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Abstract: In this paper we show that the essentiality of the socle of an ideal B of the algebra Aimplies that any
invertibility preserving linear map F:A® A is a Jordan homomorphism. Specially if A is a preliminary algebra

then any such F is an algebric homomorphism.
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1. Introduction

Linear invertibility preserving maps of
algebra were noteworthy from years ago, for
example, the famous theorem of Glason-Kahane-
Zelasco which asserts that any invertibility
preserving linear isomorphism in to the scalar field is
product preserving [1,14]. This problem has been
discussed in  different algebras  previously
[3,4,7,8,10,11]. Generally, A and B are two Banach
algebras and we consider F:A® B linier map, we
know that if be a homomorphism algebra, it
necessary would be invertibility preserving.
Kaplansky presented the issue as following question:

If the preserving would be invertible, is it
necessarily the Jordan homomorphism? So, the main
question of this paper is as Kaplansky question and
we will answer it in the essential ideal of semi-simple
Banach algebras.

Definition 1: the inverse of an invertible element
al A is denoted by a* and the set of all invertible
elements of unitary algebra A is denoted by Inv(A).

Definition 2: Let F:A® B, linear map between
functional algebras, F is invertibility preserving if

al Inv(A) b F(a)l InvB) (al A)

Theorem 1: Let F:A® B be a linear mapping with

B commutative and semi-simple.  Suppose
J (Inv(A)) T Inv(B) and unitary maps. Then F is

continuous and multiplicative, i.e.

F(xy) =F(x)F(y) forall x,yT A.

Proof.
Let L be a multiplicative linear functional on B
different from the zero functional. Then L and LoF
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are continuous. We show that F is multiplicative. It
suffices to consider only the case where B=¢ since
the multiplicative linear functional on B separates its
points.

Thus, given x1 A, define (/) =F(exp(/x)), then
f:C ® € isan entire function having no zeros since

every value of the exponential function on a Banach
algebra is invertible. Hence there exists an entire
function with (/) =exp(g(/)) forall /T C.

Moreover, g¢(0)=0 and Re(g(/))E'/“ for all

/1 ¢and it follows from a Schwarz Lemma that
g(/) =al/ for some complex constant a . Thus,

2,2 272
F(e+/x+/?)l(+---):l+a/ +%+-" (/1 e)

Comparing coefficients, we se that F(x)=a and
F(x*)=a? so F(x*)=F?(x). Define [x,y]=xy- yx
and xoy=xy+yx. Since F is a Jordan
homomorphism, for any x,y1 A:

F(xoy) =F(x)oF(y)
F(Ix yD* =F ([xy]") = [F (x),F ()]’ =0.
Because B is commutative, hence F([x,y])=0 so
2F (xy) =F ([x,y]+x0y) =2F ()F (y) .

In the above theorem, complex field and
commutative is the main provision.

Example 1: Let A real Banach algebra of all
continuous real-valued functions f is on [0,1], we
define
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F:A® R

F(f)=f (Oadt
Clearly A, is all function of non-zero in A and

F(1)=1, so F is confirmed in the above theorem,
whereas F is not isomorphism.

Example 2: Let M_ be algebra of n” n matrices on

the complex numbers, transpose function, maps will
be linear and invertible, while multiplicative

F:M ®M,
F(A) = A
because F(Z A)=(Z A)' = A'Z '=F(AF(Z).

Remark: Example 2 shows that an onto condition is
needed.

F:M,® M,
& Z-27Z'Uu
F(z)=¢ a
&0 Z f
It is observed that
é (z-zH%u
FZ(Z)-F(ZZ):é @10
& 0 H

In the next example, it is observed that if
bijective map be invertibility preserving, semi-simple
provision of algebras can not be removed.

Example 3: If F is bijective map and A, B Banach
algebras of semi-simple, then F is not a Jordan
isomorphism

F:M,® M,
av  Xu év  Xu A
F(é @:é u W, X,YT M,)

go YH €0 Y'H

In this case, F is unitary linear map, while
@  X(r-YHu

F2(2)-F(z?)=¢ (Y )@1 0

& 0 H

Corollary: In 1995, Marcus-Purves showed that
maps of invertibility preserving on M_ matrices are

isomorphism.
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2. Jordan isomorphism

In 1986, Jafarian-Souroor proved this
subject on space of linear functions of B(X)[7]. In
1970, Kaplansky in order to explain Theorem 1,
removed commutative assumption of B . This case
caused that in 1996 Kadison regarding Jafarian-
Sourour's theorem being B(X) semi-simple Banach
algebra [7,15], tried to fined answer of Kaplansky
theorem through expressing following assumption on
c*- algebras in special manner.
Assumption: Suppose that A, B are two c*- algebras
with the same element of c and F :A® B is bijective
unitary map, then is F :A® B isomorphism Jordan?
Solution: While B is commutative, the first theorem
proves the accuracy of above assumption.

