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Abstract: In this paper the synthesis of logic-based switching H2/H∞ state-feedback controller for singular 
perturbation systems is considered that achieves a minimum bound on the H2 performance level, while satisfying the 
prescribed H∞ performance. The proposed hybrid control scheme is based on a fuzzy supervisor which manages the 
combination of two controllers. A convex LMI- based formulation of the two fast and slow subsystem controllers 
leads to a structure that ensures a good performance in both the transient and the steady state phase. It is shown that 
the system with the proposed controller remains globally stable despite the configuration (controller) changing.  
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1. Introduction 
        There has been increasing interest in hybrid 
control in recent years, due to its potential to 
overcome limitations of adaptive control and benefits 
in controlling of systems that cannot achieve the 
desired performance by a single controller. Indeed, 
hybrid control scheme provides an effective 
mechanism when facing large modelling uncertainty 
and highly complex systems. Even for simple linear 
time invariant systems, controllers switching can be 
utilized in improving the performance (Sun, 2005, 
Feuer, 1997, and McClamroch, 2000). To date, 
Morse, Hespanha and Liberzon have established a 
theoretical backbone for hybrid controllers (Morse, 
1997, Hespanha, 1999, and Liberzon, 2003). By now, 
stabilizing a continuous system via hybrid output 
feedback has attracted a number of authors, such as 
(Santarelli, 2008) where a comparison between the 
responses of the switching controller and two other 
forms of LTI control have been made. An 
experimental assessment of controller switching with 
state and control magnitude constraints is carried out 
in Kogiso, 2004. In Zheng, 2006, the multi-objective 
robust control of an induction motor with tracking 
and disturbance rejection specifications is proposed 
via switching. In Essounbouli, 2006, DeCarlo, 1988, 
and Jamshidi, 2010 controller switching has been 
proposed to improve the trade-offs in design multi 
objectives. 
        Supervisory control employs logic-based 
switching for adaptation, instead of continuous tuning 
of parameters as in conventional adaptive control. 
This type of switching-based supervisory control 
scheme consists of the following subsystems: a plant 
to be controlled, a bank of controllers, and a 
switching logic. Dwell-time method is representative 
of the trajectory independent switching logic for 

supervisory control (see Yoon, 2007 and its 
references). On the other hand, Lyapunov functions 
are employed in such trajectory dependent switching 
methods as in Yoon, 2007. 
        Systems with slow and fast dynamics, described 
mathematically by singular perturbations, are studied 
extensively in numerous papers and books; see for 
examples (Kokotovic, 1986, Tan, 1998). For robust 
control of singular perturbation systems, the 
controller is usually derived through indirect 
mathematical programming approaches (e.g. solving 
Riccati equations), which encounter serious 
numerical problem linked with the stiffness of the 
equations involved in the design. To avoid this 
difficulty, several approaches (Oliveira, 1999, Pan, 
1993) have been developed to transform the original 
problem into ε -independent sub-problems, among 
which, the time-scale decomposition (Oliveira, 1999) 
is commonly adopted. As an alternative to Riccati 
equation solution, LMI formulation has been 
attracting more and more attention of robust control 
researchers. However, up to the present, it remains an 
open area solving mixed H2/H∞ control problems for 
singular perturbation systems through LMI approach. 
Garcia et al. Garcia, 1998 proposed a solution to the 
infinite time near optimal regulator problem (H2 
control) for singular perturbation systems through an 
LMI formulation. A time scale-decomposition was 
employed on the overall system as well. In (Li, 2001) 
the problem is formulated into a set of inequalities 
independent of ε . An algorithm is given to solve this 
set of inequalities through LMI formulation. But 
extension of this method to mixed H2/H∞ control is 
very difficult. In (Li, 2007) a same approach is used 
for solving problem with static output feedback 
instead of state feedback. Combination of different 
techniques to obtain the different performances is 
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widely used today (Essounbouli, 2006, Pan, 1993, 
and Peres, 1994). This method results in hybrid 
dynamical systems which include continuous and 
discrete dynamics and a mechanism (supervisor) 
managing the interaction between these dynamics. In 
the present paper, the switching mixed H2/H∞ state 
feedback control problems for continuous-time linear 
singular perturbation systems are solved. The simple 
design methods of Garcia, 1998 are applied to derive 
the state-feedback gains, separately for two fast and 
slow sub-systems. A fuzzy supervisor is proposed for 
hybrid combination of these controllers to use their 
advantages and to ensure the required performances 
and the stability of the closed loop system.  
        The contribution of the presented work is 
combining fast and slow sub-system controllers using 
a supervisor, which manages the gradual transition 
from one controller to another. This method is 
applied to use the advantages of each controller. The 
control signal is obtained via a weighted sum of the 
two signals given by the slow and fast sub-system 
controllers. This weighted sum is managed thanks to 
a fuzzy supervisor, which is adapted to obtain the 
desired closed loop system performances. So, the fast 
sub-system controller mainly acts in the transient 
phase providing a fast dynamic response and 
enlarging the stability limits of the system, while the 
slow sub-system controller acts mainly in the steady 
state to reduce chattering and to maintain the tracking 
performances. Furthermore, the global stability of the 
system even if the system switches from one 
configuration to another (transient to steady state and 
vice versa) is guaranteed. 
        The structure of the paper is as follows. Section 
2 presents the system definition and the controllers 
used. In Section 3, the fuzzy supervisor and the 
proposed control law are described. Stability analysis 
is demonstrated in Section 4. The design procedure is 
explained in Section 5 and an example is given to 
illustrate the efficiency of the proposed method, 
followed by conclusions in Section 6. 
 
