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Abstract: One of the key areas of operations and supply chain management is inventory control. Inventory control 
determines which quantity of a product should be ordered when to achieve some objective, such as minimizing cost. 
This paper presents a two-echelon non-repairable spare parts inventory system that consists of one warehouse with 
space constraint and m identical retailers and implements the reorder point, order quantity ( R, Q) inventory policy . 
We formulate the policy decision problem in order to minimize the total annual inventory investment subject to 
average annual ordering frequency and expected number of backorder constraints.  
[Seyyed Jamal Hosseini and L.Hojagani. A ga algorithm for a two –echelon inventory system with space constraint 
& compare this with simulated annealing. Journal of American Science 2011;7(7):7-12]. (ISSN: 1545-1003). 
http://www.americanscience.org.  
 
Keywords: Two –echelon inventory system, Space constraint, Genetic, Simulated annealing 
 
1. Introduction 

Research on inventory control can be traced 
back to Harris, who developed the well-known 
economic-order-quantity (EOQ) model in 1915. Since 
then, hundreds of papers on inventory control have 
been published. Most of these papers essentially follow 
the same approach. 

First, the inventory-control problem is 
translated into a mathematical model. Second, an 
inventory-control policy that optimizes the 
mathematical model is derived. Third, an algorithm for 
finding the optimal values of the decision variables of 
the inventory-control policy is developed. The 
modeling, the optimization, and the development of the 
algorithm are performed by highly skilled experts and 
can be quite time consuming. Since skilled experts are 
expensive and sought after for a variety of projects in 
any institution, it would be beneficial to have an 
alternative approach that requires less expert 
involvement than the traditional approach. 
 
2. Literature review 

 One of the most important multi-echelon, 
multi- item inventory models for spare parts 
management is METRIC. METRIC is the Multi-
Echelon Tech- nique for Recoverable Items Control, 
developed by Sherbrooke (1968)[10] and it is used 
for setting repairable items inventory control policies 
using the base stock model. The base stock model is a 
special case of the reorder point, order quantity 
inventory policy, where the reorder quantity Q = 1 
and it is usually used with expensive, slow moving 
items, and when the holding and back order costs 
dominate. The objective function in METRIC is 

minimizing the expected number of backorders at the 
base level, subject to budget constraints while setting 
optimal inventory policy parameters. In the case of 
low or medium cost items with medium to high 
demand rates, the (R, Q) policy may be more 
appropriate. Many inventory models have been 
developed for expensive, low demand, and repairable 
spare parts (e.g. Sherbroo ke, 1968 ; Grave s, 1985 ; 
Diaz an d Fu, 1997; Caglar et al., 
2004[10],[5],[4],[1]), where the base stock model is 
implemented at least at one echelon of the supply 
network. In other research,rosetti in 2007 
[14]research about two-echelon non-repairable spare 
parts inventory system that consists of one warehouse 
and m identical retailers and implements the reorder 
point, order quantity ( R, Q) inventory policy.  

 
3. Problem definition and model formulation 

We have a two-echelon inventory system 
that consists of an external supplier that can supply 
any item with a given lead time and a single 
warehouse that supplies any number of independent 
identical retailers. Under this system, the retailers are 
faced with demands that are generated by random 
failures of the spare parts at the customer’s sites 
according to a Poisson process. Since the demand 
process at each retailer for each item is a Poisson 
process, the demand process at any warehouse is a 
superposition of the retailer’s ordering processes. 
Specifically, it is a superposition of renewal 
processes each with an Erlang inter renewal 

processes time with Qri stages and rate per state ri  

(Svoronos and Zipkin, 1988[11]).  
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 The above two-echelon (R, Q) inventory 
system operates as follows. When a retailer is faced 
with a demand, the demand is satisfied from shelves 
if the amount demanded is less or equal to the 
number of units available. Otherwise, the demand is 
backordered. Under an (R, Q) policy, item i’s 
inventory position at retailer r is checked 
continuously, if it drops to or below its reorder point 
R is placed at the warehouse. The inventory position 
is defined as the on-hand inventory plus the on-order 
inventory minus the number of outstanding 
backorders. After receiving the replenishment order, 
the outstanding backorders at the retailer are 
immediately satisfied according to a first-in-first-out 
(FIFO) policy. Since the same policy is followed at 
the warehouse. Before proceeding in developing the 
model, we state our assumptions as follows. We 
model a two echelon inventory system, where each 
retailer is replenished by only one warehouse. The 
demand process at each retailer occurs according to a 
Poisson process. All orders that are not satisfied from 
on hand inventory are backordered (i.e. lost sales are 
not considered). The warehouse’s supplier has 
infinite capacity with a fixed lead time, the warehouse 
with space constraint has limited supply, delay time 
in warehouse (because of shortage) is considered zero 
and no lateral shipments are permitted between the 
retailers. 
 We do not model the delivery process from the 
retailer to the end customer. The following is a list of 
the notation that we will use throughout the paper: 

