 
confined by the strap as shown in Fig. 3.  

The outward expansion of the concrete core is 
prevented by the action of the strap placed in 
horizontal tension. From equilibrium of forces the 
confining stress can be calculated as: 
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Fig.3 Confining Action of the Composite 
Strap 

 
where 
fus= ultimate strength of composite strap; Ast= 
cross-sectional area of strap and b= diameter of 
column. 
 The area of effectively confined concrete core 
midway between the levels of straps can be 
calculated from 
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Substituting Eqs. (12 and 14) in Eq. (11) results in 
the confinement effectiveness coefficient for circular 
section given by 
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In Fig. 1 for unconfined and confined concrete, 

the area under each stress-strain curve represents the 
total strain energy per unit volume of concrete at 
failure. The difference between these two areas is 
provided for by the confining effect of the composite 
strap. The ultimate compression strain of concrete at 
the point of fracture of the confining composite strap 
can be calculated, resulting in complete 
determination of the stress-strain curve of the 
confined concrete throughout the entire range of 
loading up to the fracture of composite strap and 
consequent strain of the column Saadatmanesh, 
Ehsani and li (1994). 
 
Stress strain relationship for straps   

Composite straps behave linearly elastic to 
failure. Fig. 4 shows the stress-strain relationship for 
carbon fiber composite straps used in this paper 

 

 
Fig. 4 Stress-Strain Curves for Straps 

 

Stress strain relationship for steel 
For simplicity, the stress-strain relationship for 

the steel bars is considered to be an elastic-perfectly 
plastic curve neglecting steel hardening. The 
relationship is shown in Fig. 5 .The steel has a yield 
strength fy of 4.06E4 t/m2. 

 
Fig. 5 Stress-strain curve for steel 

 
Method of solution by partitioning of the 
cross-section 

A force Fx is considered to act at eccentricities 
ey and ez as shown in Fig. 6. A section discretization 
of the circular concrete column and FRP is applied 
and shown in Fig. 7, hence all elemental areas are 
summed up to obtain the cross-section properties. 

The maximum value of Z denoted by Zmax 
measured to the lower extreme fiber from the origin 
is 

 

bZZ  minmax                (13) 

Єo , Єu , Єm are the strain at point o, strain at the 
imaginary point Q and the maximum strain at the 
extreme concrete fibers respectively.  

The formulation of equations for the analysis of 
a circular column of concrete containing a circular 
array of longitudinal bars and a steel section of 
irregular dimensions is rather difficult. When a 
nonlinear stress distribution is imposed on this 
composite section, the analysis is further complicated. 
To overcome these difficulties a member cross 
section can be partitioned or subdivided into discrete 
elemental areas as shown in Fig. 7. 
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Fig. 6 Force vector and strain distribution 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Partitioning of the cross-section 
 
The y\ and z\ coordinates to the centroids of the 

concrete elemental areas measured from the origin Q 
shown in Fig. 7a can be more readily evaluated by 
the computer when the partitioning grid mesh is 
regularly spaced. If the number of columns in a grid, 
ncb, equals the number of rows, then each concrete 
element ΔAc= (b/ncb)

2=4Ac/Πn2
cb. 

By denoting the elemental concrete area at the i, 
jth position of the grid by ΔAcij  and the coordinates 
of its centroid by z'j and y'i, then z'j= (2j-1)b/2ncb and 
y'i= (2i-1)b/2ncb. Knowing these coordinates, the 
distance to the center of gravity of the composite 
column section from each concrete element ΔAcij can 
be calculated as [(b/2-z'j)

2+(b/2-y'i)
2]1/2. If this 

distance is less than the radius of the circular 
concrete section, b/2, then ΔAcij is effective, and if 
the distance is greater than or equal to b/2, then ΔAcij 

is equated to zero or ignored. 
The longitudinal bars are assumed evenly 

spaced around a circle of diameter b". If the total bar 
steel area=Asb, the total number of bars=nb, and if 
one steel elemental area, ΔAsb, equals one bar area, 

then ΔAsb= Asb/nb. Let the z\ and y\ coordinates of 
the centroids of the bar element ΔAsbk at the kth 
position, measured from the origin shown in Fig. 7b 
be denoted by z\

k and y\
k, then 

 

]}
2

)1cos[(1{
22

\

b

k
n

k
bbb

z








    (14) 

]}
2

)1sin[(1{
22

\

b

k
n

k
bbb

y








    (15) 

And the ratio of a steel bar to an elemental concrete 
are ρk is expressed as 
 
   ρk=ΔAb/ ΔAcij                                    (16) 
 

In case of confining with FRP, the elemental 
area at position p is of coordinates y\

pand z\
p 

as given below: 
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where nst is the total number of elemental strap areas 
in one ring around the column. 
 Fig. 7c shows the partitioning of the FRP plates 
into np elemental areas the centroidal coordinates 
from Q are y\

p and z\
p.  

