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Abstract:   In this paper a simple model for underground water is constructed. The supply to the reservoir is from 
one side with variable water level from rain and flood, in the meantime water escapes outside from the other side. 
The soil forming the reservoir is porous and water movement inside is according to Darcy's flow. The bottom of the 
reservoir is impermeable to water, whereas, the top of the rectangular reservoir is exposed to a steady pressure 
depending on the atmospheric pressure. The differential equation of the flow in the model is solved by the method of 
Green's function. Inlet and exit velocity distribution is obtained and is integrated to give the capacity as a function of 
time.     
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1. Introduction 
 Water is necessary for human consumption 
agricultural and industrial purposes. It can be found 
in underground reservoirs in layers mixed with soil. 
Typically, underground is formed of solid rock or 
porous soil. Walls are dug to extract, the capacity of 
the reservoir is essential to determine whether or not 
digging is economic. This model is suggested to 
describe the mathematical analysis employed. 
Empirical evidence show that flow in the porous soil 
is according to Darcy's law; which will be stated 
later. Extensive literature can be found for the flow in 
porous media, of this work we mention the paper by 
[1] on fluid flow through porous metals and the work 
by [2] who studied fluid flow through packed 
columns. More recently,[3] discussed inertial effects 
on fluid flow through disordered porous media. Also, 
[4] handled the problem of permeability of 
unidirectional fibrous media; this problem is also 
discussed by [5]. The nonlinear correction to Darcy' s 
law at low Reynolds  numbers are made by [6]. Non-
Darcy flow in porous media is studied by [7]. The 
relative permeability coefficients in two phase flow 
in porous media are studied by [8-9], the multiphase 
flow in porous media with phase change is discussed 
by [10] and [11-16] handled several aspects of 
multiphase flow in porous media.[17] handled 
multiphase flow and transport processes in 
subsurface. Also, [18] discussed thermodynamically 
constrained averaging theory for flow in porous 
media.  For a review of underground water 
mechanics, we refer the reader to the text by [19] and 
the historical perspective by [20]. Also, classic 
ground water simulations are given by [21].   

      

2. The Basic Theory 
 The basic theory in the flow of porous media is 
due to Darcy's law which is suitable for low velocity 
and viscosity. The theory is linear and nonlinear 
corrections are required of which we mention the 
empirical formula due to Forchheimer. Also Koch 
and Ladd obtained similar results with perturbation 
methods. The work presented in this paper is 
exclusively based on Darcy's flow which enables 
exact mathematical formulation. 
 Two basic assumptions are involved in Darcy's 
flow. The first is the existence of a linear relationship 
between the flow velocity and the hydrostatic head 
gradient, the constant of proportionality is the 
permeability of soil. If u  is the velocity vector of the 

fluid, h   is the hydrostatic head and 
ρ
p

 is the 

equivalent head due to pressure p  where ρ  is the 
specific weight of the fluid 
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k  is the permeability of soil. 
The second assumption is due to the compressibility 
of the porous soil such that the continuity equation 
for incompressible water flowing in such soil is given 
by  
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     υ  is the packing constant of the soil. Denoting 

ρ
ϕ ph+=   , eqs (1) and (2) give the diffusion 

equation  

ϕ
υ

ϕ 2∇=
∂
∂ k

t
                           (3)                                                

which is the governing  equation of the problem.              
  
3. The Suggested Model      

To render the mathematical analysis 
tractable, a simple model is suggested in Cartesian 
space. The water flow is in the yx −   plane and the 
analysis will be made for one depth unit normal to 
the flow plane. Of course, the flow is time dependent 
in the model considered. The inlet to the model 
reservoir is at 0=x   along the y axis and the 

outlet is at Lx= also along the y  axis. The bottom 
of the reservoir is composed of horizontal solid 
rock along the x  axis at 0=y  and is impermeable 
to water i. e. of zero vertical velocity 

component .00 =
∂
∂

=yy
ϕ

 

 The top of the reservoir is at By =  and is also 
horizontal and is exposed to a fraction of the 
atmosphere pressure and is uniform along the top. A 
low hydrostatic head of a magnitude 0H is 
uniformly distributed along the bottom. While a 
variable time dependent head tα exists on the 
entrance at 0=x  along the y axis. This variable 
head is due to rain or flood. The fig. 1 shows a 
schematic of the model. 

 
 

   
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

Fig. 1. Schematic of the reservoir 
 

 
4. Analytical Solution 
 To obtain the storage capacity of the reservoir; 
the velocity must be obtained along the entrance and 
the exit and the capacity C  at any instant of time T  

less than  
α

0HB −
 is given by 
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        The required x  derivatives of ϕ  can only be 
found from the distribution of ϕ  in the whole 
domain of the solution which is obtained from 
solving equation (3) subject to the prescribed 
boundary conditions as given below: 
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    and                                              

00 =
∂
∂

=yy
ϕ

                                             (8)                                                    

The integration of this time dependent boundary 
value problem can be obtained analytically by the 
method of Green's function at the typical point  

),,( 000 tyx  [22] by the integrals: 
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Here G  is the Green's function of the problem and is given by solution of  
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The solution of eqs. (6) and (7) is obtained as  
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The distribution of ϕ can be obtained by substitution of equation (12) in equation (9), then we have
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5. Numerical Results  
    For a typical example the following numerical 
values are assumed:  
 mL 1000= , mB 100= , 00 =h  and 

m
p

100 =
ρ

. ; we assume also that the physical 

constants hrmk /01.0= , 11.0 −= mυ and 

hrm /1.0=α . The storage capacity ( )tc  is 
calculated and plotted versus the time t as shown in 
figure. Units of storage capacity is in cubic kilometer 
and time is measured in hours. 
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Figure 2: storage capacity 
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