2. Problem Statement 
        Consider the following linear singularly 
perturbated system Σ  with slow and fast dynamics 
described in the "singularly perturbated" form: 
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        The system Σ  can be rewritten into the 
following compact form: 

: w
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        Applying a static state feedback control: 
u Kx=                                                                     (4) 
leads to the following closed-loop system: 

: cl cl cl cl
cl

cl cl
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z C x

= +⎧
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                                        (5) 

where , ,
scl cl w cl z zA A B K B B C C D Kε ε= + = = + . 

        Denote the transfer function of the closed-loop 
system clΣ  from  to  as: 

. The H

w z
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and the H∞ norm of ( ),T s K  is defined by:  
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2.1. 
        If 

Slow and fast sub-systems 
4A  be a non- singular matrix, we can 

decompos original singularly perturbated system (1) 
to two slow and fast subsystems. The slow subsystem 
defined letting 0ε =  in second equation of (1) and 
computing fastx  in terms of slowx ,  and w , then 
substituting it in the first equation. Therefore, slow 
subsystem obtained as follows: 
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        The fast subsystem of (1) is defined by [6]: 
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        Therefore, the overall system is decomposed into 
slow and fast subsystems. In sequel, these subsystems 
are used to design slow and fast controller and then 
are mixed using a fuzzy supervisor to produce a 
controller for the overall system. In this paper we 
focus on the suboptimal mixed H

                                (11) 

2/H∞ static state 
back control problem in terms of linear matrix 
ualities (LMI). 

feed
ineq
        Lemma 2. 1. [1] (H2 control problem): Consider 
overall system (1). The static state feedback control 
law (4) stabilize closed loop system (5) and achieves 
a prescribed H2-norm bound 0 ν<  for it, if and only 
if there exists  with appropriate 
dimensions such that: 
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By solving mentioned LMI's, Q, T and Z will be 
found and control law (4) is calculated as: 

-1K TQ=                                                                (11) 
It 
asym

guarantees that closed loop system is 
ptotically stable and H2-norm (6) is less than ν . 

        Lemma 2. 2. [1] (H∞ control problem): The 
control law (4) stabilize closed loop system (5) and 
achieves a prescribed H∞- norm bound 0 γ<  for it, 

if and only if there exists   and T  with 
appropriate dimension such that: 
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By s
cont
        Lemma 2. 3. [1] (Mixed H

olving LMI (12), Q and T will be found and 
rol law (4) is calculated from (11).  

2/H∞ control problem): 
The control law (4) satisfies mixed H2/H∞ control 
problem if and only if the following LMI's for 

 and a given positive scalar 0, ,TQ Q T Z= > 0γ >  
are satisfied: 

( ) ( )
min

subject to 12 and 10
ν

                                      (13) 

By solving (13), Q, T, Z and ν  are found and the 
control law (4) is computed from (11). 
 
