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1. Introduction

The emergence of drug resistance has created a
new challenge for experimental and theoretical
studies. A great important in therapy have been in
tumors of hemopoietic and lymphoreticular systems
in a number of childhood and in germ cells tumors
([1]). However there has been relative little success in
the case of clinical detectable dimension solid tumors.
One of the reasons which can lead to the failure of
chemotherapy is the possible resistance of the tumor
cells to the effect of the drug. In [2], the authors used
a scheme proposed for self-renewing system in which
cells be either (i) system cells, (ii) early differentiated
cells, or (iii) end cells, and the human tumor cells
model more randomly between these three
compartments with transitions in one way
()= (ii)—=(iii) (see [3] and [4]). Following [5], we
assume that each tumor arises from a single cell. This
may say that the first tumor cell is a stem cell and all
the other cells derive from this single stem cell. More
precisely, it is assumed that the divisions occur at a
rate 2 and the rate of transmission to nonstem cells
is denoted by d. So the system growth can be seen as
birth process with parameter 2 and death one with
parameter d. By a resistant cell we mean a cell which
will survive administration of the drug at a
therapeutic dose with propability one. Sometimes in
studying the control of the emergence of drug
resistence pathogen, it is
important to understand the nonlinear transmission
dynamics of both the drug-sensitive and the
drug-resistant pathogen. We will consider the case
for which both resistant and sensitive stem cells
divide and grow at the same rate. We also assume
that the coversion to resistance occurs spontaneously
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during the intermitotic period. Moreover unlike some
of the previous models , we consider the
availability of possible interdivisional mechanism
[6].

In this paper we consider the case where a single
drug is available. Define a as the rate of
development of spontaneous resistance for stem cells
to a given drug, which may also be referred as the
mutation rate to drug resistance. Let S(t} be the
deterministic size of the stem cell compartment at
time £. Consider two drugs T: and T, say; then
four resistant exist: (i) stem cells sensitive to both
drugs, 5; (ii) stem cells resistant to the first but not
the second drug, f4; (iii) stem cells resistant to the
second but sensitive to the first R,; (iv) cells
resistant to both drugs, Ri>. Analogously to the
single drug situation, define transition rates &4 and
a5 for sensitive cells to become resistant to T; and
T, respectively. Let @4 and @, be the rates at with
cells resistant to Ty and T3, become resistant to
other agent. We will assume that cells may not
develop resistance to both agents simultaneously. We
will also assume that all resistant cells grow at the
same rate as the sensitive cells. Define
P () = P{Ry(t) = ,R; () = R (8) = k),
and
$(t,51,52,5z) = Xizo Djmo Lie=o PinEt:’S:{SéS; (1.1)
Then using the Kolmogorov backward equations, we
have
T — (a3 + @SR — (b +d +
ay)iPy,(t)

—(b+ d+ az)jP; () — (b + d)kPy (1)
+ay S(E)P_ 155 () + S (E) Pyj 1 (L)
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+b(i—
bk

1Py, (T) 4+ b(j —
— )P4 (1)

)Py, (E) +

+d (i + 10y 15, (8) +d( + 1Py, 15 (8) +
d“‘: + 1-}P:_;J-c+1(t) [1'2]

ta (i+ V)P () + @z( — DPyj gz (T

As before, set P (ty=0 for i<0,j<0 or
ok

E<o, Multiplying both sides by sis3sh
summmg Xio Xt Lisy Yields
<7 For

- | [(1 &)(hsy  d) | aqls;  s2) 1,
(1 5p)(bsy  d) | aa(s, 5] :j’
(1 —5;)(bs; — d}:—i

and

(1.3)

=S(O)ley (51— D) —az (s — 1.

Again we will use Cauchy's method of characteristics
to solve this equation. Let x3=t |, x; =3,
xy =5 and xy =sz;and we have the differential
system of two drugs in the form

dxy

—_ = [:]_ _xa:] [_.EJ}T': - r‘r} + G-]_[:x': - _XL-},
d.xﬁ

- = (L —x3)(bxz —d) + ap(x3 —xy)
d,\.l

— =(1—x)(bxy—d),

Sy ey (xa — 1) + a2 — 1)].

