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1 . Introduction 
   The emergence of drug resistance has created a 
new challenge for experimental and theoretical 
studies. A great important in therapy have been in 
tumors of hemopoietic and lymphoreticular systems 
in a number of childhood and in germ cells tumors 
([1]). However there has been relative little success in 
the case of clinical detectable dimension solid tumors. 
One of the reasons which can lead to the failure of 
chemotherapy is the possible resistance of the tumor 
cells to the effect of the drug. In [2], the authors used 
a scheme proposed for self-renewing system in which 
cells be either (i) system cells, (ii) early differentiated 
cells, or (iii) end cells, and the human tumor cells 
model more randomly between these three 
compartments with transitions in one way 
(i) (ii) (iii) (see [3] and [4]). Following [5], we 
assume that each tumor arises from a single cell. This 
may say that the first tumor cell is a stem cell and all 
the other cells derive from this single stem cell. More 
precisely, it is assumed that the divisions occur at a 
rate  and the rate of transmission to nonstem cells 
is denoted by . So the system growth can be seen as 
birth process with parameter  and death one with 
parameter . By a resistant cell we mean a cell which 
will survive administration of the drug at a 
therapeutic dose with propability one. Sometimes in 
studying the control of the emergence of drug 
resistence pathogen, it is  
important to understand the nonlinear transmission 
dynamics of both the drug-sensitive and the 
drug-resistant pathogen. We will consider the case 
for which both resistant and sensitive stem cells 
divide and grow at the same rate. We also assume 
that the coversion to resistance occurs spontaneously 

during the intermitotic period. Moreover unlike some 
of the previous models ,   we consider the 
availability of possible interdivisional mechanism 
[6]. 
   In this paper we consider the case where a single 
drug is available. Define  as the rate of 
development of spontaneous resistance for stem cells 
to a given drug, which may also be referred as the 
mutation rate to drug resistance. Let  be the 
deterministic size of the stem cell compartment at 
time . Consider two drugs  and , say; then 
four resistant exist: (i) stem cells sensitive to both 
drugs, ; (ii) stem cells resistant to the first but not 
the second drug, ; (iii) stem cells resistant to the 
second but sensitive to the first  (iv) cells 
resistant to both drugs, . Analogously to the 
single drug situation, define transition rates  and 

 for sensitive cells to become resistant to  and 
 respectively. Let  and  be the rates at with 

cells resistant to and , become resistant to 
other agent. We will assume that cells may not 
develop resistance to both agents simultaneously. We 
will also assume that all resistant cells grow at the 
same rate as the sensitive cells. Define 

 
and 

 (1.1) 

Then using the Kolmogorov backward equations, we 
have 
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As before, set  for  or 

. Multiplying both sides by  and 
summing  yields  

  

  
  

Again we will use Cauchy's method of characteristics 
to solve this equation. Let  , , 

 and and we have the differential 
system of two drugs in the form  

  

  

  

(1.4) 

  

 
where the growth of the stem cell compartment may 
be viewed as a birth and death process with rates  
and  respectively. Without loss of generality we set 

  and  we have the reduced 
system 

  

         (1.5)                                               

  

The organization of the paper is as follows. In the 
next section, we discuss the existence of equilibria 
and their local and global stability . In the section that 
follows, we calculate the probability generating 
function for two drugs resistance model in all possible 
cases of equilibria. Then we give a conclusion for our 
results. 
 
2. The equilibria: existence and Stability 
The equilibria of system  are obtained by 
solving the system of isocline equations 

  
(2.1) (2.1) 

  
The possible equilibria are of the form , 

, , 

, , 

, and 

. The existence and local 

stability of the prospective equilibria are analysed as 
follows. The Jacobian matrix due to the linearization 
of  about an arbitrary equilibrium 

 is given by 

 (2.2) 
Let  denotes  at  ,  

respectively. Assuming that the difference between 
the birth and death rates is ,then from 
(2.2) we have 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

Form the above matrices, we have: 
(1) The eigenvalues at  are  
      

(2) The eigenvalues at  are  

      

(3) The eigenvalues at  are  
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(4) The eigenvalues at  are  

      

(5) The eigenvalues at  are  

     

(6) The eigenvalues at  are  

     

(7) The eigenvalues at  are  

     

(8) The eigenvalues at  are  

      
From the above discussion we have the following 
conclusion. 
 