By denoting the elemental area of FRP at the pth 
position by ΔAp, then 

 
 ρp=ΔAp/ ΔAcij                       (19) 
 
     Since a linear strain distribution across the 
section is assumed, the strains at the centroids of 
each elemental area can be found using the 
stress-strain relationships. The corresponding stresses 
can be computed. Differentiating the stress-strain 
relationship for concrete, steel bars and FRP gives  

ccc Gf                             (20) 

sss Gf                             (21) 

ststst Gf                            (22) 

where Gc. Gs and Gst are the elemental moduli of 
elasticity for concrete, steel and FRP respectively. 

 Consequently the properties of the cross section 
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can be determined by summing up the properties of 
the elemental areas as shown below 
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Stiffness Matrix 

The sequence of derivation of the stiffness 
matrix starting from the principal of virtual 
displacements used by Yang and Mc Graw (1986) 
was applied herein. However, they analyzed 
thin-walled axi-symmetric steel sections, ie. pure 
steel beam columns. Hence, they included geometric 
nonlinearity only. In the present study a new stiffness 
matrix considering both geometric and material 
nonlinearities is deduced. The matrix takes into 
account the inclination of neutral axis concrete crack 

diffusion, and steel yielding at increasing load levels. 
The details of the formulation are given by Zaki 
(2001).  

The system of equations of equilibrium thus 
will be in the form 
 
[k]{u}={f}                             (29) 
 
where [k] is the total of the elastic and geometric 
stiffness matrices of the column segment given in the 
Appendix, {u} is the nodal displacement vector and 
{f} is the nodal force vector.  

The segment stiffness matrices are assembled 
through an updated transformation matrix 
 
Verification of the Method 

The method of solution and program were 
verified against the column presented by 
Saadatmanesh, Ehsani and Li (1994). The 

comparison is shown in Fig. 8.  
  

Fig. 8 Curves for Saadatmanesh, Ehsani& Lie 
and present analysis 

 
The column is a prototype bridge column of 

diameter 1.524 m, 32 steel reinforcing bars were 
used for the longitudinal reinforcement to give a total 
steel area equal 46.464 mm2. The concrete used is of 
3000 t/m2 compressive strength. Carbon straps of 
thickness 5 mm covered the whole length of the 
column. The properties of steel and carbon straps are 
as given in the section introducing the stress-strain 
diagram. The interaction diagrams show plots of the 
predefined column in addition to a plot of a column 
having the same section without straps. 

The unstrapped column, the interaction diagram 
of the present analysis nearly coincides with that of 
Saadatmanesh, Ehsani and Li. For the confined 
column the present analysis gives nearly 10% 
decrease in the ultimate axial load. Both curves go in 
accordance except for the region where the moment 
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is dominant. The present analysis declares that 
retrofitting of the column remarkably increases the 
capacity of the beam-column in bending.      

 
Contours of Present Analysis 

The present study is conducted for a circular 
column of diameter 50 cm, concrete grade 3000 t/m2. 
The longitudinal bars are 10 bars of total area 
20.1cm2. Four cross-sections are considered, the first 
section includes the FRP as an imbedded I-beam 
section. The I-beam has the dimension 22*1.5 cm 
upper and lower flange, and 20*1.5 cm web. The 
concrete in this case is considered unconfined and 
denoted as I. The second section is strapped using six 
carbon straps each of thickness 10 mm. The strap 
width s and the clear spacing between straps s' are 
equal. The case is denoted as P which study for 
partially confined. The third column is fully confined 
along its length using 5 mm strap thickness. This 
case is denoted as F which stands for fully confined. 
A fourth column having the same section and with no 
FRP is used as a reference and is denoted by R. All 
columns are pin-ended at both ends, subjected to an 
axial force together with equal and opposite end 
moments at the ends. Each of the four columns is 
studied for three slenderness ratios; l/r=0, l/r=50 and 
l/r=100. Table 1 shows the notations for the different 
columns. 

All models are subjected to an axial 
compression force with equal and opposite end 
moments about each of the y-axis and z-axis. 
Contour lines are plotted. The nondimensional 
variable for axial load Fx is given as: 

 

xu

x

F

F
P                             (30) 

 
where Fxu is the squash load. 

