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Abstract: In this article the disk-rim flywheel is suggested for light weight. The mass of the flywheel is minimized 
subject to constraints of required moment of inertia and admissible stresses. The theory of the rotating disks of 
uniform thickness and density is applied to each the disk and the rim independently with suitable matching condition 
at the junction. Suitable boundary conditions on the centrifugal stresses are applied and the dimensional ratios are 
obtained for minimum weight. It is proved that the required design is very close to the disk with uniform thickness. 
[Bedier B. EL-Naggar and Ismail A.  Kholeif. Disk-Rim flywheel of minimum weight. Journal of American 
Science 2011;7(6):146-149]. (ISSN: 1545-1003). http://www.americanscience.org. 
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Introduction 
     Fluctuating power and/or load machines are 
equipped with a flywheel to store kinetic energy upon 
rotation. Strokes of large power increase the wheel 
rotation whereas this increased speed is reduced in 
strokes of low energy. If the energy fluctuation each 
cycle is E∆ , maxω  and minω  are the maximum 
and minimum angular speeds; then 

)(
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2
max ωω −=∆ IE . Here I is the mass 

moment of inertia of the flywheel about the axis of 

rotation. If the difference 2
min

2
max ωω − is required 

not to exceed a given value in a certain application, 
the value of I is then fixed. Flywheels are then 
designed to ensure this value. Upon deciding the 
material of the flywheel the dimensions are 
determined accordingly. Usually the materials used 
are cast iron and steels. 

The value of the maximum speed maxω is 
of primary importance in the design of the flywheels 
became higher speeds result in higher centrifugal 
stresses which should not exceed the admissible 
values of the flywheel material. This will be 
discussed later in detail. As modern designs require 
light weight, the design parameters are chosen 
according to ensure minimum weights with inertia 
and stresses are prescribed as constraints. As the 
moment of inertia of a mass element about a given 
axis is proportional to the square of the distance 
between the element and the axis, smaller mass at a 
large distance is more preferable than larger mass at 
small distances from the point of view of minimum 
weight. However in bodies of revolution larger 
distances imply larger circumference and areas. The 
two factors must be investigated properly the rim-

disk wheel is suggested to ensure this. Figure (1) 
shows a schematic of disk-rim flywheel considered.  

We should indicate that the flywheel is fitted 
with a hub around the axis of rotation for mounting 
the shaft. This hub serves as a reinforcement of the 
disc and dropping it in the calculation will be an 
approximation in the safe side. 

 
 
The mass M of the flywheel is given by   
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Here; 
     g     acceleration of gravity 
    γ       specific weight of flywheel material.  

   iR      disk radius 
    t       disk thickness 

    
iR
R

x 0= ;  0R  outer radius of rim 

    
t
by =  ,   b width of rim 

Also, the moment of inertia I is given by  

( )[ ]112 44 −+= xytRgI
iπγ

           (2) 

 
Different aspects of flywheel design are 

investigated by several authors along with other 
rotating disk machine elements. You et. al.[1] made 
numerical analysis of elastic plastic rotating disks 
with arbitrary variable thickness and density; the 
governing equation is derived from the basic 
equations of rotating disks and solved using the 
Runge-Kutta Algorithm. Also, Sterner et. al.[2] 
developed a unified numerical approach for the 
analysis of rotating disks including turbine rotors. 
The problem of stresses in linearly hardening rotating 
solid disks of variable thickness is discussed by 
Orcan and Eraslan[3], analytically flywheels with 
friction used for optimal control of damping are 
studied by EL-Gohary [4]. The problem of robust 
stabilization and robust output feedback stabilization 
of the angular velocity of a rigid body are tackled by 
Astofi A. [5,6], the problem of rotating anisotropic 
disk of uniform strength is investigated by Jain et 
al.[7]. Callioglu [8] made an analysis of the stresses 
in an orthotropic rotating disk under thermal loading. 
The problem of limit angular velocities of variable 
thickness rotating disks is solved by Eraslan et al. [9].  
 