Proposition 2.1 Whenever  then  
and so the system (1.5) have seven equilibria. 
Moreover if  and  then  
and the system has only six equilibria. Whenever 

 the system (1.5) have eight equilibria, where 

for δ=max(a1,a2) ,    is locally asymptotically 

stable while for   is locally 
asymptotically stable. For ,  is locally 
asymptotically stable. For    is 
locally asymptotically stable. The equilibria  

 are unstable. Now we discuss the 
boundedness of solutions of (1.5). 
 
Theorem 2.1 All solution of (1.5) which initiate in 

 are uniformly bounded. 
Proof. Define a function  

(2.3) (2.3) 
The time derivative of (2.3) along the solutions of 
(1.5) is 

  
  

For each  the following inequality holds 

            (2.4)  (2.4) 
Now if we take  
the Eq. (2.4) reduced to  

  

where  Then we can find a 

constant  say such that  Applying 

the theorem of differential inequality (see[7] and [8] ) 

we obtain  

  
and for , we have  

  

Hence all solutions of (1.5) that initiate in  
are confined in the region. 

Now we use the idea of [12] and write the 
system (1.5) in the form 

            (2.5)  

  

 and have the following result regarding the 
nonexistence of periodic orbits. 
 
Theorem 2.2 The system (2.5)  does not have 
nontrivial periodic orbits. 
Proof. Consider the system (2.5) for  and 

 Taking a Dulac function 

  
Then  

  
  

 

 

  

where  and 

 Therefore for the value of  in 

the interval   

we have  

  

Thus by Bendixon-Dulac Theorem ([8]) the 
conclusion follows. 
 
Now we have seen the local stability of all the 
equilibria of the 3-dimensional system (1.5), but it is 
interesting to know about the global stability of these 
equilibria. Our approach depends on the Lozinski 
measure ([8] ).   
Applying this measure on the variational matrix  
we obtain 

  
Since   and  then clearly 

 and if  then 
 is globally asymptotically stable. This 

with the discussion in Proposition 2.1 shows that if 
, then  is locally and 

globally asymptotically stable.  
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Thus we can summurize the situation  about the 
eight equilibria when  the difference between the 
rate of birth and death rate is positive, as follows  
 

(1) I
n the case of  where  

 is locally asymptotically stable. 
Moreover if  going to be larger such that 

 then by Lozinski measure, 
 is globally asymptotically stable. 

(2) I

f  then  is locally 

asymptotically stable. 
(3) I

f  then  is locally 

asymptotically stable, while if  then 

 is globally asymptotically stable. 

(4) I

f  then  is 

locally asymptotically stable. 
(5) T

he remaining equilibrium points    and 
 are unstable.  

 
3. Probability generating function at equilibria 
   In this section we calculate the probability 
generating function  for the two drugs 
resistance model in all possible cases. Following 
Coldman et al [5] we consider the probability 
generating function in the form  

 (3.1) 
where  

    (3.2)  

 (3.3) 
 

(3.4) 
(3.4) 

 (  or  ),  or  and 

 with  The probability that 
there are no resistant cell present at time 
 ,  is an upper bound to the probability 

that the tumor will eliminated by the drug under 
consideration. Therefore the value  is of 
considerable interest during the following discussion. 
Now, we consider the following cases: 
Case 1. If    and  then 

 and the system (1.5) becomes  

  

                         

(3.5)  

  

Let us consider the initial conditions  
  

Then the solutions of (3.5) are  

 
 

  
Now, form (3.2), (3.3) and (3.4) we obtain  

  
  

   

  

and 

(3.6) 
 
Remark 3.1 From the above probability generating 
function we have 
(i) If  , then (3.6) takes 
the form  
(ii)  
 
Case 2. If    and  then 

 and the system (1.5) becomes  

  

                          

(3.7) (3.7) 

  