 
w      warehouse index 
r        retailer index 
i        item index 
m      number of retailers 
N      number of items 
Fr      target order frequency at retailer r (orders per 
year) 
Fw       target order frequency at the ware house (orders 
per year)  
Br      target number of backorders at retailer r 
Bw     target number of backorders ast the ware house  

ri     Item i demand rate at retailer r (unit/ year) 

wi    Item i demand rate at the ware house (in units 

of item i batch size at retailer per year) 
Lri      item i lead time (ordering and transportation)at 
retailer r (year) 
Lwi     item i lead time (ordering and transportation)at 
the warehouse (years) 

     ℓri      Item i effective lead time  at retailer r 

(years) 
Ci      total inventory investment at both echelons($) 
C       superscript that represents the current value 

P       superscript that represents the previous value 
Qri      item i replenishment batch size at retailer 
r(units) 
Rri      item i reorder point at retailer r(units) 
Qwi    item i replenishment batch size at the 
warehouse(in units of Qri) 
Rwi    item i reorder point at the ware house (in units 
of Qri) 
Ī ri(Rri,Qri) item i expected on-hand inventory at 
retailer r(units) 
Īwi(Rwi, Qwi) item i expected on-hand inventory at 
the ware house (in units of Qri) 
   Item i expected number of backorders at retailer 

r(units).Also,Bri  )( ririri QRB 

)( wiwiWi QRB Item i expected number of 

backorders at warehouse( in units of Qri)).Also Bwi 

        )(X      the pdf  of the standard normal distribution 

function 
   the cdf of the standard normal distribution 

function )(X 

  the inverse of the standard normal distribution 

function )(1 X 

Fri         item i average order frequency at retailer r 
Fwi       item i average order frequency at the ware 
house  
xi                item i space 
X              warehouse space 

 
We assumed identical retailers and 

formulate the two-echelon (R,Q)policy problem in 
order to minimize the total annual inventory 
investment at both echelons subject to the following 
average annual order frequency and average number 
of backorder constraint: 
Average annual order frequency at each retailer ≤ Fri, 

                   (1)  
Average annual order frequency at the ware house 

≤Fw,                (2)  
Total expected number of back orders at each retailer 

≤ Br,           (3)  
Total expected number of backorders at the ware 

house ≤Bw.       (4)  
 
We represent the above model mathematically as 
follows: 

 
(5)  

),(),(
11 wiwiwi

N

i riiririri
N

i i QRIQcQRIcmMinimizeC  




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(11)  .....,2.1 NiQR riri  

                                                                                       
                                                   

(12)  .....,2.1 NiQR wiwi  

 
(13)  .....,2.11 NiQri  

 
(14)  .....,2.11 NiQwi  

 
(15)  Qri,Rri, Qwi, & Rwi   :Integers  ,    i=1,2,…,N 

 
Constraint (11) and(12) are used to make 

sure that the outstanding backorders are satisfied 
when a replenishment order is received.. Constraints 
(13) and (14) are used to make sure that the mini 
mum allow able replenishment order size is one . 
Constraint (15) is necessary, since in real life no 
partial parts are ordered. Later on, in order to 
simplify the problem, constraint (15) will be relaxed 
to allow for continuous values . Under an( R, Q) 
policy the expected on-hand inventory for item i at 
any location when the demand during lead time is 
modeled using a discrete distribution (under which 
the inventory level declines in discrete steps) is 
defined as follows ( Hadley and Whitin, 1963 [6]): 

 
(16)  

][
2

1
)( i

i
iiiii DE

Q
RQRBI 


  

  
Where E[Di]  is item i expected  lead time 

demand and  Bi(Ri,Qri)  is item i expected number of 
backorders at any time. Since almost all real- world 
systems involve discrete inventory, it generally 
makes sense to use the discrete inventory formula 

(Eq. (16)) even when a continuous model is used to 
compute the policy parameters(hopp and 
spearman,2001[8]). 