3. Fuzzy Supervisor 

        The approach used in this paper for solving 
mixed H2/H∞ control problem for linear singular 
perturbation system is different from former 
approaches. We start with an overall linear singular 
perturbation system and decompose it to slow and 
fast subsystems. Then we solve mixed H2/H∞ control 
problem for each slow and fast subsystems and find 
Kslow, Kfast by solving corresponding LMI's. It is well 
known that fast subsystem can be a good 
approximation for transient time of overall system 
response and slow subsystem can be a good model 
for steady state time of overall system response. 
Therefore, fast subsystem controller Kfast can be used 
during the transient time and slow subsystem 
controller Kslow can be used during the steady state, 
their control actions are combined by means of a 
weighting factor, [ ]0 1∈α , representing the output 
of a fuzzy logic supervisor that takes the tracking 

  and its time derivatives  as 
ts.  

error
inpu
        The fuzzy system is constructed from a 
collection of fuzzy rules whose jth component can be 
given in the form: 

e -1, , , ne e e…& &&

-1
1If is And …And is Thenj n j

n je H e H =α α . Where 
j

iH  is a fuzzy set and jα  is a singleton. 
        The fuzzy implication uses the product operation 
rule. The connective AND is implemented by the 
minimum operation, whereas fuzzy rules are 
combined by algebraic addition. Defuzzification is 
performed using the centroid method. Since the 
membership functions that define the linguistic terms 
of the output variable are singletons, the output of the 
fuzzy system is given by 

1 1

1 1

nm
j

i i
i j

nm
j

i
i j

= =

= =

=
∑ ∏

∑∏

α μ
α

μ
                                                         

where j
iμ  is the degree of membership of j

iH  and 
 is the number of fuzzy rules used. The objective 

of the fuzzy supervisor is to determine the weighting 
factor,

m

 α  which gives the participation rate of each 
control signal. Indeed, when the norm of the tracking 
error  and its time derivatives  are 
small, the plant is governed by the slow subsystem 
controller K

e -1, , , ne e e…& &&

slow ( 1=α ) . Conversely, if the error and 
its derivatives are large, the plant is governed by the 
fast subsystem controller Kfast ( ). The control 
action u , is determined by: 

0=α

(1- ) fast slowu u u= +α α                                            (14) 
where 

slow fastK , Kslow slow fast fastu x u x= =                          (15) 
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Structure of proposed controller with a fuzzy 
supervisor has been shown in Figure 1. 
 

 
Figure 1. The structure of the proposed controller 
 
4. St
        The theorem of Essounbouli et al. [7] is used to 

e the global stability of the system. Similar to 
his theorem is rewritten as follows: 

ability Analysis 

prov
[7], t
        Theorem 4.1. Consider a combined fuzzy logic 
control system as described in this work. If:  
1. There exists a continuously differentiable and 
radially unbounded scalar function  for each 
subsystem, 

0V >

2. Every subsystem gives  in its active region, 0V <&
3. The weighted sum defuzzification method is used, 
such that for any control input u   
min ( , ) max ( , )slow fast slow fastu u u u u≤ ≤  
Then the resulting control u , given by (14), 

antees the global stability of the closed loop 
m. 

guar
syste
        Proof: Satisfying two first conditions guarantees 
the existence of a Lyapunov function in the active 
region which is a sufficient condition for ensuring the 
asymptotic stability of the system during the 
transition from the fast subsystem controller to the 
slow subsystem controller. Consider the Lyapunov 
function T

fast fastV P= ζ ζ  where  is a positive 
definite matrix and the solution of (13) for fast 
subsystem and the Lyapunov function 

fastP

T
slow slowV P= ζ ζ  where slowP  is a positive definite 

matrix and the solution of (13) for slow subsystem. 
To satisfy the second condition it is enough to choose 

,slow fastP P  such that: 

slow fastP P≤                                                             (20) 
This condition guarantees that in the neighbourhoods 
of the steady state, the value of the Lyapunov 
function  is greater than that of fastV slowV . To 
guarantee the third condition, the balancing term α  
takes its values in the interval [0 1]. Consequently, 
the three conditions of the above theorem are 
satisfied and the global stability of the system is 
guaranteed.  