(1.4)
_

where the growth of the stem cell compartment may
be viewed as a birth and death process with rates &
and d respectively. Without loss of generality we set
x=2zx; Y=2x; and z=2x, we have the reduced

system
Z = (1 -)(bx—d)+ay(x—2),
5 (L—vi(by—d)+ a,(v—=z), (1.5)

“— = (1— )bz —d).
The organization of the paper is as follows. In the
next section, we discuss the existence of equilibria
and their local and global stability . In the section that
follows, we calculate the probability generating
function for two drugs resistance model in all possible
cases of equilibria. Then we give a conclusion for our
results.

2. The equilibria: existence and Stability

The equilibria of system (1.5} are obtained by
solving the system of isocline equations
A—xybx—d)+a(x—2)=0,
(1—yvibr—d)+a(y—z1 =0,
(1—z)(bz—d)=0.

The possible equilibria are of the form £; = (1,1,1},

2.1)
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Got+d

E, = (“1”,1,1) , E, = [ 1,52td 1] ,

+d ap+d d dd
Eq:(ﬂj ,ag ’1 , ESZ(—’—,—) ,
b b b'b’ b

= (% 2ath E) = (“1“’ 4 E)
Ee (zz’ b ‘b ' E; B ‘B'B and
ayt+h ax+bh d .
Eq ( —,= ’E) The existence and local

stability of the prospective equilibria are analysed as
follows. The Jacobian matrix due to the linearization

of (1.6) about an arbitrary equilibrium
E ={x,v.z) €R? isgiven by
Je-tupa =
O e —d b, v —a
(c Bl —y)— by —d) + o, —a, )
.C 0 B0 —z) — [bz —d)
(2.2)

Let J; denotes Jg—(yy» at E; , i= 12345678
respectively. Assuming that the difference between
the birth and death ratesis & = b —d = [,then from
(2.2) we have

ay— 0 0 —y
= (0 a,—48& —az),
U 0 a

—f— iy N —iy’
j2=(0 a,—& —a;],

W 0 &
‘a,—8 0 —a,
Jrg_('..] & G Rg)o
W { —S i
§—a, 0 —a,
Ia._(u & Qa3 Rg)o
)] ] -8

—&6—a, 0 —a,
Ig - (U & 32)-
0 0 )

@z
Form the above matrices, we have:
(1) The eigenvalues at £4 = (1,1,1) are
411 = _6J. ‘12 = al_aandlg = a: - (5..
(2) The eigenvalues at £, = (aj%i 1,1) are
Ay=—6 1=—6—a,and iy =5 2d),
(3) The eigenvalues at &5 = (1, :;2:;:’ 1) are
L=-81=50—aandd; =5 —a;
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a,+d a.+d

(4) The eigenvalues at E, =( g ,1) are
Aq4=—68 A, =8d—aand A3 =6 —a,.
(5) The eigenvalues at E5 = G,E,g) are
Ay=6, l=0+aqand A; =5+ a.,.
(6) The eigenvalues at Eg = G agﬁ“’,g) are
AL =84,=58+ajand 4; =—-86— a,.
(7) The eigenvalues at E; = (CHTHJES) are
Ay =08, 4 =54+ azandd; = -6 — oy,
(8) The eigenvalues at Eg = (aj‘;araz;b’g) are
=8 AL=—56—azndl;=—-40—a;
From the above discussion we have the following
conclusion.

Proposition 2.1 Whenever & — 0, then Es — Ey
and so the system (1.5) have seven equilibria.
Moreover if § =0 and a; =a,, then Ey= Eq
and the system has only six equilibria. Whenever
& = 0 the system (1.5) have eight equilibria, where

for 0=max(a;,a;) , £; is locally asymptotically

stable while for &€ (ay,a;) E; is locally
asymptotically stable. For & € (ay,a;), E5 is locally
asymptotically stable. For & <a;, i=12 E, is
locally asymptotically stable. The equilibria E;,
i=5678 are unstable. Now we discuss the
boundedness of solutions of (1.5).