Moreover, if Bis finiteof B=L(H) (H is
Hilbert space) or c*- algebra, compact operator on H
as be the same self-addition, the above assumption
will be correct.
Also, Aupetit asserts assumption in ideal that A, B
be Von algebras.

Lemma 2.1: Let A be a semi-simple Banach algebra
and al A, then

(i) al soc(A) ifand only if's(xa'<¥ (xT A)

(ii) al soc(A) if and only if there exists nT N such
that

| sx+ta) 1 s(x) (xT A)

iF
for which F is the set of n-tuples of € \{0}.

Lemma 2.2: Let F be an automorphism on a semi-
simple Banach algebra A, then

(i) F(soc(A))=soc(A)
(if) FY(F(@%)- F?(A).soc(A)=0

Proof. (i) Let al A, there exists bl A such that
F(b)=a, since F is spectrum preserving, then
F(y) = x implies that

s(F(y)+ta)=s(y+th) (tT C)
SO
| sx+tF(@) =] s(F(y+th)=s(x)

iF tF
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therefore,  s(a)l soc(A) due to part 2.3. So
F (soc(A)) I soc(A) . Now we show that
F (soc(A)) E soc(A) . If xT A then there exists yT A
such that F(y)=x and

| s(x+th) =] s(F)+tFO)I s(y)=s(x)

iF tF

which implies that bl soc(A) due to part (ii) of
Lemma 2.1.
(i) Let F(a) =0 then

s(@a+x)=s(F(@a+x)=s(x) (xT A)

So al Rad A={0} due to Zemank theorem. Now the
rest of proof is hold by Lemma 2.1.

Recall that every minimal left ideal of A is
of the form Ae where e is a minimal idempotent.
The sum of all minimal left ideal of A is called the
socle of A and it coincides with the sum of all
minimal right ideal of A. An ideal I of Ais said to
be essential it has a nonzero intersection with every
nonzero ideal of A. If A is a semi-simple algebra,
then 1is essential if and only if al=0 implies
a=0,where al A.

Example 4: Let H be Hilbert space and K(H) be a
compact operator in B(H), then K(H) is a essential
ideal of B(H).

Lemma 2.3: Let B be an ideal of A, and soc(B) is
an essential ideal, then soc(A) is an essential ideal.

Proof. For every al A, if aB=0 then asoc(B)=0

which implies a=0. Let bl B and bB be a minimal
right ideal of B. Since bBt 0, there exists b1 B

such that bb * 0, we have bbBi bb Al bB. Because
bbB1 0 and bB is a minimal right ideal in B, so

bb;B = bbyA=DbB .
If al A and bba® 0, we have
bb,aB i bbjaAi bbAl bB as well, because

bbaB* 0 and bB is a minimal right ideal in B,
then bbaA=bbA=bA. So bbA is a minimal right
ideal in A, which implies soc(B)i soc(A), if
a.soc(B) I asoc(A)=0.

We know that a must be equal to zero, so
soc(A) is an essential ideal.
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Theorem 2.3: Let B be an ideal of the semi-simple
Banach algebra A and F :A® A be aunitary linear

isomorphism. If soc(B) is an essential ideal then F
is a Jordan isomorphism.

Proof. Let soc(B) is essential, so soc(A) is also an

essential ideal, if A is unitary then F is a Jordan
isomorphism by Lemma 2.2. If A is not unitary then

A=AAC is unitary semi-simple Banach algebra.
Let F(a,/)=(F(a),/)for (a/)I A. Then F is a
well defined unitary linear isomorphism. If
soc(A)=k and (a,/)soc(A)=0 then soc(A) is an
essential ideal, since (soc(A),0)i soc(A0)i soc(A)
then (a,/)(k,00=0 i.e. ak=-/k therefore /=0,

because / #0 implies that -%k =k moreover
(-/gb- b)k =0 ifand only if -%b:b for all bl A,

SO -% is a left unit of A. Let d be left unit of A

then
(-%- d)A=0b (-%- dk=0b -%:d
S0 -% is left unit and A is unitary which

contradicts Sour hypothesis, therefore ak =0. Since
K is an essential ideal then a=0 and Lemma 2.2
implies that

F(F(a/)?)- F%a,/))soc(A) =0
F is bijective
F(a/) =(F(a®)+2/F(a),/’) b F?*(@)=F(a?).

Corollary: If F:A® A is a unitary linear

isomorphism on the semi-simple Banach algebra A,
and A has minimal ideal then F's is a Jordan
0C(A)

homomorphism.

3. Conclusion

In primitive algebras every nonzero ideal is
essential, and from a well-known theorem of Herstein
on Jordan homomorphisms onto prime rings it
follows easily that Jordan isomorphism or an anti-
isomorphism.
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