Fig. 9 demonstrates an increase in the squash 
load Fxu equal to 63%, 70% and 139% in the case of 
L/r=0 for models I, P and F respectively over the 
reference model R. However these percentages 
decrease with increasing the slenderness ratio l/r. For 
l/r=50, the recorded increase in Fxu is 49%, 52%,91% 
while for l/r=100 the increase is 17%, 22% and 27% 
for models I, P and F respectively. 

The results show that the increase in the axial 
load of the fully confined columns, Model F, is 
greatly remarkable over model I reaching a 
difference 69% while this difference decrease as l/r 
increases reaching only 10% in case of l/r=100. It is 
also noted that results of model P are closer to model 
I than model F. 

 
 

 
 
 
 

Table 1 Properties of each I model Confined 
Strapped For steel grade 52, Concrete Strength 

(fcu)=300 Kg/cm2, and the same volume of FRP 

Slenderness 
(l/r) 

I Beam 
Imbedded 

Partially 
Confined 

Fully 
confined 

Reference 

0.0 I1 P1 F1 R1 

50.0 I2 P2 F2 R2 

100.0 I3 P3 F3 R3 

I= imbedded FRP in the column as I section, P= 50% 
of column length is covered by FRP straps, F=The 

column is totally covered by FRP straps, R= 

Reference column. 
 

Fig. 9 Interaction Diagrams for all Models 
 

The same curve ,Fig.9 , show that the increase 
gained in the bending moments is 64%, 122% and 
643% for models I, P and F respectively. 

Figs. (10 to 21) are contour lines plotted 
between Mz and My at different nondimensional axial 
loads p=0.0, 0.2, 0.5, and 0.75. Figs. 10, 11 and 12 
are plotted for model I at l/r=0.0, 50 and 100 
respectively. Figs (13 to 15), Figs (16 to 18) and Figs 
(19 to 21) are corresponding plots for models P, F 
and R respectively. Generally, it is observed that a 
dip occurs at Mz nearly half of its ultimate value Mzu 

The curves in the cases P, F and R do not show 
a symmetry about the 45 degree radial line. This is 
due to the way of loading. The axial load together 
with the moment about the z-axis were increased 
simultaneously till the desired values, then 
increments of the moments My were introduced to 
the column till failure. As an example loading the 
column to 0.75 Mzu leads to failure at My much lesser 
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than loading it to 0.25 Mzu. 
The curves indicate that as p increases a less 

increase of the ultimate moment is achieved. Taking 
case I, l/r=0.0 as an example, the bending moment 
about the Z-axis achieves an increase of 65%, 53%, 
50% and 30% over the reference R model in case of  
p=0.0, 0.20, 0.50 and 0.75 respectively. The increase 
in the maximum moment capacity is less in case of 
l/r=50 and much less in case of l/r=100. This is 
remarkable in the P and F models. However, in the 
case of I model slight discrepancies of the moment 
capacity are observed by changing the slenderness 
ratio. 

It is conducted that the use of FRP as external 
confinement all over the length of the column give 
remarkable increase in strength results beyond partial 
confining although the thickness of FRP straps and 
doubled to achieve the same volume of FRP used. 
Using the same volume of FRP as imbedded 
reinforcement give less increase in strength capacity 
compared with external confining. 

 
Conclusion 

A reliable analytical solution of the problem of 
circular biaxial composite columns with different 
slenderness ratios is now available. The designer 
could be easily directed to choose the method of 
utilizing FRP to solve the beam-column under the 
applied loads and given length. 

The problem was solved for pin-ended columns 
with loads applied at the ends. However, the problem 
can be solved for any case of loading and 
end-conditions of the columns. 
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Fig.10 Contour Lines for Model I, l/r=0 

Fig. 11 Contour Lines for Model I, l/r=50 
 

 
 
 
 
 
 
 
 
 
 
 
 
    
 
    Fig. 13 Contour Lines for Model P, l/r=0 

 
     Fig. 14 Contour Lines for Model P, l/r=50

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12 Contour Lines for Model I, l/r=100 
 
 
 
 
 
 
 
 

Fig. 15 Contour Lines for Model P, l/r=100 
 
 
 
 
 

 
 



Journal of American Science, 2011;7(10)                         http://www.americanscience.org 

http://www.americanscience.org                                           editor@americanscience.org 262

 
Fig. 16 Contour Lines for Model F, l/r=0               

Fig. 17 Contour Lines for Model F, l/r=50 

 
Fig. 18 Contour Lines for Model F, l/r=100                
 

Fig. 19 Contour Lines for Model R, l/r=0 
  

Fig. 20 Contour Lines for Lines for Model R, l/r=50                               

Fig. 21 ContourModel R, l/r=100 