Theorem 2.1 All solution of (1.5) which initiate in
R? are uniformly bounded.

Proof. Define a function

w=x+y—x (2.3) (2.3)

The time derivative of (2.3) along the solutions of
(1.5)is

M (B+d)w —b(x? +y2 4z +a,(x—2)+

E:
az(y—2)—3d

2h+dw+ax+ e,y —{8.+0;)z
For each D = 0, the following inequality holds
T (D— (b +a))w<(a, +D)x +
(a;+D)y—(a,+a,— D)z

(2.4) (2.9
Now if we take max(k+d) < D < min{a; + a;),
the Eq. (2.4) reduced to

Z—T +Dw < (a; + D),
where D=D— (b+d). Then we can find a
constant L > 0, say such that %!-l- Dw. Applying
the theorem of differential inequality (see[7] and [8] )
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we obtain
0=w(xyz)=
=(1—e77%) + w(x(0), ¥(0). 2(0))e ",

and for t — oo, we have

0=w=<= %.
Hence all solutions of (1.5) that initiate in {R% — 0}
are confined in the region.

Now we use the idea of [12] and write the

system (1.5) in the form

dz

Z=(1-wbu—d) =p(x2),

dIE

= = (L =x)(bx; —d) +a,(x; - 2) = p(x;,2)
L = 1,Z. and have the following result regarding the
nonexistence of periodic orbits.

(2.5)

Theorem 2.2 The system (2.5) does not have
nontrivial periodic orbits.
Proof. Consider the system (2.5) for x; =0 and
z = 0. Taking a Dulac function
b
D(x,z) = eea

Then
div[D(x. Y)F(x )]

_ a2 (A —x)(bx —d) + a,(x; — 2)]
VD[ - 2)(bz - d)]

RCAIICS
dx dx
.,
= —pear [x? — Ax — E].
where A=14273 .9 and
iy
B =2 +22*2% — o Therefore for the value of x in

s 4 lr—)

ca -
the interval IE —Zy/A* + 445,74+ Eyﬂﬁ + 4ARB
we have
8(0,) | A0 _ ¢
dx dx !
Thus by Bendixon-Dulac Theorem
conclusion follows.

([8]) the

Now we have seen the local stability of all the
equilibria of the 3-dimensional system (1.5), but it is
interesting to know about the global stability of these
equilibria. Our approach depends on the Lozinski
measure ([8] ).

Applying this measure on the variational matrix [y
we obtain

U (A) = max{a, —8,a,— 6,a,+ a,— &}

Since a; =0, a,=0 and &§=0, then clearly
midy=a;+a,—5 and if a;+a,=4d, then
E; = (11,1} is globally asymptotically stable. This
with the discussion in Proposition 2.1 shows that if
d=a;+a,, then E;=(L11) is locally and
globally asymptotically stable.
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Thus we can summurize the situation about the
eight equilibria when &, the difference between the
rate of birth and death rate is positive, as follows

@)
n the case of § =4 where A= max{a;.a,},
E; =111} is locally asymptotically stable.
Moreover if & going to be larger such that
d>a;+a, then by Lozinski measure,
E; = (11,1} is globally asymptotically stable.

o)

f a;=>8>a, then E,= (alm 1 1) is locally
asymptotically stable.

©) ,
f a,>8 >a, then &= (1, “?”,1) is locally

asymptotically stable while if § = a1+ as, then

(4)
f §<aui=132 then E,= (%% 1) js
locally asymptotically stable.

()
he remaining equilibrium points Es, E; E; and
E, are unstable.