Then the solutions of (3.7) are 

  

  

  

Now, form (3.2), (3.3) and (3.4) we obtain  

  

  

 

  

 
and 
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(3.8) 
  
 Remark 3.2 From the above probability generating 
function we have 
(i) If  , then (3.8) takes 
the form  
(ii)  
(iii)  
 
Case 3. If    and  then 

 and the system (1.5) becomes  

  

            (3.9) (3.9) 

  

Then the solutions of (3.9) are 

  

  

  

Now, form (3.2), (3.3) and (3.4) we obtain  

  

  

  
and 

(3.10) 
 
Remark 3.3  From (3.10) we get the following 
(i)  

(ii) If , then   and 

 
(iii) From the above relation, we get 

  

 
Case 4. If    and  then 

 and the system (1.5)  becomes  

  

                       (3.11) (3.11) 

  

Then the solutions of (3.11)  are 
  

  
  

Now, form (3.2), (3.3) and (3.4) we obtain  
  

  

  

  

 , 

and 
 

    (3.12) 
 
Remark 3.4 It follows from (3.12) that 
(i)  for  
(ii)  
(iii) If  at  then  

  
Now, we use the above cases to compute the 
probability generating functions at the equilibrium 
points which help in calculating the probability that 
resistance is generated after treatment. 
 (i) The probability generating function at 

: 
Using (3.1), (3.2), (3.3) and (3.4), if the probability 
generating function at  is , 
then 

  
where  

  
  
  

Hence from the definition of probability generating 
function , we get 

 
Similarly 
(ii) The probability generating function at 
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is 

  
such that 

  

  

Then  

  

Now, if we consider the case , then 

  

Hence again from the definition of probability 
generating function , we obtain 

  

Thus at equilibrium point , if  , 

then the probability that single resistance will persist 
in is independent on  . 
 
(iii) The probability generating function at 

is 

  
where   and 

  Hence 

as above , we get 

  

Thus at equilibrium point  , if 

 , then the probability that single resistance 
will persist in is independent on . 
 
(iv) The probability generating function at 

: 

  
where  Under the conditions  and 

 as in the case of  and  , we get 

  

  

Hence  

  

Thus at equilibrium point  , if 

, then the probability that single 
resistance will persist in is independent on  . 
 
(v) The probability generating function at 

: 

  

where and 

. Hence, 

  

As a special case if we take  then 

 Hence  

  

Thus at equilibrium point  , if  , 

then the probability that single resistance will persist 
in independent on  . 
 
(vi) The probability generating function at 

is 

  

Wher   

and  Now, if we 

consider the case  then 

 It follows from 

the definition of probability generating function , that 

  

Thus at equilibrium point  ,if  

and  then the probability that 
single resistance will persist in is independent on . 
 
(vii) The probability generating function at 

is 

  

where , 

 and  

Now , if we consider the special case  

then, . Hence 
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Thus at equilibrium point  ,if  

and  then the probability that 
single resistance will persist in is independent on  . 
(viii) The probability generating function at 

 

  

where  and 

 Now , if we 

consider the case  then 

 and 

 Now , if we 

consider the special case  

then,  Hence from 

the definition of probability generating function , we 
get 

  

Thus at equilibrium point  , if 

 , then the probability that single resistance will 
persist in is independent on  . 
 
4. Conclusion  
   In this paper, we study the behavior of solutions 
of permanent drug resistance model. We established 
the existence of possible eight equilibria of the form 

, , , 

, , 

, and 

. We introduced condtions for 

local stability and instability of all equilibria in 
Proposition 2.1. We also discussed the global stability 
using Lozinski measure. We deduced in Theorem 2.2 
that all solutions of (1.5) which initiate in  are 
uniformly bounded. Then we used Bendixon-Dulac 
Theorem to show that system (2.5) does not have 
nontrivial periodic orbits. The probability generating 
function  for the two drugs resistance 
model in all possible cases of the parameters , , 

 and is calculated. We used these probabilities 
to calculate the probability that resistance is generated 
after treatment. Our obtained results improve and 
partially generalize those obtained in [9]-[14]. 
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