Formulation and Solution: 
 

Consider the disk-rim flywheel whose cross-section 
is shown in figure (1). The flywheel is rotating 
around its axis of symmetry at an angular speed ω , 
the radial and tangential stresses rσ  and θσ  
respectively are given by [10]: 
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here υ  is the Poisson's ratio of the material A and B 
are arbitrary constants to be determined from the 
boundary conditions imposed on both the disk and 
the rim. 
 
 
 
Stresses in the disk:  
The disk of Radius iR and thickness t  includes the 

centre line 0=r . For bounded values of stresses the 
constant B  must be chosen zero and the resulting 
stresses in the disk are reduced to:  
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the maximum value of this stresses occur at the 
centre line and are equal to the yet undetermined 

arbitrary constants 
2
A

 to be determined from the 

boundary condition at iRr =  where the disk and the 
rim join together. This condition is imposed by the 
centrifugal force on the rim transmitted to the edge of 

the disk as radial stresses
iRrσ . The total 

centrifugal force on the rim is given by 

rimrim RM 2ω where rimM is the mass of the 

rim and rimR is the mean radius of the rim. We 

have ( )22
0 irim RRb

g
M −= πγ  and 

( )02
1 RRR irim += . 

The area over which this force is uniformly 
distributed is the contact area between the disk and 
the rim tRiπ2 . The resulting radial stress on the 

disk edge 
iRr radialσ is given by: 

 ( )( )11
4
1 22

2
+− xxyR

g i
ωγ

, yxand  

are defined before, substituting this value in equation 
(5) for iRr =   gives 
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this value should be equal to the admissible stress of 
the material σ  for safe design. Accordingly, the 
second constraint on design is given by: 
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the first constraint is that the moment of inertia is 
given by equation (2). 
Stresses in the rim 
 In the rim, the centre line 0=r  is not 
included and the arbitrary constant B  can not be 
dropped. Accordingly, the stress distribution on the 
rim is given by equations (3) and (4). A relation 
between the values of the constants BAand in the 
rim can be obtained by applying the condition 

0
0.rim =Rrσ  since the edge 0R  of the rim is 

free from external radial stresses. In terms of the 
constant A - not yet determined the expressions of 
the stresses in the rim are: 
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The value of the constant 
2
A

 is determined from the 

value of centrifugal force on the rim divided by the 
area of the rim at the edge giving  
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Equations (9) and (11) give:  
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Using equation (12) in equations (9) & (10) give: 
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Investigation of equation (14) for maximum shows 
that the maximum occurs for   
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for 1≥x  this gives negative r and therefore 

rejected. The accepted value for maximum rimθσ  

occurs at iRr =  and this gives the third constraint 
on the minimization of the flywheel mass as:  
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Equations (8) and (15) give  
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where y  is given in terms of x  in equation (16). 

Having determined 4
iR  and y  as functions of x , 

the x  dependence of t  is given by : 
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Inserting values of 2
iR , t and y as a function of x  in 

equation (1), we require to minimize the function: 
 

( ) ( )( )

( ) ( )( )

( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ +

−+−−−
+

+
+

+

⎥⎦
⎤

⎢⎣
⎡ +

−+−−−
+

+
+

×⎥⎦
⎤

⎢⎣
⎡ +

−+−−−
+

8
3111

4
12

8
3

1
11

8
3111

4
12

8
3

1
11

8
3111

4
11

8
3

24
2

24

24

υυ

υυ

υυ

xxx
x
x

xxx
x

xxx

 (19) 

The minimum for 3.0=υ  is found to be very close 
to 4=x  where 
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Conclusion:  

The result of this analysis is remarkable; the 
width of the rim is approximately equal to the 
thickness of the disk. Besides most of the side area of 
the flywheel is spanned by the width of the rim the 
flywheel tends to be close to the uniform disk of 
constant thickness. This is for minimum weight. It 
became obvious that wide rims are used in rim 
flywheels when the disk is replaced by a set of long 
arms joining it to the hub. 
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