3. Probability generating function at equilibria

In this section we calculate the probability
generating function ¢(t,x,y,z) for the two drugs
resistance model in all possible cases. Following
Coldman et al [5] we consider the probability
generating function in the form

@(t,x,v,2) — exp{h (t) + ay1,(a,,x) +

aylala. v}
(3.1)
where
h) = =8 +a)z— 1 [T d (32
I(as)=
t S un;'(“ ﬂ’“[! ()] "%
3.3
J. ([53{S—Zl] :l_hlu (6— EJE}[I I:lil] gdU) ( }
3.3)
L(u)=hb(z 1) (bz d), (3.4)
(3.4)
d=b—d, a=(a, or a; ), s=(x or ¥} and

506) = 42% with A =5(0). The probability that
there are no resistant cell present at time
t , {¢(t,0,0,1)} is an upper bound to the probability
that the tumor will eliminated by the drug under
consideration. Therefore the value ¢t C,0,1) is of
considerable interest during the following discussion.
Now, we consider the following cases:

Case 1. If d#0, b=0, a;="C and a, =10, then
d = —d and the system (1.5) becomes
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Z—“ = —d(1—7)
E =—d(1—7y)
(3.5)
Z=_d(1—2)
ai

Let us consider the initial conditions

%(0) = Br,y(0) = Bz 2(0) = B

Then the solutions of (3.5) are

x(t) =1+ (By — 1)e%F,

y(t) =1+ (B, — 1)eand

z(t) =1+ (B — 1)e.

Now, form (3.2), (3.3) and (3.4) we obtain

() =d,
It} = A(f; — 1)t
I;(a;,x) = giﬁl Ba)(1— e~ %),
L(ayy) =5 (B — f2)(1—e™%),
and
¢(txy,z) =
oo JAGs — D+ (e, + @)t + ey 5 (B — By) (1 —e™%)
P ‘HIzg(ﬁz —B3)(1—e ).
(3.6)

Remark 3.1 From the above probability generating
function we have

(i) If x=v=z=1+({k—1)e% , then (3.6) takes
the form ¢(t,x, x,x) = explA(k — 1), + o)),
(i) (0., ,7)=1.

Case 2. If d =0, b=0, a;=0 and a; =0, then
8§ =d and the system (1.5) becomes

ox -

E =—bx{1—x)

—“_ =—by[ M — ‘fj

( ) 3.7)

= = —bz(1-z).

Then the solutions of (3.7) are

x(E) = By et (1+ By (e —1)) "

V(0) = Boe® (14 Ba(e? — 1),

2(t) = Bae (1 + By (e® — 1)

Now, form (3. 2) (3.3) and (3.4) we obtain

I3(w) _ﬁ

.- -1| iWe—17 1.
() = - 2 (B (e — 1) — frre™)
1,(0,5) =
— @ 2
Aenrjggzbb'- - (|+ﬁs(ﬂb2_l)} ﬁi!”-r

BBt [ (2] ﬂ}v(l_‘_#ﬂ’abp_l])zdv

o=

and
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@t v, 5) = expil () + ay1-(0.x) +

uy 1,(0,y)}.
(3.8)

Remark 3.2 From the above probability generating
function we have
(i) If x=v=z=1+({k—1)e% , then (3.8) takes
the form ¢(t,x, x,x) = explA(k — 1), + o)),
(i) (0%, 7,2)=1.
(iii) ¢(t,1,,1)=1.

Case 3. If d=0, b=0, a; =0 and a; =0, then
d = b —d and the system (1.5) becomes

= -xbx—d),

Z=t-ny-d), (39)
E =(1— 2} bz —d).
Then the solutions of (3.9) are
—q (d—=Eu0—1)
X =1 .u_’31—-E;+rbl{E§3ﬁig?”‘“'*""
_ —Oi#—1)
v =1+ B (Ba=1)+(d=bBaye "
z[:t) =1 | (A-n)(fz— 1)