Hence, we evaluate the inventory level using 
Eq.(16).  Since the demand process for item i at 
retailer r is a simple poisson process with an annual 
rate is: 

 
(17)  

ririirDE  ][  

 
(18)  

ririri dL   

 
The first part of Eq.(18), specifically Lri, 

represents item i’s transportation time from the 
warehouse to retailer r. Since non-repairable spare 
parts are considered, no parts are shipped back to the 
warehouse. Hence, no explicit assumption is made 
on the transportation time from any retailer to the 
warehouse. Also, ordering times are assumed to be 
negligible and transportation times are assumed to be 
deterministic.  

Since the demand process at each retailer is 
a poisson process and an (R,Q) policy is implemented 
at each retailer, the demand process at the warehouse 
is a super position of independent renewal processes 
each with an erlang inter-renewal time with Qri 
stages and rate per state λri (svoronos and zipkin, 
1988[11]). Item i’s order frequency at retailer r is: 
 

(19)  
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
  

 
Under the assumption of identical retailers 

item i’s demand rate at the warehouse (λwi) is: 
  
(20)  

ri
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Q

m
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Svoronos and zipkin (1988)[11],derived the 
following expressions for the mean and variance of 
the warehouse lead time demand under the 
assumption of identical independent retailers : 
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Where 
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(24) 
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We use the normal approximation to the 

poisson distribution to approximate the distribution 
of the retailer’s lead time demand .in addition, We 
approximate the distribution of the warehouse 
leadtime demand using a normal distribution with 
mean and variance as given by eqs.(21)and (22). 

Underan (R, Q) policy, item i’s expected 
number of backorders is (see Hopp and Spearman, 
2001,[8]) 
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           Where   and     are the mean and standard 
deviation of the demand during replenishment lead 
time, respectively. Eq. (26) is the continuous analog 

of the second-order loss function   )(x (Hopp and 

Spearman, 2001[8]). The second-order loss function 
represents the time -weighted backorders arising 
from lead time demand in excess of x (Hopp et al., 
1997). 
 
4. Solution Procedure 

The above two-echelon (R, Q) optimization 
model is a large-scale, non- linear, integer optimiza- 
tion problem (M.H.Al-rafai,M.D.Rossetti, 2007[14]) .  

Under the above assumptions, modeling 
each echelon independent of the other echelons is not 
attainable due to the dependency between them. In 
order to model the warehouse, the retailer’s order 
batch size must be known a priori. To solve the above 
two-echelon inventory system, we assumed identical 
retailers and decomposed the problem into two 
levels; the retailer and the warehouse. 

Decomposition has been used widely in 
many areas such as inventory management and 
queuing systems (e.g .Cohen et al.1990 [2]). 

To solve the problem, we have used two 
algorithms: genetic and simulated annealing. 

Finally we have compared these two 
algorithms, to introduce a proper solution algorithm. 
 
5. Experimentation and Analysis  

In order to asses the quality of the solutions 
obtained via the above heuristc optimization 
algorithm we compared the solutions obtained using 
algorithm genetic with the solutions obtained using 
algorithm simulated annealing . 

For the sake of experimentation, we set the 
following target values of the order frequency and the 
expected number of back order constraints at the 
retailer and the warehouse (Fr =10,Fw = 15,Br = 15, 
Bw = 10).  

also, we set the number of retailers equals to 
three. 

 The data of tens sample has been shown in 
table1 : 

Table 1 

C2  C1  x2  x1 
2  1 

140  120  20  10  250  200  
 

In table2, we have presented ten time 
repetition results of above sample in both algorithms 
and their runtimes : 

Table 2: ten time repetition results 

Improvement in SA  Improvement in GA  First response   
Runtime(s)  c  K  Q2  Q1  Runtime(s)  c  k  Q2  Q1  c  K  Q2  Q1  Row 

61.59  1002200 15  224  49  61.33  302520 7  42  17  3.03e5  2  30  37  1  
93.28  138400 3  494  32  68.67  270870 1  28  33  270.84e5  2  24  28  2  
52.32  481960 4  31  29  58.85  482000 3  23  499  0.482e5  3  23  499  3  
123.16  145300 3  20  90  54.89  365720 1  39  20  366e5  2 34  40  4  
48.98  856100 59  21  107  60.36  408310 7  29  32  255e5  2  30  31  5  
58.61  100220 15  224  49  58.03  302520 7  42  17  203e5  2  30  27  6  
91.71  138400 3  494  32  66.55  270870 1  28  33  271e5  2  34  28  7  
41.05  482000 3  23  499  55.55  481960 4  31  29  482e5  4  31  29  8  
123.9  145300 3  20  90  53.22  365720 1  39  20  366e5  2  34  40  9  
57.6  1002200 15  224  49  58.97  302520 7  42  17  255e5  2  30  37  10 
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5.1 .comparison of two solution algorithms 
 In this paper, we compare GA algorithm 

with SA algorithm  according to reply quality and 
problem solving’s time. 