        So, The Problem formulation (switching H2/H∞ 
control) will be as: 
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γ
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5. D
        The design procedure can be summarizing as 
follows:  

esign Procedure 

Compute slow and fast subsystems of overall system 
from (8) and (9). Solve control problem (16) for each 
subsystem with given positive scalars slowγ  and fastγ  
to find Kslow and Kfast from (11). Compute slowu  and 

 from (15). Calculate overall control signal u 
from (14) that 

fastu
α  is governed by fuzzy supervisor 

according to error and its derivatives. Apply this 
control signal to (1) and construct closed loop system 
(5). To construct the fuzzy supervisor, firstly, the 
fuzzy sets are defined for each input (the error and its 
derivatives) and output; then, the rule base is 
elaborated. The error vector is computed and then is 
injected in the supervisor to determine the value of α  
to apply to the global control signal.  
 
6. Si
        To demonstrate the solvability of the various 
LMIs, simplicity and low conservatives of the 
proposed method, The formulation of the switching 
H

mulation  

2/H∞ control of the singularly perturbed system is 
now applied to control the longitudinal flight 
dynamics of F-8 aircraft model. The longitudinal 
dynamics of the aircraft exhibits two- time scale 
properties identifiable by the phugoid (slow) and the 
short period (fast) mode. The H2/H∞ controllers are 
designed for the longitudinal axis dynamics of the 

aft for the cases of full- order control, fast 
rol and slow control.  

aircr
cont
        The linearized small-perturbation longitudinal 
equations of the motion and aerodynamics stability 
derivations are provided in [8]. The longitudinal F-8 
aircraft model is for a flight condition of Mach 0.6 
( 1

0 620V ft s −= ) altitude of 20000 feet, and angle of 
attack of 0.078 rad. The state variables are v : 
velocity ( 1ft s − ); α : angle of attack (rad); q : pitch 
rate ( 1rads − ); θ : pitch angle (rad); and the input 
variable is: σ  stabilator deflection (rad). Here, the 
slow states are the forward air speed and pitch angle, 
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while the fast states are the angle of attack and pitch 
rate. The space model is obtained as [6]: 
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The input disturbance w  is zero mean white noise 
process with ( ) (w τ δ τ= −  is injected 

the system in the interval into [ ]10 30t ∈ . 
        Following the proposed design method in section 
5, the following results are obtained: 

2 /
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( )switching fast slowK = 1- K Kα α⎡ ⎤⎣ ⎦  
Only first time derivative of tracking error is used 
because in practical system, it is difficult to measure 
the higher order time derivatives of the tracking error. 
The fuzzy supervisor is constructed by using three 
fuzzy sets zero, medium and large for the norms of 
the tracking error and its time derivative. The 
corresponding membership functions are triangular. 
For the output, five singletons are selected; very large 
(VL), large (L), medium (M), small (S) and zero (Z), 
corresponding to 1, 0.75, 0.5, 0.25 and 0, 
respectively. Rules are defined in Table 1., for 
example, a rule in the table can be stated as follows: 

he norm of the error is medium AND the norm 
e error derivative is large, THEN α is zero”.  

⎤
⎥
⎦

 

“IF t
of th
        From obtained simulation results in Table 2., it is 
clear that the proposed method gives better response 
than conventional overall design method for full 
order system. In our proposed switching method, 
with a smaller γ  for H∞ constraint, the H2 norm is 
smaller. But both of H2 and H∞ norms are increased 
in conventional overall method. From Figure 2, it is 
clear that output regulation in our proposed controller 
is better related to conventional overall controller. 
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Figure 2. The State Response of simulation 
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7. Conclusion 
 In this paper, convex optimization method is 
used to design the logic based switching H2/H∞ 
controller for a linear singular perturbation system. 
Proposed controller guarantees the stability of the 
closed loop system and satisfies the prescribed level 
of performance indexes for both of H2 and H∞ norms. 
Using the reduced-order fast and slow mode 
controllers instead of one full-order overall controller 
with higher order is the main contribution of this 
paper. A fuzzy supervisor manages both of fast and 
slow controller performance efficiently such that in 
spite of switching nature of control scheme, stability 
of closed loop system is guaranteed and the 
performance criterion is satisfied. In reality, fast 
mode controller has a good performance in transient 
mode (low energy impulse response) and slow mode 
controller affects the steady mode section and 
attenuates the low frequency disturbances. 
Simulation results show that the proposed controller 
causes the considerable improvement in the overal 
performance of the closed loop system. 
 

Table 1. The rules of the proposed Supervisor 
 |de/dt| 

Z VL L M 
M S S Z e  
L Z Z Z 

 
Table 2. The results of the simulation 
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