BBy —1)+ld—b B, e EE)E

Now, form (3.2), (3 3) and (3.4) we obtain
(d—a)2e P d

() = Eln:’.Cn—].|+{a B3 g0 T

fﬂ)—*”%ﬁ DI30)[(d — bBs)e+

(d—b)®

b(p, — et 1],

I,(0,5) =

Ael®- “'Ef 0 [(b—d)*(s—2)] FET‘I']Q; Dopr ()]~ 2 T
and

@t v, 5) = expil () + ay1-(0.x) +
uy 1,(0,y)}.
(3.10)

Remark 3.3 From (3.10) we get the following
(i) (0, x,vz)=1.
i) If p==, then z= Z

d A
#(txy.2) = exp[E+ (ay (1- f) + @, (1—
ﬁz)(e@_cﬂt - 1)}

(iii) From the above relation, we get
@t 1, = r— 1.

and

Case 4. If d#0, b=0, a;+C and a, =10, then
d = —d and the system (1.5) becomes

% —d(1—x)4+a,x—y)
% — —d(1—y), (3.11)
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£ _d(1—2).

Gt
Then the solutions of (3.11) are

x(t) =1+ (B — 1)e" + (B — f3)e @),
¥y =1—(f, —1)e°,

2Z(t) = 1+ (B — L)edt.

Now, form (3.2), (3.3) and (3.4) we obtain
I;(w) =d,

13(t) = =@y + @) (B — (L — 7o),

Lr(apx) = Acf:-;r.?gll (1 er(rear),
L(0.y) =3 (B~ Bs)(1— ™),
and

o(t,x,y,2) — (3.9)

ian+aﬂuﬁ—1ﬁl—eﬁﬁ)
AlBs B

exp 4 2m PFal ara 1(1 H—I:_ﬂ-l-ﬂi;ltlj
A . . - —_ -
| B2 Palaa(l ™)
(3.12)

Remark 3.4 It follows from (3.12) that

() ¢(t,LL1)=1for =0, =, =1
(i) (0%, 3,7)=1.

(iii) If y=0 at t =ty, then

P (ty.%,0.2) =
fwm+«nxm—¢ﬂ1—eﬂMJ
exp +A(ﬁ._| Bzl (1 _p (dl a-,f:t.I)

"‘E [ﬂ: —fa)mzfi2

Now, we use the above cases to compute the
probability generating functions at the equilibrium
points which help in calculating the probability that
resistance is generated after treatment.

(i) The probability generating function at
E (11.1):

Using (3.1), (3.2), (3.3) and (3.4), if the probability
generating function at £;(1.11) is ¢4(t,1,1,1),
then

@1(t LL1) = expili(t) +ayfr(a.x) +

uply(uy, )}

where
L(t) =0,
I;(ay,x) = I(e., 1) =0,
I (a3 y) = I;(a;, 1) = 0.
Hence from the definition of probability generating
function , we get
¢4(t,1,1,1) = 1.
Similarly 3.11)
(i) The probability generating éunctlon at
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a1+d

E,(——, L1)is

¢ (8% e 1) = ewp(I,(t) + @ L (@, x,) +
“zlzlf.azrxz)]

such that

Li(t) = 0,13 (azy) = I(a;,1) =0,

1 (ayx) — Iy(a:, 7% — 2 1 s —wdu,
Then

q\)z( T+ 11\, C:Xp{f.l:’ (my+id— F:IIJ- .bllt
wdul.

Now, if we consider the case §(r) — 42"~ then
I(a, %) = £ [1— P27,

Hence again from the definition of probability
generating function , we obtain

¢2 (6227, 1,1) = exp(-a, § e e 1)
Thus at equnibrium point 53( 21, 1),if a; =6,

then the probability that single re5|stance will per3|st
in is independenton & .