At first, following supposition tests is used 
to compare reply quality and run time  : 
1) 

 )()( fitnessSAfitnessGA   H0 :   

H1 : )()( fitnessSAfitnessGA   

2)  
H0: )()( SARuntimeGARuntime    
H1: )()( RuntimeSARuntimeGA    
 
         By t-student test in SPSS software, we analyze  
our data . in two following tables, analysis results of 
the first supposition test and the second supposition 
test have been presented separately:  
1) 

Table 3: Paired Samples Statistics 
  

Mean N Std. 

Deviatio

n 

Std. Error 

Mean 

Pair 1 cost ga 2.4000 10 2.36643 .74833 

cost sa 5.1000 10 3.60401 1.13969 

 
TABLE 4: Paired Samples Correlations 

   Correlation Sig. 

Paoir 1 Cost ga & Cost 
Sa 

10 -.435 .209 

 
TABLE 5: Paired Samples Test 

 
 
 
 
 
 
 

TABLE :Paired Samples Statistics 

  Mean N 
Std. 

Deviation 

Std. Error 

Mean 

Pair 2 
time ga 63.6000 10 35.14478 11.11376 

time sa 63.9000 10 17.89755 5.65970 

 
Table 7: Paired Samples Correlations 

  N Correlation Sig. 

Pair 2 time ga & time sa 10 .441 .202 

 
Table 8 :Paired Samples Test 

 
According to the results, in both tests zero 

supposition is rejected . now we should examine two 
following tests : 
 

    3)  H0: )()( fitnessSAfitnessGA    
          H1: )(( fitnessSAfitnessGA    

 
4)  H0: )()( SAtimeGAtime    

     H1: )()( SAtimetimeGA    

 
To doing these tests, we use Minitab 

software.software output for both tests has been 
presented : 
 
3) Two-sample T for FITNESS(COST) GA vs 
FITNESS( COST)SA 
 
          N    Mean   StDev  SE Mean 

COST GA  10  355301   80095    25328 
COST SA  10  449208  376980   119212 
 
Difference = mu (COST GA) - mu (COST SA) 
Estimate for difference:  -93907 
95% lower bound for difference:  -317313 

  
Paired Differences 

  

Mean 

Std. 

Deviat

ion 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 
t df 

Sig. 

(2-

tailed) 
  

Lower Upper 

Pair 1 

cost ga 

– 

cost sa 

-2.70000 
5.100

11 

1.6128

0 

-

6.34840 
.94840 

-

1.674 
9 .128 

  
Paired Differences 

  

Mean 

Std.  

Deviation 

Std. Error 

 Mean 

95% Confidence  

Interval of the 

Difference 

t Df 

Sig. 

 (2-

tailed) 
  

Lower Upper 

Pair 2 time 

ga- 

 time 

sa 

-.30000 31.62647 10.00117 -22.92421 22.32421 -.030 9 .977 
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T-Test of difference = 0 (vs >): T-Value = -0,77  P-
Value = 0,770  DF = 9 
 
4) Two-sample T for RUN TIME GA vs 
RUNTIME SA 
 
             N   Mean  StDev  SE Mean 
RUNTIME GA  10  59,70   5,01      1,6 
RUNTIME SA  10   75,3   30,5      9,7 
Difference = mu (RUN TIME GA) - mu (RUNTIME 
SA) 
Estimate for difference:  -15,60 
95% lower bound for difference:  -33,54 
T-Test of difference = 0 (vs >): T-Value = -1,59  P-
Value = 0,927  DF = 9 
 

According to the analysis results, zero 
supposition of the third test is acceoted . so reply 
quality of SA algorithm is better than that of GA 
algorithm . And zero supposition of the forth test is 
accepted, there fore Run time of SA algorithm  is less 
than Runtime of GA algorithm . 

  
6.Conclusion and future work 

We modeled a two – echelon inventory 
system that implements (R,Q) policies at each 
facility. In order to solve the two-echelon inventory 
system we decomposed it by echelon . by GA and SA 
algorithms, we have solved the model . the results 
shows that reply quality of SA algorithm is better 
than that of GA algorithm and SA algorithm reach to 
reply in short of time.     
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