(iii) The probability generating function at

batt “E”’ 1) = exp{iy () + @y L (@, %) +
ﬂ’z!z(azr}’)}

where I;(t) =0, dfz(avi}:fz(av 1)=0 and
I(a,y)= l'z(az,a3+) 25[1—9C5‘“27'5]. Hence
as above , we get

$a(t 1, “z”‘ 1) = exp{—a, > [e®-%) — 1]},

Thus at equilibrium  point B, (1,22 a“d 1), if

a, =& , then the probability that smgle resistance
will persist in is independent on &.

(iv) The probability generating function at
a1+d ag+d .

Ey( 1)

Palt, “l”‘ "2,1) = exp{(t) + a1y %) +

ﬂ’z!z(azr}’)}

where I1(t) = 0. Under the conditions @; =& and
a, =& asinthecaseof &, and E; , we get

I(a,x) =2 [1 — o),

I(ay) =2 [1 —e®a27],

Hence

%l’t u1+t.l t.i;,+d 1 &Xp[uiﬂ [0{5 aqlt _ 1] _
oA fy et )
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a1+d ag+d

Thus at equilibrium point E,(: —1) if

a;=a,=46, then the probability that single
resistance will persist in is independenton & .

(v) The probability generating function at
dd d,.
Es(Z 22)
d dd
@5t~ ) = exp{l1(t) + a1 [; (ayx) +
a (@ y))h

where I(t) = _HC”;”“) f; st uwdu and
Iy (%E) = 0. Hence,
i (t, : , j, z) — {_5{0{1-‘-“"’:' f S(t — w)du).

As a special case if we take S(t‘) .49@'3 then

f S[t—u)du—Af e8(t-0)

d o o — Ay tug) St _
exp[~2"2 (e

¢ (65,55 = m-
Thus at equilibrium point E5[d,d,d) ,if §=0

then the probability that single re3|stance will persist
in independenton & .

(vi) The probability generating function at

Es(2, 22, Dis
palts *’— /) = exp{iy () + @y h(ay, %) +
‘Tzlz(a:r}")}
Wher, (£) = =252 [% 5 —uydu, I(ay,5) = 0

and l’zfaz.v'}_%_l": St — wydu. Now, if we
the case  S(t) =4el®f,  then
iz[ag.hzﬁ“) = Cﬁ:l:z".q[ew't 1]. It follows from

the definition of probability generating function , that

d btag d

Pa(t 55) = exp{=TEER A - 1),
Thus at equilibrium point Eﬁ[d E ) if 80

and —ayd+aza; <0 then the probability that
single resistance will persist in is independent on &.

consider

(vii) The probability generating function at
El+.:11 ci" .
b+ d d
‘l'f"r( al +5) = explly(0) + ey h(ay, %) +
‘Tzlz(a:r}")}

r'l(rr1+r:rz

where ll[t)— f 5t wduy,

I,(a,5) =0 and I (@) =52 [ s —u)du,

Now , |f we consider the special case ¥(t) = Aeldr,
ey = CHT;’;‘-’.:1[9057'c 1]. Hence

then !2 [:ﬁl.. A
B+, A . — ¥ i+ 11, T - .
oot F. L ) =exp{ AT 1))
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!J+a1 d d

Thus at equilibrium point E;(: 53 Jif 8 =10

and —a,0+ oo < 0, then the probability that
single resistance will persist in is independenton & .

(viii) The probability generating function at
!:|+L:{:l b+a; d
Eg( rg)

!J+|:c:l !:|+r:{2

@slt, 2 = exp{ly (t) + e lp(ay,x) +
ﬂ’z!z(azr}’)}

where  1,(t) = ﬁc“‘”“}' S(t wdu,  and
I (@, 22 = 8250 [* 5 —w)du. Now , if we
con3|der the case 5(t) = Ae'®), then
Ihlay," ™) =" ae®r 1] and
(e, ") = C”*”Bf St w)du Now , if we
consider  the  special case  S(t) = Ae(®r,
then, L(nﬂ,b”*‘) ':5;;‘7';1[,;(-‘?)?—1]_ Hence from

the definition of probability generating function , we
get
,o B b— d .ty ;e 11
c L:J .:l+c[1r_12 _) = e_s.:p[ala':%ﬂﬁem j}.

b B
Thus at equilibrium point Eg(b”‘ 2 Ay if

b b
& = 0 | then the probability that smgle resistance will

persist in is independenton & .

4. Conclusion

In this paper, we study the behavior of solutions
of permanent drug resistance model. We established
the existence of possible eight equilibria of the form
E = (L11), E=(%%,11), £ =(1%%1),

a,+d dat+d d dd
R mo(r)
a a

Es = (e: ze: ’a) ’ E; :( iz: ’E’E)
Eg = (ajbw,azb” d) We introduced condtions for
local stability and instability of all equilibria in
Proposition 2.1. We also discussed the global stability
using Lozinski measure. We deduced in Theorem 2.2
that all solutions of (1.5) which initiate in R® are
uniformly bounded. Then we used Bendixon-Dulac
Theorem to show that system (2.5) does not have
nontrivial periodic orbits. The probability generating
function ¢(t,x,v.z) for the two drugs resistance
model in all possible cases of the parameters b, d,
a; and a;is calculated. We used these probabilities
to calculate the probability that resistance is generated
after treatment. Our obtained results improve and
partially generalize those obtained in [9]-[14].

References.

[1]. H. E. Skipper, F. M. Schabel and M. Lloyd,
Doseresponse and tumor cell repopulation rate
in chemotherapeutic trials, in Advances in

239

Cancer Chemo126 herupy. Vol. 1 (A.Rosowsky,
Ed.), Marcel Dekker, New York, 1979, pp.
205-253.

J. E. Till, E. A. McCulloch, and L. Siminovitch,

A stochastic model of stem cell proliferation

based on the growth of spleen colony-forming

cells, Proc. Nor. Acud.Sci. U.S.A. 51: (1964),

29-36.

L. W. Law, Origin of the resistance of leukemic

cells to folic acid antagonists, Nature 169:

(1952),628-629.

[4]. J. H. Goldie and A. J. Coldman, A

mathematical model relating the drug

sensitivity of tumors to their spontaneous

mutotian rate, Cancer Treat. Rep. 63: (1979),

1727-1733.

A. J. Coldman, J. H. Goldie and VincenM Ng,

The effect of cellular differentiation on the

development of permanent drug resistance,

Math. Biosci. 74: (1985), 177-198.

A. J. Coldman and J. H. Goldie, A model for

the resistance of tumor cells to cancer

chemotherapeutic agents, Math. Biosci. 65:

(1983), 291-307.

Robert S.Cantrell, Chris Cosnerand Shigui

Ruan, Interference and consumer-resource

dynamics, Discrete And Continuous Dynamical

Systems-Series B Vol.4,N0.3(2004) 527-546.

Water G.Kelley and Allan Peterson,"The

Theory of Differential Equations, Classical and

Qualitative™ Second Edition, Springer 2010.

S. E. Lurea and M. Delbriick, Mutations of

bacteria from virus sensitivity to virus

resistance, Generics 28: (1943), 491-511.

H. Goldie, A. J. Coldyan, and G. A. Gudaaskas,

A rationnle for the use of alternating

noa-crossresistunt chemotherapm, Cancer Treat.

Rep. 66: (1982), 439-449.

J. Coldman and J. H. Goldie, A model for the

resistance of tumor cells to cancer

chemotherapeutic agents, Math. Biosci. 65:

(1983), 291-307.

[12]. John, Partial Differential Equations, 4th rd.,
Springer, New York, 1982, pp. 9-14.198.

[13]. Natalia Komarova, Stochastic modeling of drug
resistance in cancer, Journal of Theoretical
Biology 239, (2006), 351--366.

[14]. Xiao and S. Ruan, Global analysis of an
epidemic model with nonmonotone incidence
rate,. Math. Biosci., 208, , (2007) pp. 419--429.

2.

[3].

[5].

[6].

[71.

[8].

[9].

[10].

[11].

7/1/2011



